首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
血管紧张素-(1-7)对豚鼠心肌细胞电生理作用的研究   总被引:8,自引:0,他引:8  
目的 研究血管紧张素 (1 7) [Ang (1 7) ]对正常豚鼠心室肌细胞膜L型钙内流 (ICa L)、延迟整流性钾流 (IK)、内向整流性钾流 (IK1 )和快钠内流 (INa)以及跨膜动作电位的影响 ,旨在探讨Ang (1 7)对心肌细胞的电生理作用。方法 应用膜片钳全细胞记录方法记录各项离子流和标准微电极技术记录动作电位。结果  (1 )Ang (1 7)可使ICa L呈浓度依赖性增加 ,选择性血管紧张素 (AT1 )受体阻滞剂缬沙坦 (Val)或非选择性血管紧张素受体阻滞剂Sarthran(Sar)均可以消除Ang (1 7)增加ICa L的作用。 (2 )Ang (1 7)可使IK呈浓度依赖性增加 ,Val不能拮抗Ang (1 7)增加IK的作用 ,而Sar可以拮抗Ang (1 7)的作用。 (3)Ang (1 7)对IK1 和INa无影响。 (4)Ang (1 7)可使动作电位时程 (APD30 、APD50 和APD90 )呈浓度依赖性缩短 ,2 μmol/LAng (1 7)使APD90 从 (1 52± 1 8 1 4 )ms缩短至 (1 36± 2 1 37)ms(n =5 ,P <0 0 5) ,对静息电位、动作电位幅度和最大除极速率无影响。结论 Ang (1 7)对心肌细胞复极电流IK作用不同于AngⅡ ,Ang (1 7)通过非AT1 受体促进IK,有助于心肌细胞复极 ,有利于心电稳定  相似文献   

2.
血管紧张素-(1-7)拮抗血管紧张素Ⅱ对钾通道的作用   总被引:5,自引:2,他引:5  
应用膜片钳全细胞记录技术研究血管紧张素 (1 7) [Ang (1 7) ]和血管紧张素 Ⅱ (AngⅡ )对豚鼠心室肌细胞钾离子通道作用的异同 ,并探讨Ang (1 7)发挥作用的机制。结果 :2 μmol/LAng (1 7)可使延迟整流性钾离子流 (Ik)从 13.5 3± 0 .92 pA/ pF增至 17.5 8± 2 .73pA/ pF(P <0 .0 5 ) ,应用选择性AT1受体拮抗剂缬沙坦 (Val)后 ,Ang (1 7)增加IK 的作用依然存在 ,而应用非选择性血管紧张素 (AT)受体拮抗剂Sarthran (Sar)后 ,Ang (1 7)对IK 的作用被消除。同样浓度的Ang (1 7)对内向整流性钾离子流 (IK1)无影响 (P >0 .0 5 )。 2 μmol/LAngⅡ可使Ik从13.94± 1.4 9pA/pF降至 8.98± 2 .4 6 pA/ pF(P <0 .0 1)、IK1的内向电流从 38.6 7± 8.2 4 pA/pF增至 5 3.4 7±7.4 8pA/pF(P <0 .0 1)。应用Val和Sar后 ,AngⅡ抑制IK 的作用被消除 ,而只有Sar可以消除AngⅡ增加IK1的作用。结论 :Ang (1 7)通过非AT1受体增加IK,对IK1无影响 ;AngⅡ通过AT1受体抑制IK,通过非AT1受体增加IK1,二者对钾离子流的作用不同。  相似文献   

3.
血管紧张素Ⅱ受体及其受体拮抗剂研究进展   总被引:33,自引:0,他引:33  
血管紧张素Ⅱ(AngⅡ)是肾素-血管紧张素系统(RAS)中最为重要的活性激素,它在高血压的病理生理中起着重要的作用。AngⅡ的作用通过细胞表面的AngⅡ受体介导,根据与不同受体拮抗剂的选择性可将其受体分为两个亚型:AT1受体和AT2受体。已知的AngⅡ的生理作用是由AT1受体介导的AT2受体的功能尚不清楚,在临床上主要有两种抑制RAS活性的药物;一是血管紧张素转化酶抑制剂(ACEI),它抑制AngⅡ的生成;二是AT1受体拮抗剂,它阻断AngⅡ相应受体的生理学作用。AT1受体拮抗剂的潜在临床实用性正在得到深入研究。  相似文献   

4.
替米沙坦属于非肽类血管紧张素Ⅱ(AngⅡ)受体拮抗剂(ARB),在AngⅡ1型受体(AT1R)水平同时阻断了肾素-血管紧张素系统(RAS)及非经典途径产生的AngⅡ的作用,降压效果更好,对其他激素无影响,清除半衰期为24 h,降压疗效较持久〔1〕。另外,替米沙坦分子结构与过氧化物酶体增殖物激活受  相似文献   

5.
目的观察血管紧张素Ⅱ1型受体(AT1受体)细胞外第二环肽抗体对培养大鼠主动脉血管平滑肌细胞(VSMC)细胞质游离钙水平的影响。方法采用酶联免疫吸附测定法检测高血压患者血清中抗AT1受体抗体,亲和层析法提取阳性血清中的AT1受体细胞外第二环肽抗体。同时应用AT1受体胞外第二环肽主动免疫大鼠并提取抗体。将血管紧张素Ⅱ(AngⅡ),患者及大鼠的AT1受体胞外二环肽抗体分别刺激钙离子荧光探针Fluo-3/AM负载培养原代大鼠VSMC,观察荧光强度变化来检测细胞质游离钙水平变化。结果患者及大鼠血清中提取的AT1受体第二环肽抗体均刺激培养VSMC使细胞质游离钙水平升高,作用与AngⅡ类似。进一步实验发现抗体的激动效应能够被AT1受体胞外第二环肽的抗原表位序列及AT1受体拮抗剂氯沙坦阻断。结论针对AT1受体胞外第二环肽抗体具备激动效应,通过激动AT1受体刺激细胞质钙离子浓度增高,提示该抗体在高血压发病机制中起重要作用。  相似文献   

6.
肽类血管紧张素Ⅱ受体拮抗主肌细胞离子通道的影响   总被引:8,自引:1,他引:7  
目的 研究血管紧张素Ⅱ受体拮抗剂 (AngⅡ Antipeptide)对单个豚鼠心室肌细胞膜上L型钙通道电流 (ICa L)、ATP敏感钾通道电流 (IK ATP)延迟整流钾通道电流 (IK)、瞬间内向电流 (Iti)及内向整流钾通道电流 (IK1)的影响。方法 应用膜片钳全细胞记录方法。结果  (1)AngⅡ Antipeptide (5μmol/L)抑制ICa L,但并不改变I V曲线形态 ,(2 )AngⅡ Antipeptide (5 μmol/L)抑制IK ATP,(3 )AngⅡ Antipeptide (5 μmol/L)对IK 及IK·tail均有抑制作用 ,(4)AngⅡ Antipeptide (5 μmol/L)在低钾、高钙溶液中 ,抑制Iti电流 ,并明显延长滞后时间 (lag time) ,(5 )AngⅡ Antipeptide对内向整流钾通道电流 (Ik1)无明显作用。结论 AngⅡ Antipeptide对上述通道选择性不高 ,但推测它对以上通道综合影响在保护心肌及抗心律失常方面具有协同作用。  相似文献   

7.
血管紧张素受体在内皮祖细胞凋亡中的作用   总被引:1,自引:1,他引:0  
目的探讨在高浓度血管紧张素Ⅱ(AngⅡ)致内皮祖细胞(EPCs)凋亡中,AngⅡ受体(angiotensinreceptor,AT)的作用。方法采集人脐静脉血,用6%羟乙基淀粉沉降和密度梯度离心法联合分离脐带血中的单个核细胞,培养7d,采用免疫荧光法和免疫组化法鉴定EPCs,收集贴壁细胞,加入不同浓度的AngⅡ(10~(-4)、10~(-6)、10~)-8)mol/L),干预一定时间(12、24、48h);加入浓度10~(-6)mol/L的AngⅡ,用AT受体拮抗剂干预后,分别观察各组EPCs的凋亡率。结果 AngⅡ可明显促进EPCs凋亡,与对照组(3.82%±0.10%)比较,EPCs凋亡指数随AngⅡ浓度的增高而升高(10~(-6)mol/L:18.54%±0.97%;10~(-4)mol/L:25.30%±0.99%,均为P0.05),且呈时间依赖性;单用AT1受体拮抗剂氯沙坦对细胞的凋亡无明显作用(P0.05),单用AT2受体拮抗剂PD123319有抑制作用(P0.05),两者合用时,抑制作用明显(P0.01)。结论高浓度AngⅡ可引起EPCs凋亡。氯沙坦对AngⅡ介导的EPCs凋亡影响较小,PD123319则可部分抑制AngⅡ诱导的凋亡,两者合用时抑制凋亡作用明显。  相似文献   

8.
目的观察血管紧张素Ⅱ(AngⅡ)、AT1受体拮抗剂氯沙坦和AT2受体拮抗剂PD123177对心肌细胞蛋白质合成速率和AT1受体mRNA表达的影响。方法采用3H-亮氨酸掺入法测定培养的心肌细胞蛋白质合成速率,RT-PCR方法检测心肌细胞AT1受体mRNA表达。结果在培养的心肌细胞中加入AngⅡ可明显增加心肌细胞3H-亮氨酸的掺入量,并呈剂量依赖性,氯沙坦可显著抑制AngⅡ引起的蛋白质合成增加,而PD123177对其无影响;AngⅡ上调AT1受体基因表达,氯沙坦抑制其上调,PD123177无影响。结论AngⅡ可通过上调AT1受体引起心肌细胞肥大,氯沙坦下调AT1受体,抑制心肌细胞肥大。  相似文献   

9.
血管紧张素Ⅱ受体拮抗剂与心肌梗死后左室重构   总被引:11,自引:1,他引:10  
急性心肌梗死(AMI)后左室重构(LVRM)是梗死后心肌组织结构和心室功能变化的病理生理过程,其影响梗死后患者的心脏血流动力学状态,并且是决定梗死后心脏事件发生率和远期预后的主要因素〔1,2〕。在AMI的药物治疗中,阿司匹林、β-受体阻滞剂、血管紧张素转换酶抑制剂(ACEI)已证明能够阻抑LVRM并降低病死率〔3〕。近年来,已有血管紧张素(Ang)Ⅱ受体拮抗剂逐渐应用于临床,但有关此类药物的大规模临床试验尚未进行,其对AMI后LVRM的影响尚未明了。   大规模临床试验已证实ACEI在治疗高血压、充血性心力衰竭、心肌梗死,防治心脏与血管的病理性重构及某些肾脏性疾病方面具有明显的效果。虽然ACEI可通过抑制AngⅡ的生成及缓激肽(BK)的降解阻抑LVRM,但由于ACEI不能抑制胃促胰酶等非血管紧张素转化酶途径转化AngⅠ为AngⅡ〔4〕,故在一定程度上削弱了ACEI的药理学效应。同时ACEI存在两个重要的副反应,即咳嗽和血管性水肿,这严重影响了患者服药的依从性,所以人们致力于寻找可完全阻断AngⅡ作用的药物,近年来,Ang Ⅱ受体拮抗剂问世并应用于临床,成为继ACEI后具有强大AngⅡ阻断效应的治疗心血管疾病的药物。 1 AngⅡ受体及其拮抗剂的作用机制   目前至少已发现了3种AngⅡ受体(AT):AT1、AT2、AT3〔5,6〕。已知的AT1受体的作用包括:促平滑肌细胞收缩、醛固酮释放、儿茶酚胺释放、体液调节以及促进心室肌和动脉壁细胞的增殖肥大等〔7〕。而AT2受体似乎具有与AT1受体相反的调节功能。它的激活可产生血管舒张,抑制细胞生长分化,促尿钠排泄,并产生NO、前列腺素、缓激肽。但AT2受体仅在胎儿生长发育中表达,出生后,AT2受体表达即关闭。AT1受体拮抗剂通过与AT1受体上跨膜部位的氨基酸结合而阻止AngⅡ与受体结合,其对AT1受体具有高度亲和力、选择性和特异性,从而在受体水平阻断了AngⅡ的心血管效应〔8〕。与ACEI不同的是其在阻断AT1受体的同时刺激AT2受体的表达,从而激活AT2受体抗心肌和血管增殖的效应,故在药理学机制上AngⅡ受体拮抗剂较ACEI有更好的阻抑LVRM的作用。  相似文献   

10.
血管紧张素Ⅱ及其受体拮抗剂对心肌细胞肥大的影响   总被引:1,自引:0,他引:1  
目的 观察血管紧张素Ⅱ(AngⅡ)、AT1受体拮抗剂氯沙坦和AT2受体拮抗剂PD123177对心肌细胞蛋白质合成速率和AT1受体mRNA表达的影响。方法 采用^3H-亮氨酸掺入法测定培养的心肌细胞蛋白质合成速率,RT-PCR方法检测心肌细胞AT1受体mRNA表达。结果 在培养的心肌细胞中加入AngⅡ可明显增加心肌细胞^3H-亮氨酸的掺入量,并呈剂量依赖性,氯沙旦可显著抑制AngⅡ引起的蛋白质合成增加,而PD123177对其无影响;AngⅡ上调AT1受体基因表达,氯沙坦抑制其上调,PD123177无影响。结论 AngⅡ可通过上调AT1受体引起心肌细胞肥大,氯沙坦下调AT1受体,抑制心肌细胞肥大。  相似文献   

11.
OBJECTIVE: Angiotensin (Ang) is broken down enzymatically to several different metabolites which, in addition to Ang II, may have important biological effects in the kidney. This study investigates the role of Ang metabolites on vascular resistance and noradrenaline release in the rat kidney. METHODS AND RESULTS: In rat isolated kidney Ang I, Ang II, Ang III, Ang IV and des-Asp-Ang I induced pressor responses and enhanced noradrenaline release to renal nerve stimulation (RNS) in an concentration-dependent manner, with the following rank order of potency (EC(50)): Ang II >or= Ang III > Ang I = des-Asp-Ang I > Ang IV. All effects were blocked by the AT(1)-receptor antagonist EXP 3174 (0.1 micromol/l) but not by the AT(2)-receptor antagonist PD 123319 (1 micromol/l). Angiotensin-converting enzyme (ACE) inhibition by captopril (10 micromol/l) abolished the effect of Ang I and des-Asp-Ang I but had no influence on the effect of the other metabolites. Ang-(1-7) blocked the effects of Ang I and Ang II, being 10 times more potent against Ang I than Ang II. The selective Ang-(1-7) receptor blocker d-Ala7-Ang-(1-7) (10 micromol/l) did not influence the inhibitory effects of Ang-(1-7). Ang-(1-7) (10 micromol/l) by itself had no influence on vascular resistance and RNS-induced noradrenaline release. CONCLUSION: Ang I, Ang II, Ang III, Ang IV and des-Asp-Ang I regulate renal vascular resistance and noradrenaline release by activation of AT(1) receptors. In the case of Ang I and des-Asp-Ang I this depends on conversion by ACE. Ang-(1-7) may act as a potent endogenous inhibitor/antagonist of ACE and the AT(1)-receptors, respectively.  相似文献   

12.
OBJECTIVE: Angiotensin (Ang)-(1-7) generated from Ang I and II is reported to act as an endogenous angiotensin-converting enzyme (ACE) inhibitor and angiotensin type 1 (AT1)-receptor antagonist in vitro and in vivo. Ang-(1-7) has been suggested to play an important role in hypertension. METHODS AND RESULTS: Therefore, we tested whether Ang-(1-7) differentially modulates vascular resistance and neurotransmission in isolated kidneys of spontaneously hypertensive rats stroke prone (SHR-SP) and Wistar-Kyoto rats (WKY). Ang-(1-7) was administered in three concentrations (0.1, 1 and 10 micromol/l) to prevent Ang I- and Ang II-induced pressor responses and facilitation of noradrenaline release. There were indeed concentration-dependent strain differences. Ang-(1-7) prevented Ang I- and Ang II-mediated changes in vascular resistance more potently in SHR-SP than in WKY by inhibiting ACE and by blocking AT1-receptors. Ang-(1-7) by itself had no influence on renal vascular tone in both strains. Ang-(1-7) inhibited Ang I-mediated facilitation of noradrenaline release more potently than Ang II-mediated facilitation of noradrenaline release. Ang-(1-7) by itself enhanced noradrenaline release from SHR-SP, but not from WKY kidneys. CONCLUSION: Ang-(1-7) had a greater impact on Ang I and Ang II modulation of renal vascular resistance in SHR-SP than in normotensive rats. Furthermore, Ang-(1-7) by itself has facilitatory presynaptic effects on noradrenaline release but no postsynaptic effects on renal vascular resistance in SHR-SP. Since plasma levels of Ang-(1-7) accumulate during ACE-inhibitor or AT1-receptor antagonist therapy, Ang-(1-7) could contribute to antihypertensive effects of these agents.  相似文献   

13.
Given that angiotensin-(1-7) (Ang-[1-7]) has been frequently reported to exert direct in vitro vascular effects but less often in vivo, we investigated whether a vasodepressor effect of Ang-(1-7) could be unmasked acutely in conscious spontaneously hypertensive rats (SHR) against a background of angiotensin II type 1 (AT1) receptor blockade. Mean arterial pressure (MAP) and heart rate were measured over a 5-day protocol in various groups of rats randomized to receive the following drug combinations: saline, AT1 receptor (AT1R) antagonist candesartan (0.01 or 0.1 mg/kg IV) alone, Ang-(1-7) (5 pmol/min) alone, candesartan plus Ang-(1-7), and candesartan plus Ang-(1-7) and angiotensin II type 2 (AT2) receptor (AT2R) antagonist PD123319 (50 microg/kg per minute). In Wistar-Kyoto (WKY) rats, saline, Ang-(1-7), or candesartan alone caused no significant alteration in MAP, whereas Ang-(1-7) coadministered with candesartan caused a marked, sustained reduction in MAP. A similar unmasking of a vasodepressor response to Ang-(1-7) during AT1R blockade was observed in SHR. Moreover, the AT(2)R antagonist PD123319 markedly attenuated the enhanced depressor response evoked by the Ang-(1-7)/candesartan combination in SHR and WKY rats, whereas in other experiments, the putative Ang-(1-7) antagonist A-779 (5 and 50 pmol/min) did not attenuate this vasodepressor effect. In separate experiments, the bradykinin type 2 receptor antagonist HOE 140 (100 microg/kg IV) or the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester (1 mg/kg IV) abolished the depressor effect of Ang-(1-7) in the presence of candesartan. Collectively, these results suggest that Ang-(1-7) evoked a depressor response during AT1R blockade via activation of AT2R, which involves the bradykinin-NO cascade.  相似文献   

14.
Clark MA  Diz DI  Tallant EA 《Hypertension》2001,37(4):1141-1146
Angiotensin (Ang)-(1-7) is a biologically active peptide of the renin-angiotensin system that has both vasodilatory and antiproliferative activities that are opposite the constrictive and proliferative effects of angiotensin II (Ang II). We studied the actions of Ang-(1-7) on the Ang II type 1 (AT(1)) receptor in cultured rat aortic vascular smooth muscle cells to determine whether the effects of Ang-(1-7) are due to its regulation of the AT(1) receptor. Ang-(1-7) competed poorly for [(125)I]Ang II binding to the AT(1) receptor on vascular smooth muscle cells, with an IC(50) of 2.0 micromol/L compared with 1.9 nmol/L for Ang II. The pretreatment of vascular smooth muscle cells with Ang-(1-7) followed by treatment with acidic glycine to remove surface-bound peptide resulted in a significant decrease in [(125)I]Ang II binding; however, reduced Ang II binding was observed only at micromolar concentrations of Ang-(1-7). Scatchard analysis of vascular smooth muscle cells pretreated with 1 micromol/L Ang-(1-7) showed that the reduction in Ang II binding resulted from a loss of the total number of binding sites [B(max) 437.7+/-261.5 fmol/mg protein in Ang-(1-7)-pretreated cells compared with 607.5+/-301.2 fmol/mg protein in untreated cells, n=5, P<0.05] with no significant effect on the affinity of Ang II for the AT(1) receptor. Pretreatment with the AT(1) receptor antagonist L-158,809 blocked the reduction in [(125)I]Ang II binding by Ang-(1-7) or Ang II. Pretreatment of vascular smooth muscle cells with increasing concentrations of Ang-(1-7) reduced Ang II-stimulated phospholipase C activity; however, the decrease was significant (81.2+/-6.4%, P<0.01, n=5) only at 1 micromol/L Ang-(1-7). These results demonstrate that pharmacological concentrations of Ang-(1-7) in the micromolar range cause a modest downregulation of the AT(1) receptor on vascular cells and a reduction in Ang II-stimulated phospholipase C activity. Because the antiproliferative and vasodilatory effects of Ang-(1-7) are observed at nanomolar concentrations of the heptapeptide, these responses to Ang-(1-7) cannot be explained by competition of Ang-(1-7) at the AT(1) receptor or Ang-(1-7)-mediated downregulation of the vascular AT(1) receptor.  相似文献   

15.
Recently, we demonstrated that the heptapeptide angiotensin-(1-7) (Ang-[1-7]) exhibits a favorable kinetic of nitric oxide (NO) release accompanied by extremely low superoxide (O2-) production. In this report we describe AVE 0991, a novel nonpeptide compound that evoked effects similar to Ang-(1-7) on the endothelium. AVE 0991 and unlabeled Ang-(1-7) competed for high-affinity binding of [125I]-Ang-(1-7) to bovine aortic endothelial cell membranes with IC50 values of 21+/-35 and 220+/-280 nmol/L, respectively. Stimulated NO and O2- release from bovine aortic endothelial cells was directly and simultaneously measured on the cell surface by selective electrochemical nanosensors. Peak concentrations of NO and O2- release by AVE 0991 and Ang-(1-7) (both 10 micromol/L) were not significantly different (NO: 295+/-20 and 270+/-25 nmol/L; O2-: 18+/-2 and 20+/-4 nmol/L). However, the released amount of bioactive NO was approximately 5 times higher for AVE 0991 in comparison to Ang-(1-7). The selective Ang-(1-7) antagonist [D-Ala(7)]-Ang-(1-7) inhibited the AVE 0991-induced NO and O2- production by approximately 50%. A similar inhibition level was observed for the Ang II AT1 receptor antagonist EXP 3174. In contrast, the Ang II AT2 receptor antagonist PD 123,177 inhibited the AVE 0991-stimulated NO production by approximately 90% but without any inhibitory effect on O2- production. Both NO and O2- production were inhibited by NO synthase inhibition ( approximately 70%) and by bradykinin B2 receptor blockade (approximately 80%). AVE 0991 efficiently mimics the effects of Ang-(1-7) on the endothelium, most probably through stimulation of a specific, endothelial Ang-(1-7)-sensitive binding site causing kinin-mediated activation of endothelial NO synthase.  相似文献   

16.
The renin-angiotensin system (RAS) has a vital role in regulating the cardiovascular system. The primary effector of the RAS is the octapeptide angiotensin (Ang) II, a potent regulator of blood pressure and water homeostasis. Ang II mediates its functions through the stimulation of two distinct receptors, AT(1) (two subtypes in rodents (AT(1a) and AT(1b))) and AT(2). It was shown that in addition to Ang II, shorter fragments of Ang are also biologically active. Ang-(1-7) came into focus because it opposes many of the detrimental effects of Ang II. However, it is still controversial whether Ang II receptors are involved in Ang-(1-7)-mediated signaling. To characterize the impacts of Ang II receptors on Ang-(1-7)-stimulated vascular relaxation, the effects of acute infusion of the three vasorelaxant compounds, that is, Ang-(1-7), bradykinin (BK) and acetylcholine (ACh), on heart rate (HR) and mean arterial pressure (MAP) were investigated in mice deficient for one, two or all three Ang II receptors. Ang-(1-7) and BK reduced MAP in wild-type, AT(1a)/AT(1b)-deficient and AT(2)-deficient mice. Although the change in absolute MAP values in the hypotensive triple knockouts (KO) could not be further reduced by both peptides, the percent change in MAP was comparable between the triple KO and wild-type mice. Both peptides did not alter the HR in all four genotypes. ACh significantly reduced absolute MAP values in all four genotypes with a similar percentage of reduction. In contrast to Ang-(1-7) and BK, ACh significantly reduced HR without genotypic differences. Our results generate proof that Ang-(1-7)-induced effects on MAP are mediated by a receptor that is independent of AT(1) and AT(2).  相似文献   

17.
Release of norepinephrine (NE) by the hypothalamic nuclei may contribute to regulation of sympathetic nervous system (SNS) activity. Angiotensin-(1-7) [Ang-(1-7)] has an antihypertensive effect and may decrease SNS activity. We tested the hypothesis that Ang-(1-7) inhibits the release of NE in hypothalami, via the Ang-(1-7) and angiotensin II type 2 (AT2) receptors, acting through a bradykinin (BK)/NO-dependent mechanism. Hypothalami from normotensive controls and spontaneously hypertensive rats (SHR) were isolated and endogenous NE stores labeled by incubating the tissues with [3H]NE. [3H]NE release from the hypothalami was stimulated by KCl in the presence or absence of Ang-(1-7) alone or combined with various antagonists and inhibitors. Ang-(1-7) significantly attenuated K+-induced NE release by hypothalami from normotensive rats but was more potent in SHR. The Ang-(1-7) receptor antagonist [D-Ala7]Ang-(1-7), the AT2 receptor antagonist PD 123319, and the BK B2) receptor antagonist icatibant all blocked the inhibitory effect of Ang-(1-7) on K+-stimulated NE release in SHR. The inhibitory effect of Ang-(1-7) disappeared in the presence of the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester and was restored by the precursor of NO, l-arginine. The diminished NE release caused by Ang-(1-7) was blocked by a soluble guanylyl cyclase inhibitor as well as by a cGMP-dependent protein kinase (PKG). We concluded that Ang-(1-7) decreases NE release from the hypothalamus via the Ang-(1-7) or AT2 receptors, acting through a BK/NO-mediated mechanism that stimulates cGMP/PKG signaling. In this way, Ang-(1-7) may decrease SNS activity and exert an antihypertensive effect.  相似文献   

18.
OBJECTIVE: The heptapeptide angiotensin-(1-7) [Ang-(1-7)] has been identified as a versatile, endogenous inhibitor of the renin-angiotensin system (RAS). As the therapeutic response to exogenous RAS inhibitors, such as AT1 receptor antagonists, is altered by changes in salt intake, we investigated the effect of a low, normal and high sodium diet on the antagonism of Ang II by Ang-(1-7). The role of angiotensin receptor subtypes and the endothelium was assessed. METHODS: Male Wistar rats received a normal sodium (0.3% NaCl), high sodium (2.0% NaCl) or low sodium (0.05% NaCl) diet for 10 days. Vascular responses were assessed ex vivo in thoracic aortic rings in the presence of the nitric oxide (NO) inhibitor N-monomethyl-l-arginine (l-NMMA) to avoid aspecific vasodilator effects of Ang-(1-7). RESULTS: After a normal or high salt diet, Ang-(1-7) significantly decreased maximal Ang II-induced vascular constrictions by 40-50%. After a low salt diet this non-competitive antagonism disappeared. The AT2 receptor antagonist PD 123319 and the Ang-(1-7) receptor antagonist A779 attenuated the effect of Ang-(1-7) found in rats fed with a normal or high sodium diet. Further, removal of endothelium and pretreatment with the prostaglandin synthesis inhibitor indomethacin (10 mol/l) abolished the non-competitive antagonism by Ang-(1-7). CONCLUSION: Ang-(1-7) elicits a specific, endothelium-dependent and non-competitive antagonism of Ang II, which involves AT2 and Ang-(1-7) receptors but is independent of NO production. This non-competitive antagonism of Ang-(1-7) is abolished by a low sodium intake in normotensive rats, suggesting that it serves as a negative feedback towards Ang II in response to an altered sodium intake.  相似文献   

19.
Transgenic hypertensive (mRen2)27 rats overexpress the murine Ren2 gene and have impaired baroreflex sensitivity (BRS) for control of the heart rate. Removal of endogenous angiotensin (Ang)-(1-7) tone using a receptor blocker does not further lower BRS. Therefore, we assessed whether blockade of Ang II with a receptor antagonist or combined reduction in Ang II and restoration of endogenous Ang-(1-7) levels with Ang-converting enzyme (ACE) inhibition will improve BRS in these animals. Bilateral solitary tract nucleus (nTS) microinjections of the AT(1) receptor blocker, candesartan (CAN, 24?pmol in 120?nl, n=9), or a peptidic ACE inhibitor, bradykinin (BK) potentiating nonapeptide (Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro; BPP9α, 9?nmol in 60?nl, n=12), in anesthetized male (mRen2)27 rats (15-25 weeks of age) show that AT(1) receptor blockade had no significant effect on BRS, whereas microinjection of BPP9α improved BRS over 60-120?min. To determine whether Ang-(1-7) or BK contribute to the increase in BRS, separate experiments using the Ang-(1-7) receptor antagonist D-Ala(7)-Ang-(1-7) or the BK antagonist HOE-140 showed that only the Ang-(1-7) receptor blocker completely reversed the BRS improvement. Thus, acute AT(1) blockade is unable to reverse the effects of long-term Ang II overexpression on BRS, whereas ACE inhibition restores BRS over this same time frame. As the BPP9α potentiation of BK actions is a rapid phenomenon, the likely mechanism for the observed delayed increase in BRS is through ACE inhibition and elevation of endogenous Ang-(1-7).  相似文献   

20.
Hool LC 《Circulation research》2000,87(12):1164-1171
The effects of hypoxia on the L-type Ca(2+) current (I:(Ca-L)) in the absence and presence of the ss-adrenergic receptor agonist isoproterenol (Iso) were examined. Exposing guinea pig ventricular myocytes to hypoxia alone resulted in a reversible inhibition of basal I:(Ca-L). When cells were exposed to Iso in the presence of hypoxia, the K:(0.5) for activation of I:(Ca-L) by Iso was significantly decreased from 5.3+/-0.7 to 1.6+/-0.1 nmol/L. The membrane-impermeant thiol-specific oxidizing compound 5, 5'-dithio-bis(2-nitrobenzoic acid) (DTNB) attenuated the inhibition of basal I:(Ca-L) by hypoxia 81.3+/-9.4% but had no effect on the increase in sensitivity of I:(Ca-L) to Iso. In addition, DTT mimicked the effects of hypoxia on basal I:(Ca-L) and the increase in sensitivity to Iso. Neither the inhibitors of guanylate cyclase LY-83583 or methylene blue nor the NO synthase inhibitor N:(G)-monomethyl-L-arginine monoacetate had any effect on the basal inhibition of I:(Ca-L) or the decrease in K:(0.5) for activation of I:(Ca-L) by Iso during hypoxia. However, the protein kinase C (PKC) inhibitors bisindolylmaleimide I and G? 7874 significantly attenuated the increase in sensitivity of I:(Ca-L) to Iso. More specifically, the response was attenuated when cells were dialyzed with a peptide inhibitor of the C2 region-containing classical PKC isoforms. The same effect was not observed with the PKCepsilon peptide inhibitor. These results suggest that hypoxia regulates I:(Ca-L) through the following 2 distinct mechanisms: direct inhibition of basal I:(Ca-L) and an indirect effect on the sensitivity of the channel to ss-adrenergic receptor stimulation that is mediated through a classical PKC isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号