首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulating data from experimental studies indicate that oxidative stress has a major role in the pathogenesis of multiple sclerosis (MS). It has been suggested that local production of reactive oxygen species, probably by macrophages, mediates axonal damage in both MS patients and the mouse model experimental autoimmune encephalomyelitis (EAE). We have shown previously that our novel brain-penetrating antioxidant, N-acetylcysteine amide (AD4), reduces the clinical and pathological symptoms, including inflammation and axonal damage in myelin oligodendrocyte glycoprotein (MOG)-induced chronic EAE in mice. The aim of this study was to examine the molecular mechanism by which AD4 exerts protection in MOG-induced EAE mice. Therefore, we analyzed gene-expression profile in the spinal cords of MOG-induced chronic EAE mice and compared them with MOG-induced mice treated with AD4, using a cDNA microarray. We found that MOG treatment up-regulated genes encoding growth factors, cytokines, death receptors, proteases, and myelin structure proteins, whereas MOG- and AD4-treated mice demonstrated gene expression profiles similar to that seen in naive healthy mice. In conclusion, our study shows that chronic AD4 administration suppresses the induction of various pathological pathways that play a role in EAE and probably in MS.  相似文献   

2.
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by destruction of myelin. Recent studies have indicated that axonal damage is involved in the pathogenesis of the progressive disability of this disease. To study the role of axonal damage in the pathogenesis of MS-like disease induced by myelin oligodendrocyte glycoprotein (MOG), we compared experimental autoimmune encephalomyelitis (EAE) in wild-type (WT) and transgenic mice expressing the human bcl-2 gene exclusively in neurons under the control of the neuron-specific enolase (NSE) promoter. Our study shows that, following EAE induction with pMOG 35-55, the WT mice developed significant clinical manifestations with complete hind-limb paralysis. In contrast, most of the NSE-bcl-2 mice (16/27) were completely resistant, whereas the others showed only mild clinical signs. Histological examination of CNS tissue sections showed multifocal areas of perivascular lymphohistiocytic inflammation with loss of myelin and axons in the WT mice, whereas only focal inflammation and minimal axonal damage were demonstrated in NSE-bcl-2 mice. No difference could be detected in the immune potency as indicated by delayed-type hypersensitivity (DTH) and T-cell proliferative responses to MOG. We also demonstrated that purified synaptosomes from the NSE-bcl-2 mice produce significantly lower level of reactive oxygen species (ROS) following exposure to H202 and nitric oxide (NO) than WT mice. In conclusion, we demonstrated that the expression of the antiapoptotic gene, bcl-2, reduces axonal damage and attenuates the severity of MOG-induced EAE. Our results emphasize the importance of developing neuroprotective therapies, in addition to immune-specific approaches, for treatment of MS. D.O. and J.F.K. contributed equally.  相似文献   

3.
Pathomorphological studies described pathological heterogeneity in patients with multiple sclerosis (MS). Different effector mechanisms might therefore be responsible for lesion formation in MS. The present report shows that myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in common marmoset monkeys reflects one specific lesional subtype of MS, namely MS pattern II lesions with antibody/complement-mediated damage. MOG-induced EAE in marmoset monkeys will, therefore, provide an ideal model for therapeutic approaches directed against B-cell/antibody/complement in MS.  相似文献   

4.
The identification of myelin oligodendrocyte glycoprotein (MOG) as a target for autoantibody-mediated demyelination in experimental autoimmune encephalomyelitis (EAE) resulted in the re-evaluation of the role of B cell responses to myelin autoantigens in the immunopathogenesis of multiple sclerosis. MOG is a central nervous system specific myelin glycoprotein that is expressed preferentially on the outermost surface of the myelin sheath. Although MOG is only a minor component of CNS myelin it is highly immunogenic, inducing severe EAE in both rodents and primates. In rat and marmoset models of MOG-induced EAE demyelination is antibody-dependent and reproduces the immunopathology seen in many cases of MS. In contrast, in mice inflammation in the CNS can result in demyelination in the absence of a MOG-specific B cell response, although if present this will enhance disease severity and demyelination. Clinical studies indicate that autoimmune responses to MOG are enhanced in many CNS diseases and implicate MOG-specific B cell responses in the immunopathogenesis of multiple sclerosis. This review provides a summary of our current understanding of MOG as a target autoantigen in EAE and MS, and addresses the crucial question as to how immune tolerance to MOG may be maintained in the healthy individual.  相似文献   

5.
Treatment with monoclonal anti-IL-12 antibody injected on day 0, 7 and 10 after immunization with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 in NOD mice resulted in significant suppression of the development and the severity of the chronic relapsing-remitting experimental autoimmune encephalomyelitis (EAE) both clinically and histologically. The spleen cells from anti-IL-12 antibody treated mice displayed markedly inhibited MOG35-55 specific proliferation and IFN-gamma production. MOG35-55 specific antibody production was enhanced by anti-IL-12 antibody treatment. These results suggest that IL-12 is critically involved in the pathogenesis of MOG-induced EAE and that antibody to IL-12 could be an effective therapeutic agent in the clinical treatment of autoimmune demyelinating diseases such as multiple sclerosis (MS).  相似文献   

6.
There is accumulating evidence that CD8-positive (CD8+) T-cells and MHC-I expression may also play a role in neurodegeneration associated with multiple sclerosis (MS). We investigated the role of MHC-I and CD8+ T-cells by studying experimental autoimmune encephalomyelitis (EAE) in beta-2 microglobulin knockout mice induced by myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 or whole rat myelin basic protein (rMBP). For both encephalitogens and even after reconstitution of the immune system with MHC-I-positive bone marrow and transfer of mature CD8+ T-cells (iMHC-I+ CD8+ beta2m-/- mice), the disease course in beta2m-/- mice was significantly more severe with a 10-fold increased mortality in the beta2m-/- mice as compared to wild-type C57BL/6 mice. EAE in beta2m-/- mice caused more severe demyelination after immunization with MOG than with rMBP and axonal damage was more marked with rMBP as well as MOG even in iMHC-I+ CD8+ beta2m-/- mice. Immunocytochemical analysis of spinal cord tissue revealed a significant increase in macrophage and microglia infiltration in beta2m-/- and iMHC-I+ CD8+ beta2m-/- mice. The different pattern of T-cell infiltration was underscored by a 2.5-fold increase in CD4-positive (CD4+) T-cells in beta2m-/- mice after induction of MOG 35-55 EAE. We conclude that lack of functional MHC-I molecules and CD8+ T-cells aggravates autoimmune tissue destruction in the CNS. Enhanced axonal damage speaks for pathways of tissue damage independent of CD8+ T-cells and neuronal MHC-I expression.  相似文献   

7.
In patients with multiple sclerosis (MS), non-remitting deficits are mainly caused by axonal and neuronal damage. We demonstrated previously that myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in rats provokes severe axonal and neuronal injury even before clinical manifestation of the disease. In our present study, we investigated effects of simvastatin treatment on degeneration of retinal ganglion cell (RGC) bodies as well as their axons during MOG-induced optic neuritis. Electrophysiological functions of optic nerves and RGCs were analyzed in vivo. Although neuroprotective effects of simvastatin have been demonstrated before in other experimental settings, we did not observe an increase in RGC survival nor an improvement of visual functions. As we could not reproduce the anti-inflammatory effects that were observed under statin therapy in other EAE models, we hypothesize that patients suffering from optic neuritis might not take advantage of simvastatin applications.  相似文献   

8.
Terayama R  Bando Y  Yamada M  Yoshida S 《Glia》2005,52(2):108-118
Inflammation, demyelination, and axonal damage of the central nervous system (CNS) are major pathological features of multiple sclerosis (MS). Proteolytic digestion of the blood-brain barrier and myelin protein by serine proteases is known to contribute to the development and progression of MS. Neuropsin, a serine protease, has a role in neuronal plasticity, and its expression has been shown to be upregulated in response to injury to the CNS. To determine the possible involvement of neuropsin in demyelinating diseases of the CNS, we examined its expression in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a recognized animal model for MS. Neuropsin mRNA expression was induced in the spinal cord white matter of mice with EAE. Combined in situ hybridization and immunohistochemistry demonstrated that most of the cells expressing neuropsin mRNA showed immunoreactivity for CNPase, a cell-specific marker for oligodendrocytes. Mice lacking neuropsin (neuropsin-/-) exhibited an altered EAE progression characterized by delayed onset and progression of clinical symptoms as compared to wild-type mice. Neuropsin-/- mice also showed attenuated demyelination and delayed oligodendroglial death early during the course of EAE. These observations suggest that neuropsin is involved in the pathogenesis of EAE mediated by demyelination and oligodendroglial death.  相似文献   

9.
10.
Axon degeneration is a major contributor to non-remitting deficits in multiple sclerosis (MS). Thus the development of therapies to provide protection of axons has elicited considerable interest. Voltage-gated sodium channels have been implicated in the injury cascade leading to axonal damage, and sodium-channel blockers have shown efficacy in ameliorating axonal damage in disease models following anoxia, trauma and damaging levels of nitric oxide (NO). Here we discuss studies in our laboratory that examined the protective effects of phenytoin, a well-characterized sodium-channel blocker, in the inflammatory/demyelinating disorder experimental autoimmune encephalomyelitis (EAE), a model of MS. Administration of phenytoin to C57/Bl6 mice inoculated with rat myelin oligodendrocyte glycoprotein (MOG) provides improved clinical status, preservation of axons, enhanced action potential conduction and reduced immune infiltrates compared to untreated mice with EAE. Moreover, continuous treatment with phenytoin provides these protective actions for at least 180 days post-MOG injection. The withdrawal of phenytoin from mice inoculated with MOG, however, is accompanied by acute exacerbation of EAE, with significant mortality and infiltration of immune cells in the CNS. Our studies demonstrate the efficacy of phenytoin as a neuroprotectant in EAE. Our results also, however, indicate that we need to learn more about the long-term effects of sodium-channel blockers, and of their withdrawal, in neuroinflammatory disorders.  相似文献   

11.
Laquinimod is a small, novel, orally active, well-tolerated molecule that significantly reduced gadolinium-enhancing lesions in patients with multiple sclerosis (MS). Orally administered laquinimod was found to be present within the central nervous system (CNS) in both healthy mice and mice with experimental autoimmune encephalomyelitis (EAE). Laquinimod inhibits development of both acute and chronic EAE. Furthermore, laquinimod minimizes inflammation, demyelination and axonal damage in MOG-induced EAE in mice treated at disease induction and following clinical disease onset. In vitro, laquinimod down-regulates secretion of pro-inflammatory cytokines and enhances production of anti-inflammatory cytokines from peripheral blood mononuclear cells (PBMCs) derived from healthy subjects and untreated relapsing remitting (RR) MS patients. Additionally, patients treated with laquinimod demonstrate up-regulation of brain-derived neurotrophic factor (BDNF) in the serum. In conclusion, treatment with laquinimod is effective in reducing inflammation, demyelination and axonal damage.  相似文献   

12.
Axonal damage is considered the major cause of irreversible disability in multiple sclerosis (MS). Which mechanisms underlie the damage and whether this is secondary to myelin damage remains to be clarified. Recently, we have demonstrated that autoimmunity to the axonal/neuronal cytoskeletal protein neurofilament light (NF-L) induces axonal damage and neurological disease including spasticity — a common feature of MS. To examine the relationship between axonal damage and demyelination we have characterized the detailed neuropathology of NF-L-induced disease in Biozzi mice compared to classical experimental autoimmune encephalomyelitis (EAE) induced with myelin oligodendrocyte glycoprotein (MOG).In NF-L-induced neurological disease the lesions were predominantly located in the dorsal column displaying extensive axonal degeneration, but were also abundant in the gray matter. In contrast, lesions in MOG-EAE were restricted to the lateral and ventral columns and displayed less axonal damage and little gray matter involvement. The differential lesion location was confirmed by quantitation of leukocyte subsets. In both diseases myelin damage was a common feature although the numerous empty myelin sheaths in NF-L-disease indicative of axonal damage suggest that myelin damage was a secondary event.In summary, autoimmunity to NF-L induces a distinct lesion topology, axonal damage and gray matter lesions supporting the notion that axonal loss and gray matter pathology can be the direct consequence of a primary autoimmune attack against axonal antigens such as NF-L rather than merely a secondary event to myelin damage.  相似文献   

13.
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Like MS, the animal model experimental autoimmune encephalomyelitis (EAE) is characterized by CNS inflammation and demyelination and can follow a relapsing–remitting (RR) or chronic (CH) disease course. The molecular and pathological differences that underlie these different forms of EAE are not fully understood. We have compared the differences in RR‐ and CH‐EAE generated in the same mouse strain (C57BL/6) using the same antigen. At the peak of disease when mice in both groups have similar clinical scores, CH‐EAE is associated with increased lesion burden, myelin loss, axonal damage, and chemokine/cytokine expression when compared with RR‐EAE. We further showed that inflammation and myelin loss continue to worsen in later stages of CH‐EAE, whereas these features are largely resolved at the equivalent stage in RR‐EAE. Additionally, axonal loss at these later stages is more severe in CH‐EAE than in RR‐EAE. We also demonstrated that CH‐EAE is associated with a greater predominance of CD8+ T cells in the CNS that exhibit MOG35–55 antigen specificity. These studies therefore showed that, as early as the peak stage of disease, RR‐ and CH‐EAE differ remarkably in their immune cell profile, chemokine/cytokine responses, and histopathological features. These data also indicated that this model of CH‐EAE exhibits pathological features of a chronic‐progressive disease profile and suggested that the sustained chronic phenotype is due to a combination of axonal loss, myelin loss, and continuing inflammation. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The stress protein alphaB-crystallin is an immunodominant antigen in multiple sclerosis (MS)-affected myelin for human T cells and is expressed at elevated levels in MS lesions. Using bovine alphaB-crystallin and synthetic peptides based on mouse alphaB-crystallin the ability of this stress protein to induce experimental allergic encephalomyelitis (EAE) was screened in Biozzi ABH (H-2A(g7)) mice. While whole alphaB-crystallin and the immunodominant T cell epitopes (49-64, 73-88, 153-168) failed to induce disease the subdominant or cryptic epitope (1-16) was weakly encephalitogenic. The lack of encephalitogenicity of whole protein and dominant epitopes may be due to the low constitutive expression of alphaB-crystallin in the CNS combined with a state of peripheral tolerance suggested by the constitutive expression of alphaB-crystallin in secondary lymphoid tissues in ABH mice. Further evidence for a role of alphaB-crystallin in the progression of chronic relapsing neurological disease is suggested by the development of T cell responses to alphaB-crystallin during MOG-induced relapsing EAE as myelin damage accumulates. Together our data indicate that normal tolerising mechanisms in ABH mice prevent the induction of EAE by alphaB-crystallin while the subdominant or cryptic epitope is able to circumvent these mechanisms and contribute to pathogenic myelin-directed autoimmunity following T cell activation.  相似文献   

15.
Axonal loss is now considered a consistent feature of MS pathology and evidence suggests that its accumulation may be the pathological correlate for the development of irreversible disability. In this study, we investigated the features of axonal loss in myelin autoimmunity and tested the hypothesis that loss of axons determines permanent neurological impairment in a model of inflammatory demyelination that closely mimics the pathology and course of MS. EAE was induced in DA rats by injection of recombinant mouse MOG with IFA. Animals that developed progressive EAE were killed at several time points after disease onset and animals that followed a chronic relapsing-remitting course of EAE were killed at approximately 4 months, exhibiting varying degrees of residual disability. Toluidine blue staining of semithin sections and immunohistochemistry for OX-42 were used to quantify demyelination, remyelination, inflammation and axonal loss in the spinal cord of MOG-EAE rats. In progressive EAE, the degree of axon loss, demyelination and inflammation all correlated significantly with clinical severity scores and a causative role for macrophages in the pathogenesis of axonal injury is suggested. However, in the chronic stage of relapsing-remitting EAE, in rats having suffered a variable number of relapses, only axonal loss correlated significantly with clinical severity scores. In addition, both axonal loss and clinical severity scores correlated with the number of relapses. These findings imply that secondary, or 'bystander', axonal loss is the main determinant of irreversible neurological disability in MOG-EAE and make the model a useful tool for the investigation of mechanisms of axonal loss and the evaluation of the benefits of neuroprotective therapies under conditions of antibody-mediated inflammatory demyelination.  相似文献   

16.
To characterize T cell and antibody responses in remitting-relapsing experimental autoimmune encephalomyelitis (RR-EAE), we compared myelin oligodendrocyte glycoprotein (MOG)-induced RR-EAE in C57BL/6 (B6) x SJL (F1) mice and chronic-progressive EAE (CP-EAE) in B6 mice at week 8 p.i. when clinical scores were comparable. Although these two strains exhibited similar inflammation/demyelination pattern and MOG-induced T cell responses, RR-EAE mice produced significantly higher levels of anti-MOG IgG1/IgG2a antibodies. Further, lymphocytes of RR-EAE mice proliferated vigorously to the secondary epitope myelin basic protein (MBP) 1-11. These results support a potential involvement of anti-MOG antibodies and epitope spreading in T cell responses in the development of MOG-induced RR-EAE model.  相似文献   

17.
The major pathological hallmarks of multiple sclerosis (MS) comprise inflammation, demyelination with associated gliosis and axonal damage, which most likely correlates with persisting disability. Axonal damage can occur by several mechanisms. This article focuses on myelin disintegration and direct immune attack on axons by CD8-positive T-cells as two possible scenarios for axonal injury. As protoypic models, we investigated experimental autoimmune encephalomyelitis (EAE) in ciliary neurotrophic factor gene knockout mice (CNTF-/- mice) with severe myelin pathology and EAE in beta-2 microglobulin gene knockout mice (beta2m-/- mice) lacking CD8-positive T-cells. The results from these studies indicate that the trigger attack for axonal injury even in a well-defined experimental design can be multi-faceted. No single factor seems to be absolutely necessary for the initiation of the process, but they rather act in concert and orchestrate tissue destruction, inflammation and regeneration. Some mechanisms of primary or secondary axonal damage may be shared between inflammatory and degenerative diseases of the nervous system, thereby establishing a link which might be of importance for future therapeutic strategies.  相似文献   

18.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), and experimental autoimmune encephalomyelitis (EAE) is a well‐established animal model of the disease. Here, we examined the pathophysiological role of Kallikrein 6 (Klk6), a serine protease produced by oligodendrocytes (OLs), in EAE using Klk6 knockout (Klk6?/?) mice. Compared with Klk6+/+ (wild‐type) mice, Klk6?/? mice showed milder EAE symptoms, including delayed onset and milder paralysis. Loss of Klk6 suppressed matrix metalloprotease‐9 expression and diminished the infiltration of peripheral inflammatory cells into the CNS by decreasing blood–brain barrier (BBB) permeability and reducing expression levels of inflammatory cytokines, chemokines and their receptors. Scanning electron microscopic analysis revealed demyelination characterized by myelin detachment from the axons in the early phase of EAE progression (days 3–7) in Klk6+/+ mice but not in Klk6?/? mice. Interestingly, anti‐MOG (myelin oligodendrocyte glycoprotein) autoantibody was also detected in the cerebrospinal fluid (CSF) and spinal cord on day 3 after MOG immunization. Furthermore, treatment of primary cultured OLs with anti‐MOG autoantibody induced oligodendroglial morphological changes and increases in myelin basic protein and Klk6 expression. We also developed a novel enzyme‐linked immunoabsorbent assay method for detecting activated KLK6 in human CSF. In human autopsy brain samples, expression of active KLK6 was detected in OLs using an antibody that specifically recognizes the protein's activated form. Taken together, our findings demonstrate that Klk6 secreted by OLs plays a critical role in the pathogenesis of EAE/MS and that it might serve as a potential therapeutic target for MS.  相似文献   

19.
Although spontaneous remyelination occurs in multiple sclerosis (MS), the extent of myelin repair is often inadequate to restore normal function. Oligodendrocyte precursors remaining in nonremyelinating MS plaques may be restricted by an inhibitory signal. Bone morphogenetic proteins (BMPs) have been implicated as repressors of oligodendrocyte development and inducers of astrogliogenesis. We hypothesized that BMPs are up-regulated in MS lesions and play a role in demyelination and astrogliosis. We examined expression of BMPs in an animal model of MS, chronic experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide in C57BL/6 mice. By 14 days postimmunization, compared to those of control mice, the lumbar spinal cords of MOG-peptide EAE mice demonstrated prominent astrogliosis, infiltration of inflammatory cells, and disrupted expression of myelin proteins. Quantitative RT-PCR showed that expression of BMP4, BMP6, and BMP7 mRNA increased 2- to 4-fold in the lumbar spinal cords of animals with symptomatic EAE versus in vehicle-treated and untreated controls on days 14, 21, and 42 postimmunization. BMP2 mRNA expression was not altered. BMP4 mRNA was much more abundant in the spinal cords of all animals than was mRNA encoding BMP2, BMP6, and BMP7. Immunoblot analysis confirmed the increased expression of BMP4 in the EAE animals. Immunohistochemistry revealed increased BMP4 immunoreactivity in areas of inflammation in MOG-peptide EAE animals. BMP4 labeling was mostly limited to macrophages but was sometimes associated with astrocytes and oligodendrocytes. These results indicate that members of the BMP family are differentially expressed in adult spinal cord and are up-regulated during EAE. (c) 2007 Wiley-Liss, Inc.  相似文献   

20.
Neurological deficit in experimental allergic encephalomyelitis (EAE) and multiple sclerosis (MS) is probably a consequence of synergy between T and B cell responses to CNS antigens. During the demyelinating phase of chronic relapsing EAE in ABH mice, anti-myelin oligodendrocyte glycoprotein (MOG) responses were increased compared to the inflammatory acute phase, but such levels did not correlate with the severity of clinical disease. The pathogenicity of antibodies (Ab) to MOG, myelin basic protein (MBP), proteolipid protein (PLP) and galactocerebroside (GalC) was investigated in vivo following injection at the onset of EAE. An IgG2a monoclonal Ab (mAb), clone Z12, directed to MOG augmented clinical disease and demyelination in ABH and C57BL/6 mice, but not MOG knock-out mice. No effect was observed with F(ab(2))' fragments of Z12 or with the anti-MOG IgG1 mAbs, clones Y10 or 8-18C5. Cobra venom factor partially reduced the augmenting effect of mAb Z12 suggesting a role for complement. The pathogenic effect of anti-myelin Abs was not restricted to MOG since an anti-GalC mAb exacerbated inflammation in the CNS while an MBP mAb (clone 22) reduced clinical disease. Taken together, these data provide further evidence that myelin-reactive Abs generated during autoimmune neurological disease may play an important role not only in the pathogenesis of disease but also the regulation of myelin-targeted autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号