首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Dental materials》2020,36(6):711-723
ObjectivesTo evaluate the degree of conversion, light transmittance, and depth of cure of two experimental light-curable bioactive glass (BG)-containing composite series based on different resin systems.MethodsExperimental composite series based on either Bis-EMA or UDMA resin were prepared. Each series contained 0, 5, 10, 20, and 40 wt% of BG 45S5. Reinforcing fillers were added up to a total filler load of 70 wt%. The degree of conversion was evaluated using Raman spectroscopy, while light transmittance was measured using visible light spectroscopy. The depth of cure was estimated from the degree of conversion data and using the ISO 4049 scraping test.ResultsReplacement of reinforcing fillers with BG can diminish the degree of conversion, light transmittance, and depth of cure. The effect of BG on the aforementioned properties was highly variable between the experimental series. While in the Bis-EMA series, the degree of conversion was significantly impaired by BG, all of the composites in the UDMA series attained clinically acceptable degree of conversion values. The reduction of the degree of conversion in the Bis-EMA series occurred independently of the changes in light transmittance. The UDMA series showed better light transmittance and consequently higher depth of cure than the Bis-EMA series. The depth of cure for all composites in the UDMA series was above 2 mm.SignificanceWhile the Bis-EMA series demonstrated clinically acceptable curing potential only for 0–10 wt% of BG loading, an excellent curing potential in the UDMA series was observed for a wide range (0–40 wt%) of BG loadings.  相似文献   

2.
ObjectivesNew aliphatic and aromatic urethane dimethacrylate monomers containing pendant phenyl methoxy or ethyl substituents were synthesized in order to reduce the water sorption and solubility of urethane dimethacrylate systems. Selected properties including flexural strength, flexural modulus, water sorption and solubility, and water contact angle were evaluated. Hoy's solubility parameters were also calculated to rank copolymer hydrophilicity.MethodsFilled (20%) composite resins were formulated with each of the newly synthesized dimethacrylates as well as the commercially available urethane dimethacrylate monomer, UDMA. Flexural strength, flexural modulus, water sorption and solubility of the urethane composites were evaluated after light-cured specimens were immersed in water for seven days. Water contact angles were measured on the surface of each material. Data were analyzed using ANOVA and Ryan–Einot–Gabriel–Welsch multiple range tests (α = 0.05).ResultsA significant reduction of nearly 30% and 40% in water uptake was observed with composite polymers containing pendant ethyl and phenyl methoxy groups, respectively, compared to UDMA (p < 0.05). Urethane copolymers containing pendant ethyl groups also showed a significant reduction in water solubility (p < 0.05). A positive correlation was found between contact angle and water sorption as well as Hoy's δh for hydrogen bonding forces.SignificanceThe results of this study indicate that the incorporation of pendant hydrophobic substituents within the monomer backbone may be an effective method in reducing the water sorption and water solubility of urethane based dimethacrylate systems. The use of Hoy's solubility parameters to determine the relative hydrophilicity of a polymer may be limited by its three-dimensional chemical structure.  相似文献   

3.
《Dental materials》2020,36(6):787-793
ObjectiveTo evaluate the effects of pre-heating time and exposure duration on the degree of conversion (DC), maximum rate of polymerization (RPmax), polymerization shrinkage strain (PS) and surface micro-hardness (VHN) of Viscalor.MethodsViscalor syringes were pre-heated using a Caps Warmer (VOCO, Germany) in T3 mode (at 68 °C) for 30 s (T3-30s) and 3 min (T3-3min) and then the composite paste was extruded into appropriately sized molds. Light irradiation was applied at zero distance from the upper surface with a LED-LCU of mean irradiance 1200 mW/cm2 for either 20 or 40 s. The real-time polymerization kinetics and DC at 5 min and 24 h post-irradiation (DC5min and DC24h) were measured using ATR-FTIR (n = 3). PS was obtained with the bonded-disk technique (n = 3). Top and bottom Vickers micro-hardness (VHNtop and VHNbottom) were measured at 5 min post-irradiation and after 24 h dry storage (n = 5). Data were analysed using one-way ANOVA, two-way ANOVA, independent t-test and Tukey post hoc tests (p < 0.05).ResultsPolymerization kinetic curves of Viscalor from 0 to 15 min were similar for different pre-heating times and exposure durations. Pre-heated Viscalor (T3-30s and T3-3min) with 40 s exposure had greater VHNtop and VHNbottom than for Viscalor (no heat) (p < 0.05). Exposure duration did not significantly affect DC, RPmax and PS (p > 0.05). After 24 h storage, DC and VHN increased. Pre-heating did not increase the DC24h, relative to no pre-heating (p > 0.05). Two-way ANOVA showed that there was no significant interaction between pre-heating time and exposure duration (p > 0.05).SignificanceIncreasing irradiation time from 20 to 40 s did not affect DC, RPmax or PS, but increased VHNtop. Composite pre-heating had no adverse effect through any premature polymerization. For Viscalor, 3 min pre-heating and 20 s irradiation were sufficient to provide adequate hardness, without increasing PS or compromising polymerization kinetics.  相似文献   

4.
ObjectivesThe aim of this study was to investigate the effect of the nanostructured hydroxyapatite (NHAp) and titanium dioxide nanoparticles (NTiO2) on dispersion in an adhesive containing monomers of Dipenta erythritol penta-acrylate monophosphate (PENTA) and Urethane dimethacrylate (UDMA), as well as evaluating the structural, optical and mechanical behavior of the composite material for dental aesthetic application.MethodsThe NHAp powders were synthesized through the wet chemical methods of hydrothermal and ultrasound-assisted precipitation. The microstructure, morphology and composition analysis of the powder of NHAp and NTiO2 were performed by scanning and transmission electron microscopy. The optical microscopic identification of the different colors was obtained due to varying the amounts of NHAp and NTiO2 in the adhesive. On the other hand, the diffuse reflectance spectra of the coatings were evaluated every 2 nm with the wavelength from 400 to 800 nm for combined specular and diffuse reflectance. The nanomechanical properties of the aesthetic coating such as (H), elastic modulus (E) and nanoscratching were evaluated by nanoindentation. The roughness of the composite coatings were evaluated by AFM.ResultsFrom different powders combinations, NHAP 75%Wt-NTiO2 %25 Wt, at (10Wt %) into a dental adhesive, the resulting mixture manifested the optimum aesthetic white appearance. The scanning and transmission electron microscopy images confirmed that the HAp nanorods and TiO2 nanoparticles sized were 55 nm and 20 nm respectively prepared by the high-energy ball mixed process. The values of nanomechanical properties of the optimum aesthetic coating were hardness, H = 3.2 ± 0.3 GPa, elastic modulus, E = 78 ± 3 GPa, Yield point, Y = 107 MPa ± 2 and scratching, maximum wear track deformation 3.7 ± 0.12 μm2. The percentage of reflectance to optimum aesthetic white appearance was of 46.83% at 423 nm of wavelength.ConclusionsThe nanocomposite PENTA/UDMA with mixtures of Nanohydroxyapatite and titanium dioxide may be considerate as a mechanical toughened, also an option to modify shade qualities for dental aesthetic applications.  相似文献   

5.
《Dental materials》2020,36(10):1266-1274
ObjectiveTo measure the degrees of conversion (DC), conversion kinetics, and the effect of post-irradiation time on rapid photo-polymerized bulk-fill resin composites under conditions equivalent to clinical depths of 1 and 4 mm.Methods36 specimens (n = 3), based on two resin composites incorporating PowerCure rapid-polymerization technology in two consistencies (PFill; PFlow) and two comparators with matching consistencies (Eceram; EFlow), were investigated from the same manufacturer (Ivoclar AG, Liechtenstein). Specimens were prepared within 4 mm diameter cylindrical molds, of either 1 mm or 4 mm depths respectively, to simulate near-surface and deep locations in a bulk-fill restoration. The independent variables in this study were: materials, thickness and time. Two high irradiance polymerization protocols were utilized for PowerCure materials: 2000 and 3050 mW/cm2 for 5 and 3 s, respectively. A standard (1200 mW/cm2) polymerization protocol was used with control materials. FTIR was utilized to measure DC in real-time for 24 h post-irradiation. The data were analyzed using Welch’s-ANOVA, Games-Howell post-hoc test, kinetic dual-exponential sum function and independent sample t-tests (p = 0.05).ResultsThe DC of the materials ranged between 44.7–59.0 % after 5 min, which increased after 24 h reaching 55.7–71.0 % (p < 0.05). Specimen thickness did not influence the overall DC. At 5 min, the highest DC was shown in EFlow. But PFlow, irradiated for 3 s and 5 s exhibited comparable results (p > 0.05). PFill composite irradiated with the 3 s and 5 s protocols did not differ from ECeram (p > 0.05). Specimen thickness and material viscosity affected polymerization kinetics and rate of polymerization (RPmax). Faster polymerization occurred in 1 mm specimens (except PFill-5 s and ECeram). PFill and PFlow exhibited faster conversion than the controls. RPmax varied across the specimen groups between 4.3–8.8 %/s with corresponding DC RPmax between 22.2–45.3 %.SignificancePolymerization kinetics and RPmax were influenced by specimen thickness and material viscosity. PFill and PFlow materials produced an overall comparable conversion at 5 min and 24 h post-irradiation, despite the ultra-short irradiation times, throughout the 4 mm specimen thickness.  相似文献   

6.
《Dental materials》2019,35(10):1378-1387
ObjectiveMethacrylamide-based monomers are being pursued as novel, hydrolytically stable materials for use in dental adhesives. The impact of residual solvents, due to the chemical synthesis procedures or the need for solvated adhesives systems, on the kinetics of polymerization and mechanical properties was the aim of the present investigation.MethodsTwo base monomers (70 wt% BisGMA or HEMAM-BDI — newly synthesized secondary methacrylamide) were combined with 30 wt% N,N-dimethylacrylamide. Eethyl acetate (EtOAc), or 75 vol% ethanol/25 vol% water (EtOH/H2O) were added as solvents in concentrations of 2, 5, 15 and 20 wt%. The resins were made polymerizable by the addition of 0.2 wt% 2,2-dimethoxy-2-phenyl acetophenone (DMPA) and 0.4 wt% diphenyliodonium hexafluorophosphate (DPI-PF6). Specimens (n = 3) were photoactivated with a mercury arc lamp (Acticure 4000, 320–500 nm, 250 mW/cm2) for 5 min. Degree of conversion (DC, %) was tracked in near-IR spectroscopy in real time and yield strength and modulus of elasticity were measured in three-point bending after dry and wet storage (n = 6). The data was subject to one-way ANOVA/Tukey’s Test (p  0.05), or Student’s t-test (p  0.001).ResultsIn all groups for both BisGMA and HEMAM-BDI-based materials, DC and DC at Rpmax increased and maximum rate of polymerization decreased as solvent concentration increased. Despite the increased DC, BisGMA mixtures showed a decrease in FS starting at 5 wt% EtOAc or 15 wt% EtOH/H2O. Yield strength for the HEMAM-BDI groups was overall lower than that of the BisGMA groups, but the modulus of elasticity was significantly higher.SignificanceThe presence of residual solvent, from manufacturing or from practitioner’s handling, affects polymerization kinetics and mechanical properties of resins. Methacrylates appear to be more strongly influenced than methacrylamides.  相似文献   

7.
ObjectivesThe aim of this study was to determine the concentrations of the photosensitizer (camphoroquinone, CQ) and coinitiator (ethyl-4-dimethylaminobenzoate, EDMAB) that resulted in maximum conversion but generated minimum contraction stress in experimental composites.MethodsExperimental composites were prepared with an identical resin formulation [TEGDMA:UDMA:bis-GMA of 30.25:33.65:33.65]. Five groups of resin were prepared at varied CQ concentrations (0.1, 0.2, 0.4, 0.8 and 1.6 wt% of the resin). Five subgroups of resin were prepared at each level of CQ concentration, by adding EDMAB at 0.05, 0.1, 0.2, 0.4 and 0.8 wt% of the resin, resulting in 25 experimental resins. Finally, strontium glass (~3 μm) and silica (0.04 μm) were added at 71.5 and 12.6 wt% of the composite, respectively. Samples (n = 3) were then evaluated for Knoop hardness (KHN), degree of conversion (DC), depth of cure (DoC) and contraction stress (CS).ResultsThere was an optimal CQ and EDMAB concentration that resulted in maximum DC and KHN, beyond which increased concentration resulted in a decline in those properties. KHN testing identified two regions of maxima with best overlaps occurring at CQ:EDMAB ratio of 1.44:0.42 and 1.05:1.65 mol%. DC evaluation showed one region of maximum, the best overlap occurring at CQ:EDMAB ratio of 2.40:0.83 mol%. DoC was 4 mm. Overall, maximum CS was attained before the system reached the maximum possible conversion and hardness.Significance(1) Selection of optimal photoinitiator/amine concentration is critical to materials’ formulation, for excessive amounts can compromise materials’ properties. (2) There was no sufficient evidence to suggest that contraction stress can be reduced by lowering CQ/EDMAB concentration without compromising DC and KHN.  相似文献   

8.
ObjectivesThe aim of this study was to evaluate the influence of monomer content on fracture toughness (KIc) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers.MethodsFive formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm × 5 mm × 2.5 mm, a/w = 0.5, n = 20) and 10 mm × 2 mm × 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm × 2 mm × 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 °C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (α = 5%).ResultsThe 30B:70T composite presented the highest KIc value (in MPa m1/2) at 24 h (1.3 ± 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 ± 0.1). After ethanol storage, reductions in KIc ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69–73%), except for 30B:70U (52 ± 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 ± 21 and 122 ± 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 ± 20 and 94 ± 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U.SignificanceComposites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties.  相似文献   

9.
The stability of the bond between polymeric adhesives to mineralized substrates is crucial in many biomedical applications. The objective of this study was to determine the effect of methyl substitution at the α- and β-carbons on the kinetics of polymerization, monomer hydrolytic stability, and long-term bond strength to dentin for methacrylamide- and methacrylate-based crosslinked networks for dental adhesive applications.MethodsSecondary methacrylamides (α-CH3 substituted = 1-methyl HEMAM, β-CH3 substituted = 2-methyl HEMAM, and unsubstituted = HEMAM) and OH-terminated methacrylates (α- and β-CH3 mixture = 1-methyl HEMA and 2-methyl HEMA, and unsubstituted = HEMA) were copolymerized with urethane dimethacrylate. The kinetics of photopolymerization were followed in real-time using near-IR spectroscopy. Monomer hydrolysis kinetics were followed by NMR spectroscopy in water at pH 1 over 30 days. Solvated adhesives (40 vol% ethanol) were used to bond composite to dentin and microtensile bond strength (μTBS) measured after 24 h and 6 months storage in water at 37 °C.ResultsThe rate of polymerization increased in the following order: OH-terminated methacrylates  methacrylamides > NH2-terminated methacrylates, with minimal effect of the substitution. Final conversion ranged between 79% for 1-methyl AEMA and 94% for HEMA. 1-methyl-HEMAM showed the highest and most stable μTBS, while HEMA showed a 37% reduction after six months All groups showed measurable degradation after up to 4 days in pH 1, with the methacrylamides showing less degradation than the methacrylates. Additionally, transesterification products were observed in the methacrylamide groups.SignificanceAmide monomers were significantly more stable to hydrolysis than the analogous methacrylates. The addition of a α- or β-CH3 groups increased the rate of hydrolysis, with the magnitude of the effect tracking with the expected base-catalyzed hydrolysis of esters or amides, but opposite in influence. The α-CH3 substituted secondary methacrylamide, 1-methyl HEMAM, showed the most stable adhesive interface. A side reaction was observed with transesterification of the monomers studied under ambient conditions, which was not expected under the relatively mild conditions used here, which warrants further investigation.  相似文献   

10.
《Dental materials》2020,36(2):310-319
ObjectiveTo provide conditions for the validity of the exposure reciprocity law as it pertains to the photopolymerization of dimethacrylate-based dental composites.MethodsComposites made from different mass ratios of resin blends (Bis-GMA/TEGDMA and UDMA/TEGDMA) and silanized micro-sized glass fillers were used. All the composites used camphorquinone and ethyl 4-dimethylaminobenzoate as the photo initiator system. A cantilever beam-based instrument (NIST SRI 6005) coupled with NIR spectroscopy and a microprobe thermocouple was used to simultaneously measure the degree of conversion (DC), the polymerization stress (PS) due to the shrinkage, and the temperature change (TC) in real time during the photocuring process. The instrument has an integrated LED light curing unit providing irradiances ranging from 0.01 W/cm2 to 4 W/cm2 at a peak wavelength of 460 nm (blue light). Vickers hardness of the composites was also measured.ResultsFor every dental composite there exists a minimum radiant exposure required for an adequate polymerization (i.e., insignificant increase in polymerization with any further increase in the radiant exposure). This minimum predominantly depends on the resin viscosity of composite and can be predicted using an empirical equation established based on the test results. If the radiant exposure is above this minimum, the exposure reciprocity law is valid with respect to DC for high-fill composites (filler contents >50% by mass) while invalid for low-fill composites (that are clinically irrelevant).SignificanceThe study promotes better understanding on the applicability of the exposure reciprocity law for dental composites. It also provides a guidance for altering the radiant exposure, with the clinically available curing light unit, needed to adequately cure the dental composite in question.  相似文献   

11.
ObjectivesTo evaluate the effects of proanthocyanidins (PA) and photoinitiator type on the degree of conversion (DC) and polymerization rate (PR) of a model dental adhesive.MethodsThree types of photo-initiation systems were introduced into the Bis-GMA/HEMA co-monomer mixture, resulting in four resin formulations including CQ/A (0.5 wt% CQ and EDMAB), CQ/A/I-1 (0.5 wt% CQ, EDMAB and DPIHP), CQ/A/I-2 (1.0 wt% CQ, EDMAB and DPIHP), and TPO (2.1 wt% TPO). For each resin formulation, adhesives containing 0%, 2.5%, 5% and 10% of PA with respect to the weight of resin were produced after mixing the resin with various amount of PA/ethanol solution. When light-cured, the RP and DC of each adhesive was determined using ATR-FTIR spectroscopy.ResultsAcross and within the initiator groups, the DC followed the general trend of CQ/A < CQ/A/I-1 < CQ/A/I-2 < TPO and 0-PA > 2.5-PA > 5-PA > 10-PA, respectively. The change of PR with respect to photo-initiation systems and PA content was in a similar but less pronounced pattern.ConclusionPA hampered the polymerization of all adhesives regardless of photoinitiators used. The initiator formulations CQ/A/I-2 and TPO are better fit for PA-containing adhesives, both leading to >65% DC in the presence of 5% PA.Clinical significanceThe inclusion of PA in dental adhesives has been limited by its interference with the light-curing of adhesive resins. This study found photo-initiation formulations that could maintain a satisfactory degree of monomer conversion while a significant amount of PA is incorporated.  相似文献   

12.
ObjectivesThe objective of this study was to determine the optimal concentration of photo-initiator (camphorquinone) in an experimental one-step self-etch adhesive and to investigate the role of the photo-initiator.MethodsSeven experimental one-step adhesives with a varying amount of camphorquinone ranging from 0 to 5.25 wt% were prepared. Their micro-tensile bond strength to enamel and dentin was determined. In addition, the bond strength was also determined when the adhesive was not light-cured prior to the application of the composite. SEM and TEM were used for further evaluation of the resultant interfacial ultrastructure.ResultsThe bond strength to enamel was not influenced by the amount of photo-initiator, whereas the bond strength to dentin dropped significantly when concentrations below 0.35 wt% camphorquinone were used. Besides phase-separation droplets, electron microscopy revealed the presence of many small droplets at the bottom of the adhesive layer when the adhesive contained no or only a low concentration of initiator, or when the adhesive was not light-cured.SignificanceSince polymerization is severely hampered by oxygen inhibition in thin layers, one-step self-etch adhesives depend greatly on the polymerization of the first layer of lining composite to achieve their ultimate mechanical strength. Consequently, the bond strength to enamel is not influenced by the amount of photo-initiator, but on dentin, bond strength is compromised by droplets, probably due to water absorption, and additionally by the negative effect of water on polymerization and by continuing demineralization of unpolymerized acidic monomers. Overall, it was found that minimally 0.7 wt% camphorquinone was needed.  相似文献   

13.
ObjectivesThe purpose of this study was to evaluate the effect of the amount of 3-methacryloxypropyl-trimethoxysilane (γ-MPS) coupling agent on some physical–mechanical properties of an experimental resin composite for understanding the optimum amount of silanization.MethodsSilica nanoparticles (Aerosil OX 50) used as filler were silanized with 5 different amounts of γ-MPS 1.0, 2.5, 5.0, 7.5 and 10 wt% relative to silica. The silanizated silica nanoparticles were identified by FT-IR spectroscopy and thermogravimetric analysis (TGA). Then the silanized nanoparticles (60 wt%) were mixed with a Bis-GMA/TEGDMA (50/50 wt/wt) matrix. Degree of conversion of light cured composites was determined by FT-IR analysis. The static flexural strength and flexural modulus were measured using a three-point bending set up. The dynamic thermomechanical properties were determined by DMA analyzer. Sorption, solubility and volumetric change were determined after storage of composites in water or ethanol/water solution. Thermogravimetric analysis was performed in air and in nitrogen atmosphere from 50 to 800 °C.ResultsAt lower silane amounts used (1.0, 2.5 wt%) the silane molecules must have a parallel orientation relative to the silica surface. At higher silane amounts (>2.5 wt%) silane molecules form a layer around the filler particles which now have to occupy a random, parallel and perpendicularly orientation relative to the silica surface. No significant statistic difference was found to exist between the flexural strength and flexural modulus values of composites with different silane contents. Dynamic elastic modulus E′ showed a maximum value for the composite contained 5 wt% silane. The composites with the higher amounts of silane showed the lower values for the tan δ at the Tg revealing that these composites have better interfacial adhesion between filler and matrix.SignificanceThe amount of silane used for the silanization of silica particles affect the orientation of the silane molecules relative to the silica surface. This seems to affect the dynamic mechanical properties of composites.  相似文献   

14.
《Dental materials》2020,36(5):698-709
ObjectivesTo evaluate transesterification based dissolution of dimethacrylate and epoxy polymers, the former containing ester groups. Polymer substrates were treated with an adhesive resin (Stick™ Resin) and an organic catalyst-alcohol solution (ethylene glycol and triazabicyclodecene). The surface was chemically and nanomechanically analyzed with Fourier Transform-Infrared (FTIR) spectroscopy, surface profile peak (Rp) and nanohardness and modulus of elasticity.MethodsA total of 100 specimens each of light-cured dimethacrylate polymer and heat-cured diepoxy polymer were prepared. 20 specimens were randomly selected and used as control group (0 s). The remaining specimens were randomly divided into 40 each for treatment with an Stick™ resin and ethylene glycol + triazabicyclodecene. Within each group the 40 specimens were randomly subdivided into 20 each for treatment at 5 min and 24 h, with 10 specimens for FTIR and nanohardness and modulus of elasticity, and the other 10 for SEM and surface Rp analyses.ResultsDimethacrylate polymer showed a reduction in the nanohardness and modulus of elasticity, Rp values and SEM also showed significant topographical changes after being treated with either Stick™ resin or ethylene glycol + triazabicyclodecene, whereas epoxy resin substrate did not. FTIR analyses affirmed changes in the intensity of ester groups.SignificanceEster group containing dimethacrylate polymer showed a reduction in NMP within 5 min of exposure to the treatment agents with softening by solution ethylene glycol + triazabicyclodecene associated to the reduction of ester groups in the polymer structure by transesterification. Epoxy polymer without ester groups was not affected by surface softening with treatment agents. Adhesive resin caused surface swelling.  相似文献   

15.
ObjectivesTo determine flexural strength and modulus after water storage and thermal cycling of carbon–graphite fiber-reinforced (CGFR) polymers based on poly(methyl methacrylate) and a copolymer matrix, and to examine adhesion between fiber and matrix by scanning electron microscopy (SEM).MethodsSolvent cleaned carbon–graphite (CG) braided tubes of fibers were treated with a sizing resin. The resin mixture of the matrix was reinforced with 24, 36, 47 and 58 wt% (20, 29, 38 and 47 vol.%) CG-fibers. After heat polymerization the specimens were kept for 90 days in water and thereafter hydrothermally cycled (12,000 cycles, 5/55 °C). Mechanical properties were evaluated by three-point bend testing. After thermal cycling, the adhesion between fibers and matrix was evaluated by SEM.ResultsHydrothermal cycling did not decrease flexural strength of the CGFR polymers with 24 and 36 wt% fiber loadings; flexural strength values after thermocycling were 244.8 (±32.33) MPa for 24 wt% and 441.3 (±68.96) MPa for 36 wt%. Flexural strength values after thermal cycling were not further increased after increasing the fiber load to 47 (459.2 (±45.32) MPa) and 58 wt% (310.4 (±52.79) MPa).SEM revealed good adhesion between fibers and matrix for all fiber loadings examined.ConclusionsThe combination of the fiber treatment and resin matrix described resulted in good adhesion between CG-fibers and matrix. The flexural values for fiber loadings up to 36 wt% appear promising for prosthodontic applications such as implant-retained prostheses.  相似文献   

16.
ObjectivesTo compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness.MethodsSimulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC (EverStick) to nylon rings with 1.5 mm thickness and 8 mm diameter, followed by light-curing. Resin composite basing material (Clearfil Majesty Flow or Clearfil AP-X) was applied to identical rings and light-cured through the simulated indirect restorations with exposure times of 20, 40, or 60 s. Light-curing though a ring without resin material (=no indirect restoration) served as control. For each combination of basing material and indirect restoration 10 specimens were prepared for each exposure time. Top and bottom surface Vickers microhardness numbers (VHNs) of basing materials were recorded after 24 h.ResultsAfter 60 s exposure time, VHNs with indirect FRC were not different from control VHNs, while VHNs with indirect resin composite were significantly lower (p < 0.001). Linear regression analysis revealed that resin composite basing material used had the greatest effect on top and bottom VHNs (p < 0.001). The presence of an indirect restoration resulted in decreased VHNs (p < 0.001), with resin composite resulting in lower VHNs when compared to FRC. Moreover, a longer exposure time resulted in increased VHNs (p < 0.001).SignificanceResults suggest that polymerization of resin composite basing materials is more effective when light-curing through an FRC than through a resin composite indirect restoration. Prolonging of exposure time, however, is necessary when compared to light-curing without presence of indirect restoration material.  相似文献   

17.

Objective

The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications.

Methods

New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5 wt% of micro and 7.5 wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (KIC) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (Wsp) and solubility (Wsu) (gravimetry); polymerization shrinkage (Sv; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite.

Results

UDMA/TEG-DBVE composites exhibited n, E, Wsp, Wsu and Sv equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), KIC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in the experimental series (0.458 GPa) were still above the clinically required threshold of approx. 0.4 GPa.

Significance

Hydrolytic stability, composition-controlled polymerization and the overall enhancement in clinically-relevant properties of the new resin composites make them viable candidates to replace traditional resin composites as a new generation of strong and durable dental restoratives.  相似文献   

18.
ObjectivesThe aim of this study was to explore the correlations between the Knoop hardness, Young's modulus, viscosity, and polymerization shrinkage of an experimental dental composite, in order to determine the temporal variations of the material properties during the polymerization process.MethodsThe digital image correlation method was employed to measure the polymerization shrinkage along the curing depth of bar-shape specimens (cross-section 4 mm × 2 mm and length 10 mm) of an experimental composite RZE045. The shrinkage data were correlated with the Knoop microhardness measured on specimens prepared in consistent conditions. Another series of tests were performed on cuboid composite samples (cross-section 4 mm × 4 mm and height 5 mm) with different degrees of conversions to determine the correlations among microhardness, Young's modulus and viscosity. Further correlations between shrinkage, Young's modulus and viscosity were then derived, from which the temporal variations of the mechanical parameters during curing were estimated.ResultsAlong the curing depth, the Knoop microhardness of the experimental composite RZE045 decreased more rapidly than its volumetric shrinkage. A power function was employed to describe their relation. On the other hand, Knoop microhardness was found to be proportional to Young's modulus and viscosity. These linear correlations also seemed to be applicable to other materials including unfilled resins, silica glass and other dental composites.SignificanceCorrelations between material parameters of dental composites allowed the rapid temporal variations of Young's modulus and viscosity during curing to be estimated based on the measured polymerization shrinkage-strain history.  相似文献   

19.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

20.
《Dental materials》2014,30(9):1052-1060
ObjectivesThe aim of this study was to examine the influence of the addition of glass fillers with different sizes and degrees of silanization percentages to remineralizing composite materials based on amorphous calcium phosphate (ACP).MethodsFour different materials were tested in this study. Three ACP based materials: 0-ACP (40 wt% ACP, 60 wt% resin), Ba-ACP (40 wt% ACP, 50 wt% resin, 10 wt% barium-glass) and Sr-ACP (40 wt% ACP, 50 wt% resin, 10 wt% strontium-glass) were compared to the control material, resin modified glass ionomer (Fuji II LC capsule, GC, Japan). The fillers and composites were characterized using scanning electron microscopy. Flexural strength and modulus were determined using a three-point bending test. Calcium and phosphate ion release from ACP based composites was measured using inductively coupled plasma atomic emission spectroscopy.ResultsThe addition of barium-glass fillers (35.4 (29.1–42.1) MPa) (median (25–75%)) had improved the flexural strength in comparison to the 0-ACP (24.8 (20.8–36.9) MPa) and glass ionomer control (33.1 (29.7–36.2) MPa). The admixture of strontium-glass (20.3 (19.5–22.2) MPa) did not have any effect on flexural strength, but significantly improved its flexural modulus (6.4 (4.8–6.9) GPa) in comparison to 0-ACP (3.9 (3.4–4.1) GPa) and Ba-ACP (4.6 (4.2–6.9) GPa). Ion release kinetics was not affected by the addition of inert fillers to the ACP composites.SignificanceIncorporation of barium-glass fillers to the composition of ACP composites contributed to the improvement of flexural strength and modulus, with no adverse influence on ion release profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号