首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Introduction: There are 2 misconceptions about the cerebrospinal fluid (CSF), the blood-brain barrier (BBB), and brain drug delivery, which date back to the discovery of a barrier between blood and brain over 100 years ago. Misconception 1 is that drug distribution into CSF is a measure of BBB transport. Misconception 2 is that drug injected into the CSF compartment distributes to the inner parenchyma of brain.

Areas Covered: Drug distribution into the CSF is a function of drug transport across the choroid plexus, which forms the blood-CSF barrier, and not drug transport across the BBB, which is situated at the microvascular endothelium of brain. Drug injected into CSF undergoes rapid efflux to the blood compartment via bulk flow. Drug penetration into brain parenchyma from the CSF is limited by diffusion and drug concentrations in brain decrease exponentially relative to the CSF concentration.

Expert Opinion: The barrier between blood and brain was discovered in 1913, when it was believed that the BBB was localized to the choroid plexus, and that nutrient flow from blood passed through the CSF en route to brain. These misconceptions are still widely held, and hinder progress in the development of technology for BBB drug delivery.  相似文献   

2.
Microdialysis in the study of drug transporters in the CNS   总被引:4,自引:0,他引:4  
Quantitative microdialysis in the central nervous system (CNS) has recently provided evidence for the existence of transporters as they relate to the brain distribution of a variety of drugs. Support for the existence of drug transporters in the blood-brain barrier (or in the blood-CSF barrier) comes from investigations that have found: unbound drug concentrations in brain fluids that are lower than corresponding levels in plasma; saturability of transport clearances across the blood-brain barrier and; the regulation of transport by putative inhibitors. Additional confirmatory evidence for the existence of active transport or carrier-mediated processes has also been derived from models that relate observed drug levels in the CNS with those in plasma or blood. The conclusion that reduced drug levels in brain fluids generally indicate the existence of active efflux transport is questioned. In the case of relatively polar compounds with modest blood-brain barrier permeability, lower unbound concentrations in brain may be a consequence of dilution by turnover of brain fluids. This review summarizes recent reports (grouped by class of compounds) where investigators have used microdialysis to examine the distribution of therapeutic agents to the CNS, and have reached conclusions regarding the functional presence of drug transporters in the brain.  相似文献   

3.
Purpose. To study the extent and time course of distribution of stavudine (d4T) into the central nervous system (CNS) and to investigate the transport mechanisms of antiviral nucleosides in the CNS. Methods. Microdialysis with on-line HPLC analysis was used to measure drug concentrations in the brain extracellular fluid (ECF) and cerebrospinal fluid (CSF) in the freely-moving rat. The in vivo recovery of d4T and zidovudine (AZT) was estimated by retrodialysis, which was validated by the zero-net flux method. The CNS distribution of d4T was investigated during iv and intracerebroventricular (icv) infusion. In the subsequent studies, the effect of AZT on CNS distribution of d4T was examined. Results. During iv infusion, d4T distributed rapidly into the CNS. Its brain ECF/plasma and CSF/plasma steady-state concentration ratios were 0.33 ± 0.06 and 0.49 ± 0.12, respectively (n = 15). During icv infusion, the steady-state d4T concentrations in the brain ECF were 23-fold higher than those during iv infusion, whereas its steady-state plasma levels were about the same for these two routes. Coadministration of AZT with d4T did not alter their respective brain distribution and systemic clearance at the concentrations examined. More importantly, the steady-state brain ECF/plasma and CSF/plasma concentration ratios of d4T were about 2-fold higher than those of AZT (0.15 ± 0.04 and 0.25 ± 0.08) determined in the same animals. Conclusions. d4T readily crosses the blood-brain barrier (BBB) and blood-CSF barrier. An active efflux transport system in the BBB and blood-CSF barrier may be involved in transporting d4T out of the CNS. Direct icv administration of d4T can be used to enhance its brain delivery. Moreover, d4T exhibits a more favorable penetration into the CNS than AZT and therefore may be useful in the treatment of AIDS dementia complex.  相似文献   

4.
1. The adult brain functions within a well-controlled (internal) environment that is separate from that of the internal environment of the rest of the body as a whole. 2. The underlying mechanism of control of the brain's internal environment lies in the presence of tight junctions between the cerebral endothelial cells at the blood-brain interface (blood-brain barrier) and between choroid plexus epithelial cells (blood-cerebrospinal fluid (CSF) barrier). 3. The effect of tight junctions at the blood-brain and blood-CSF barriers is to convert the properties of the individual endothelial and epithelial cells into properties of these interfaces as a whole. 4. Superimposed on the diffusion restriction provided by the tight junctions in the blood-brain and blood-CSF barriers is a series of transport mechanisms into and out of the brain and CSF that determine and control the internal environment of the brain with respect to a wide range of molecules, such as electrolytes, amino acids, glucose, vitamins and peptides. 5. The physical characteristics of drugs, together with their interaction with the properties of the barriers between blood, brain and CSF, determine the extent to which drugs penetrate into the brain. 6. Drugs can be targeted to the brain by making use of knowledge of this interaction between the physical properties of a drug (which can be modified by manipulation of the structure of the molecule in predictable ways) and the influx/efflux mechanisms present in the blood-CSF and blood-brain interfaces.  相似文献   

5.
In the development of central nervous system (CNS)-targeted drugs, the prediction of human CNS target exposure is a big challenge. Cerebrospinal fluid (CSF) concentrations have often been suggested as a ‘good enough’ surrogate for brain extracellular fluid (brainECF, brain target site) concentrations in humans. However, brain anatomy and physiology indicates prudence. We have applied a multiple microdialysis probe approach in rats, for continuous measurement and direct comparison of quinidine kinetics in brainECF, CSF, and plasma. The data obtained indicated important differences between brainECF and CSF kinetics, with brainECF kinetics being most sensitive to P-gp inhibition. To describe the data we developed a systems-based pharmacokinetic model. Our findings indicated that: (1) brainECF- and CSF-to-unbound plasma AUC0–360 ratios were all over 100 %; (2) P-gp also restricts brain intracellular exposure; (3) a direct transport route of quinidine from plasma to brain cells exists; (4) P-gp-mediated efflux of quinidine at the blood–brain barrier seems to result of combined efflux enhancement and influx hindrance; (5) P-gp at the blood–CSF barrier either functions as an efflux transporter or is not functioning at all. It is concluded that in parallel obtained data on unbound brainECF, CSF and plasma concentrations, under dynamic conditions, is a complex but most valid approach to reveal the mechanisms underlying the relationship between brainECF and CSF concentrations. This relationship is significantly influenced by activity of P-gp. Therefore, information on functionality of P-gp is required for the prediction of human brain target site concentrations of P-gp substrates on the basis of human CSF concentrations.  相似文献   

6.
1 This study was done to find out how morphine 6-beta-D-glucuronide (M6G) induces more potent central analgesia than morphine, despite its poor blood-brain barrier (BBB) permeability. The brain uptake and disposition of these compounds were investigated in plasma and in various brain compartments: extracellular fluid (ECF), intracellular space (ICS) and cerebrospinal fluid (CSF). 2 Morphine or M6G was given to rats at 10 mg kg(-1) s.c. Transcortical microdialysis was used to assess their distributions in the brain ECF. Conventional tissue homogenization was used to determine the distribution in the cortex and whole brain. These two procedures were combined to estimate drug distribution in the brain ICS. The blood and CSF pharmacokinetics were also determined. 3 Plasma concentration data for M6G were much higher than those of morphine, with Cmax and AUC 4-5 times more higher, Tmax shorter, and VZf-1 (volume of distribution) and CL f(-1) (clearance) 4-6 times lower. The concentrations of the compounds in various brain compartments also differed: AUC values for M6G were lower than those of morphine in tissue and CSF and higher in brain ECF. AUC values in brain show that morphine levels were four times higher in ICS than in ECF, whereas M6G levels were 125 higher in ECF than in ICS. 4 Morphine entered brain cells, whereas M6G was almost exclusively extracellular. This high extracellular concentration, coupled with extremely slow diffusion into the CSF, indicates that M6G was predominantly trapped in the extracellular fluid and therefore durably available to bind at opioid receptors.  相似文献   

7.
The central nervous system (CNS) pharmacokinetics of the H(1) receptor antagonist diphenhydramine (DPHM) were studied in 100- and 120-day-old fetuses, 10- and 30-day-old newborn lambs, and adult sheep using in vivo microdialysis. DPHM was administered i.v. at five infusion rates, with each step lasting 7 h. In all ages, cerebrospinal fluid (CSF) and extracellular fluid (ECF) concentrations were very similar to each other, which suggests that DPHM between these two compartments is transferred by passive diffusion. In addition, the brain-to-plasma concentration ratios were >or=3 in all age groups, suggesting the existence of a transport process for DPHM into the brain. Both brain and plasma DPHM concentrations increased in a linear fashion over the dose range studied. However, the ECF/unbound plasma and CSF/unbound plasma DPHM concentration ratios were significantly higher in the fetus and lambs (approximately 5 to 6) than in the adult (approximately 3). The factors f(CSF) and f(ECF), the ratios of DPHM areas under the curves (AUCs) in CSF and ECF to the plasma DPHM AUC, respectively, decreased with age, indicating that DPHM is more efficiently removed from the brain with increasing age. The extent of plasma protein binding of the drug increased with age. This study provides evidence for a transporter-mediated mechanism for the influx of DPHM into the brain and also for an efflux transporter for the drug, whose activity increases with age. Moreover, the higher brain DPHM levels in the fetus and lamb compared with the adult may explain the greater CNS effects of the drug at these ages.  相似文献   

8.
The ratio of drug levels in cerebrospinal fluid (CSF) to plasma (CSF/plasma) at equilibrium has been viewed as in vivo free fraction (fp) in plasma [CSF/plasma = fp], if no active transport is involved in brain penetration. We determined the CSF/plasma level following oral administration in rats and in vitro rat plasma protein binding for 20 compounds that were synthesized in our institute and have similar physicochemical properties. However, results indicated that the CSF/plasma was not only poorly correlated with fp but remarkably lower than fp in most of the compounds tested, suggesting that certain transporters such as P-glycoprotein (P-gp) located in blood-brain barrier (BBB) may decrease the unbound drug concentration in the brain. We evaluated P-gp-mediated transport activity of the 20 compounds with P-gp (mdr1a)-transfected LLC-PK1 cells and calculated P-gp efflux index (PEI), indicating the extent of P-gp-mediated transport. A plot of the CSF/plasma versus fp/PEI showed a strong correlation (r = 0.93), and the absolute values were almost identical [CSF/plasma = fp/PEI]. These results suggest that P-gp quantitatively shifts the equilibrium of unbound drugs across the BBB. Although we cannot rule out the possibility that endogenous transporters other than P-gp on BBB and/or blood-CSF barrier may affect CSF levels of compounds, the present study indicated that fp and PEI measurements may be useful in predicting in vivo CSF/plasma fractions for central nervous system-targeting drugs.  相似文献   

9.
10.
The aim of this study was to encapsulate nimodipine (NM) within methoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) nanoparticles and to investigate its brain targeting efficiency following intranasal administration. NM-loaded nanoparticles, prepared through an emulsion/solvent evaporation technique, were characterized in terms of size, zeta potential, NM loading and in vitro release. The nanoparticles were administered intranasally to rats, and the concentrations of NM in blood, cerebrospinal fluid (CSF) and brain tissues were monitored. The contribution of the olfactory pathway to the uptake of NM in the brain was determined by calculating the brain/plasma concentration ratios and "brain drug direct transport percentage (DTP)" following intranasal administration of the nanoparticles and the solution formulation. The results showed that MPEG-PLA nanoparticles had a mean particle size of 76.5 +/- 7.4 nm, a negative surface charge and a 5.2% NM loading. In vitro release was moderate under sink conditions. The intranasal administration of nanoparticles resulted in a low but constant NM level in plasma. The ratio of AUC values of the nanoparticles to the solution was 1.56 in CSF. The olfactory bulb/plasma and CSF/plasma concentration ratios were significantly higher (P < 0.05) after application of nanoparticles than those of the nasal solution, except the ratio in olfactory bulb at 5 min. Furthermore, nasally administered nanoparticles yielded 1.6-3.3-fold greater DTP values in CSF, olfactory bulb and other brain tissues compared to nasal solution. Thus, MPEG-PLA nanoparticles demonstrated its potential on improving the efficacy of the direct nose-brain transport for drugs.  相似文献   

11.
The aim of the present study has been to confirm the existence of a transport pathway for a drug (cephalexin) to the cerebrospinal fluid (CSF) directly from the nasal cavity, by comparing the drug's concentrations in CSF after intranasal (i.n.), intravenous (i.v.) and intraduodenal (i.d.) administration. Higher levels of the drug were found in CSF following i.n. administration compared with the i.v. and i.d. routes, even though its plasma concentrations were similar. These findings suggest the existence of a direct transport pathway for cephalexin from the nasal cavity to the CSF. The concentration of drug in CSF at 15 min after i.n. administration was higher than that at 30 min. In contrast, its concentrations in CSF at 15 min after i.v. and i.d. administration were not significantly different from those at 30 min. The results confirm the presence of a direct transport pathway to CSF from the nasal cavity. This pathway may represent a new delivery route to CSF and possibly to brain parenchyma.  相似文献   

12.
1. It is widely believed that 'the' blood-brain barrier is immature in foetuses and newborns. 2. Much evidence in support of this belief is based on experiments that were unphysiological and likely to have disrupted fragile blood vessels of the developing brain. Some confusion about barrier development arises from insufficient recognition that the term 'blood-brain barrier' describes a complex series of mechanisms controlling the internal environment of the brain. 3. We present evidence showing that the brain develops within an environment that, particularly with respect to protein, is different from that of the rest of the body and that possesses a number of unique features not present in the adult. 4. Barriers to protein at blood-brain and blood-cerebrospinal fluid (CSF) interfaces (tight junctions) are present from very early in development; immunocytochemical and permeability data show that proteins are largely excluded from extracellular space in developing brain. 5. Cerebrospinal fluid in developing brain contains high concentrations of proteins largely derived from plasma. This protein is transferred from blood by an intracellular mechanism across the epithelial cells of the immature choroid plexus. Only a small proportion of choroid plexus cells is involved. The route is an intracellular system of tubulo-endoplasmic reticulum continuously connected across the epithelial cells only early in brain development. 6. High concentrations of proteins in CSF in developing brain are largely excluded from the brain's extracellular space by barriers at the internal and external CSF-brain interfaces. These consist of membrane specializations between surfaces of cells forming these interfaces (neuroependyma on the inner surface; radial glial end feet on the outer surface). In contrast with tight junctions present at the blood-brain and blood-CSF barriers, at the CSF-brain barriers of the immature brain, other junctional types are involved: strap junctions in the neuroependyma and a mixture of junctions at the outer CSF-brain barrier (plate junctions, strap junctions and wafer junctions). These barriers are not present in the adult. 7. Permeability to small lipid-insoluble molecules is greater in developing brain; more specific mechanisms, such as those involved in transfer of ions and amino acids, develop sequentially as the brain grows.  相似文献   

13.
Brain extracellular fluid (ECF) concentration of YM992, a novel antidepressant, was determined using brain microdialysis to investigate the high partition of this drug to the brain after systemic administration to rats. Plasma, cerebrospinal fluid (CSF), ECF and brain concentrations were determined at the steady-state after intravenous infusion to rats. The concentration ratio of brain to plasma at the total concentration base was 71.3, while those of ECF to plasma and CSF to plasma at the free concentration base were comparable. The distribution volume in brain was 375 ml/g brain and in vitro binding of YM992 to rat brain was 98.1-98.5%, suggesting a high binding in the brain. The carotid artery injection study showed that the brain uptake index of YM992 was 141%, furthermore, the uptake clearance into brain after i.v. dosing to rats was 0.6 ml/min/g brain, indicating a high permeability at the blood-brain barrier (BBB). These findings suggest that the high partition of YM992 to rat brain is attributed to its high level of binding in the brain as well as its high permeability at the BBB.  相似文献   

14.
The intracerebral microdialysis technique represents an important tool for monitoring free drug concentrations in brain extracellular fluid (brain(EcF)) as a function of time. With knowledge of associated free plasma concentrations, it provides information on blood-brain barrier (BBB) drug transport. However, as the implantation of the microdialysis probe evokes tissue reactions, it should be established if the BBB characteristics are maintained under particular microdialysis experimental conditions. Several studies have been performed to evaluate the use of intracerebral microdialysis as a technique to measure drug transport across the BBB and to measure regional pharmacokinetics of drugs in the brain. Under carefully controlled conditions, the intracerebral microdialysis data did reflect passive BBB transport under normal conditions, as well as changes induced by hyperosmolar opening or by the presence of a tumor in the brain. Studies on active BBB transport by the mdr1a-encoded P-glycoprotein (Pgp) were performed, comparing mdr1a(-/-) with wild-type mice. Microdialysis surgery and experimental procedures did not affect Pgp functionality, but the latter did influence in vivo concentration recovery, which was in line with theoretical predictions. It is concluded that intracerebral microdialysis provides meaningful data on drug transport to the brain, only if appropriate methods are applied to determine in vivo concentration recovery.  相似文献   

15.
It is generally accepted that the rate of entry into and distribution of drugs and other xenobiotics within the central nervous system (CNS) depends on the particular anatomy of the brain microvessels forming the blood-brain barrier (BBB), and of the choroid plexus forming the blood-cerebrospinal fluid barrier (CSF), which possess tight junctions preventing the passage of most polar substances. Drug entry to the CNS also depends on the physicochemical properties of the substances, which can be metabolised during this transport to pharmacologically inactive, non-penetrating polar products. Finally, the entry of drugs may be prevented by multiple complex specialized carriers, which are able to catalyse the active transport of numerous drugs and xenobiotics out of the CNS. Nasal delivery is currently considered as an efficient tool for systemic administration of drugs that are poorly absorbed via the oral route, and increasing evidence suggests that numerous drugs and potentially toxic xenobiotics can reach the CNS by this route. This short review summarizes recent knowledge on factors controlling the nasal pathway, focusing on drug metabolising enzymes in olfactory mucosa, olfactory bulb and brain, which should constitute a CNS metabolic barrier.  相似文献   

16.
The purpose of this research is to clarify the feasibility and to determine the extent of transnasal drug delivery to the brain through the cerebrospinal fluid (CSF) in the rat, using 3H-5-fluorouracil (5FU) as a model drug. It was confirmed first that the concentration of 5FU in the CSF was significantly higher following nasal administration compared with intravenous injection, indicating direct transport of 5FU from the nasal cavity to the CSF. Concentration-time profiles of 5FU in the plasma and in the cerebral cortex were determined following intravenous infusion, nasal instillation and nasal perfusion. In order to evaluate the extent of drug transport from the nasal cavity to the cerebral cortex by way of the CSF, the apparent brain uptake clearances were calculated. The uptake clearance following nasal perfusion (8.65 microl/min/g tissue) was significantly large (p < 0.001) in comparison with that following intravenous infusion (6.20 microl/min/g tissue), while that following nasal instillation (6.94 microl/min/g tissue) was not. Consequently, significant amount of 5FU is transported from the nasal cavity to the brain through the CSF and thus, the delivery of the hydrophilic drug to the brain is augmented by nasal drug application.  相似文献   

17.
One of the major challenges in the development of central nervous system (CNS)-targeted drugs is predicting CNS exposure in human from preclinical data. In this study, we present a methodology to investigate brain disposition in rats using a physiologically based modeling approach aiming at improving the prediction of human brain exposure. We specifically focused on quantifying regional diffusion and fluid flow processes within the brain. Acetaminophen was used as a test compound as it is not subjected to active transport processes. Microdialysis probes were implanted in striatum, for sampling brain extracellular fluid (ECF) concentrations, and in lateral ventricle (LV) and cisterna magna (CM), for sampling cerebrospinal fluid (CSF) concentrations. Serial blood samples were taken in parallel. These data, in addition to physiological parameters from literature, were used to develop a physiologically based model to describe the regional brain pharmacokinetics of acetaminophen. The concentration-time profiles of brain ECF, CSF(LV), and CSF(CM) indicate a rapid equilibrium with plasma. However, brain ECF concentrations are on average fourfold higher than CSF concentrations, with average brain-to-plasma AUC(0-240) ratios of 121%, 28%, and 35% for brain ECF, CSF(LV), and CSF(CM), respectively. It is concluded that for acetaminophen, a model compound for passive transport into, within, and out of the brain, differences exist between the brain ECF and the CSF pharmacokinetics. The physiologically based pharmacokinetic modeling approach is important, as it allowed the prediction of human brain ECF exposure on the basis of human CSF concentrations.  相似文献   

18.
The kinetics of brain penetration has two components, extent and rate. Achieving a high extent of brain penetration is an important focus for central nervous system (CNS) drug discovery. Optimal brain penetration can be achieved by reducing efflux transport at the blood-brain barrier (BBB), and it is critical to ensure that a high total brain/plasma ratio (the most commonly used parameter for measuring brain penetration) is due to efflux transport activity at the BBB and not related to high non-specific brain tissue binding or low plasma binding. Rapid brain penetration is essential for those drugs that require fast onset of action in the CNS. This can be achieved by increasing passive permeability and reducing brain tissue binding.  相似文献   

19.
The blood–brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide Kyotorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood–brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.  相似文献   

20.
Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号