首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength.  相似文献   

2.
A high initial burst release of an phosphorothioate oligonucleotide drug from poly(lactide-co-glycolide) (PLGA) microparticles prepared by the w/o/w solvent extraction/evaporation was reduced by incorporating the microparticles into the following glycerol monooleate (GMO) formulations: 1) pure molten GMO, 2) preformed cubic phase (GMO + water) or 3) low viscosity in situ cubic phase-forming formulations (GMO + water + cosolvent). The in situ cubic phase-forming formulations had a low viscosity in contrast to the first two formulations resulting in good dispersability of the microparticles and good syringability/injectability. Upon contact with an aqueous phase, a highly viscous cubic phase formed immediately entrapping the microparticles. A low initial burst and a continuous extended release over several weeks was obtained with all investigated formulations. The drug release profile could be well controlled by the cosolvent composition with the in situ systems.  相似文献   

3.
In the present study a series of biodegradable and biocompatible poly(ε-caprolactone)/poly(propylene glutarate) (PCL/PPGlu) polymer blends were investigated as controlled release carriers of Risperidone drug (RISP), appropriate for transdermal drug delivery. The PCL/PPGlu carriers were prepared in different weight ratios. Miscibility studies of blends were evaluated through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolysis studies were performed at 37 °C using a phosphate buffered saline solution. The prepared blends have been used for the preparation of RISP patches via solvent evaporation method, containing 5, 10 and 15 wt% RISP. These formulations were characterized using FT-IR spectroscopy, DSC and WAXD in order to evaluate interactions taking place between polymer matrix and drug, as well as the dispersion and the physical state of the drug inside the polymer matrix. In vitro drug release studies were performed using as dissolution medium phosphate buffered saline simulating body fluids. It was found that in all cases controlled release formulations were obtained, while the RISP release varies due to the properties of the used polymer blend and the different levels of drug loading. Artificial Neural Networks (ANNs) were used for dissolution behaviour modelling showing increased correlation efficacy compared to Multi-Linear-Regression (MLR).  相似文献   

4.
Putative colonic release formulations of calcium (Ca)-alginate coated with chitosan containing two different actives, prednisolone and inulin, were prepared in three different sizes, beads (D50 = 2104 μm) and microparticles (D50 = 354 and 136 μm). The formulations were tested in standard phosphate buffer and biorelevant Krebs bicarbonate buffer at pH 7.4, and were further evaluated in the presence of the bacterium E. coli. Product yield and encapsulation were higher with prednisolone than with inulin. In Krebs bicarbonate buffer, a clear relationship between particle size and prednisolone release was observed. In contrast, release of inulin was independent of the particle size. In phosphate buffer, the particles eroded quickly, whereas in Krebs buffer, the particles swelled slowly. The difference in behavior can be attributed to the formation of calcium phosphate in the phosphate buffer medium, which in turn weakens the Ca-alginate matrix core. In the presence of E. coli, the formulations were fermented and the release of prednisolone was accelerated. In conclusion, the buffer media affects formulation behavior and drug release, with the bicarbonate media providing a better simulation of in vivo behavior. Moreover, the susceptibility of the formulations to bacterial action indicates their suitability as carriers for colonic drug delivery.  相似文献   

5.
The use of silicone as a primary polymer in topical semisolid pharmaceutical formulations is infrequent. Recent development of novel silicone materials provides an opportunity to investigate their drug delivery efficiencies. In this study, an anhydrous semisolid formulation was prepared using a novel cross-linked silicone polymer network swollen in isododecane. Similar formulations were prepared using petrolatum, an acrylic, or a cellulose polymer. All formulations contained 5% ibuprofen (IBP). In vitro permeability was evaluated for all formulations and a commercial product using human cadaver epidermis. The silicone formulation delivered IBP more efficiently than all other formulations in terms of flux, cumulative amount, and percent drug release. The silicone formulation showed the maximum flux of 85.9 μg.cm−2.h−1 and a cumulative IBP release of 261.6 μg in 8 h, whereas the benchmark showed 20.1 μg.cm−2.h−1 and 30.9 μg, respectively. An in vivo study conducted on rats showed calculated blood AUCs of 59.2 and 17.6 μg.h/g (p < 0.003) for the silicone formulation and the benchmark, respectively. The IBP in excised rat skin was 264 ± 59 μg/g for the silicone formulation and 102 ± 5 μg/g for the benchmark. The results obtained from the in vitro and in vivo studies demonstrate efficient topical IBP delivery by the silicone formulation.  相似文献   

6.
The aim of this work was to develop by means of co-extrusion a multilayered dosage form characterized by a dual release profile of the same drug. Co-extrudates consisted of two concentric polymer matrices: a core having a lipophilic character and a coat with a hydrophilic character. Diclofenac sodium (DS) was incorporated as model drug in both layers. Several polymers were screened on the basis of their processability via hot melt extrusion (HME) and in vitro drug release. Polymer combinations with suitable properties (i.e., similar extrusion temperature, appropriate drug release profile) were processed via co-extrusion. (Co-) extruded samples were characterized in terms of solid state (XRD, SEM), in vitro drug release, core/coat adhesion, and bioavailability. Based on the polymer screening, two polymer combinations were selected for co-extrusion: ethylcellulose (core) combined with Soluplus® (coat) and polycaprolactone (core) with PEO (coat). These combinations were successfully co-extruded. XRD revealed that DS remained crystalline during extrusion in ethylcellulose, Soluplus®, polycaprolactone, and PEO. The polycaprolactone/PEO combination could be processed at a lower temperature (70 °C), vs. 140 °C for ethylcellulose/Soluplus®. The maximum drug load in core and coat depended on the extrusion temperature and the die dimensions, while adhesion between core and coat was mainly determined by the drug load and by the extrusion temperature. In vitro drug release from the co-extruded formulations was reflected in the in vivo behavior: formulations with a higher DS content in the coat (i.e., faster drug release) resulted in higher Cmax and higher AUC values. Co-extrusion is a viable method to produce in a single step a multilayer dosage form with dual drug release.  相似文献   

7.
Recently, ethylcellulose/guar gum blends have been reported to provide ethanol-resistant drug release kinetics from coated dosage forms. This is because the ethanol insoluble guar gum effectively avoids undesired ethylcellulose dissolution in ethanol-rich bulk fluids. However, so far the importance of crucial formulation parameters, including the minimum amount of guar gum to be incorporated and the minimum required guar gum viscosity, remains unclear. The aim of this study was to identify the most important film coating properties, determining whether or not the resulting drug release kinetics is ethanol-resistant. Theophylline matrix cores were coated in a fluid bed with blends of the aqueous ethylcellulose dispersion “Aquacoat® ECD 30” and guar gum. The polymer blend ratio, guar gum viscosity, and degree of dilution of the final coating dispersion were varied. Importantly, it was found that more than 5% guar gum (referred to the total polymer content) must be incorporated in the film coating and that the apparent viscosity of a 1% aqueous guar gum solution must be greater than 150 cP to provide ethanol-resistance. In contrast, the investigated degree of coating dispersion dilution was not found to be decisive for the ethanol sensitivity. Furthermore, all investigated formulations were long term stable, even upon open storage under stress conditions for 6 months.  相似文献   

8.
Hydrodynamically balanced systems (HBSs) of ofloxacin were prepared using lactose, HPMC K4M, PVP K 30, and liquid paraffin, which may increase the mean residence time in the gastrointestinal tract, and may be able to provide maximum drug at the site of absorption to improve oral bioavailability. All these formulated HBS capsules were floated well over 6 h with no floating lag time. They also showed sustained drug release over 6 h. Time for 50% release of ofloxacin was within the range, 2.47 ± 0.02 to 3.07 ± 0.08 h. The in vitro drug release from these HBS capsules was dependent on HPMC K4M, PVP K 30, and liquid paraffin content. The drug release pattern of these HBS capsules containing ofloxacin followed the Higuchi model with the anomalous transport mechanism.  相似文献   

9.
In the present work attempts have been made to prepare the nanostructured lipid carrier (NLC) gel, by using minoxidil, which is preferably used in case of Alopecia, i.e. baldness pattern as a effective drug. The nine different formulations of Minoxidil-NLC (NLC1–NLC9) were prepared using solid and liquid lipids with Cholesterol and Soya lecithin in different concentrations by the melt dispersion ultrasonication method. Properties of NLC1–NLC9 such as the particle size and its distribution, the scanning electron microscopy (SEM), the drug entrapment efficiency (EE), and the drug release behavior were investigated. The nanoparticulate dispersion was suitably gelled and characterized with respect to drug content, pH, spreadability, rheology, and in vitro release. Safety of the NLC-based gel was assessed using primary skin irritation studies. The formulated NLC3 was spherical in shape, with average particle size of 280 nm, zeta potential of ?42.40 mV and entrapment efficiency of 86.09%. Differential Scanning Calorimeter (DSC) measurements revealed that imperfect crystallization occurred in the inner core of the NLC particles. The drug release behavior from the NLC displayed a biphasic drug release pattern with burst release at the initial stage followed by sustained release. These results indicated that the NLC3 is a suitable carrier of minoxidil with improved drug loading capacity and controlled drug release properties. It has been observed that NLC gel produces the gel with good consistency, homogeneity, spreadability and rheological behavior. The developed NLC-based gel showed faster onset and elicited prolonged activity up to 16 h. The present study concluded that the NLC-based gel containing minoxidil dissolved in a mixture of solid lipid and liquid lipid in the nanoparticulate form helped us to attain the objective of faster onset yet prolonged action as evident from in vitro release.  相似文献   

10.
Celecoxib-loaded NPs were prepared from biodegradable polymers such as poly- e-caprolactone (PCL), poly(L-lactide) (PLA), and poly(D,L-lactide-co-glycolide) (PLGA) by spontaneous emulsification solvent diffusion method. Different concentrations of polymers, emulsifier, and cosurfactants were used for formulation optimization. Nanoparticles (NPs) were characterized regarding their particle size, PDI, zeta potential, shape, morphology, and drug content. Celecoxib-loaded NPs were incorporated into eye drops, in situ gelling system, and gel and characterized regarding their pH, viscosity, uniformity of drug content, in vitro release, and cytotoxicity. The results of optimized celecoxib-loaded PCL-, PLGA-, and PLA-NPs, respectively, are particle size 119 ± 4, 126.67 ± 7.08, and 135.33 ± 4.15 nm; zeta potential ? 22.43 ± 2.91, ? 25.46 ± 2.35, and ? 31.81 ± 2.54 mV; and encapsulation efficiency 93.44 ± 3.6%, 86.00 ± 1.67%, and 79.04 ± 2.6%. TEM analyses revealed that NPs have spherical shapes with dense core and distinct coat. Formulations possessed uniform drug content with pH and viscosity compatible with the eye. Formulations showed sustained release without any burst effect with the Higuchi non-Fickian diffusion mechanism. Cytotoxicity studies revealed that all formulations are nontoxic. Our formulations provide a great deal of flexibility to formulation scientist whereby sizes and zeta potentials of our NPs can be tuned to suit the need using scalable and robust methodologies. These formulations can thus serve as a potential drug delivery system for both anterior and posterior eye diseases. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1036–1053, 2013  相似文献   

11.
The potential of ethosomes for delivering ketoprofen via skin was evaluated. The ethosomes were prepared, optimized and characterized. Vesicular shape, size and entrapment efficiency were determined by transmission electron microscopy, dynamic light scattering and minicolumn centrifugation technique, respectively. Vesicle sizes varied from 120.3±6.1 to 410.2±21.8 nm depending on the concentrations of soya phosphatidyl choline (SPC) and ethanol. Entrapment efficiency increased with concentrations of SPC and ethanol. The formulations exhibited entrapment efficiencies of 42–78%. In vitro release through cellophane membrane showed sustained release of drug from ethosomal formulations in contrast to hydroalcoholic drug solution (HA), which released most of the drug within 2–3 h. In vitro drug permeation across human skin revealed improved drug permeation and higher transdermal flux with ethosomal formulations compared to hydroethanolic drug solution. Kinetics of in vitro skin permeation showed zero order drug release from formulations. Based on in vitro transdermal flux, the estimated steady state in vivo plasma concentration from ethosomes attained therapeutic drug levels whereas hydroalcoholic drug solution exhibited sub therapeutic drug concentration with a patch size of 50 cm2. Skin permeation of ethosomal formulations assessed by confocal microscopy revealed enhanced permeation of Rhodamine 123 loaded formulation in comparison to the hydroalcoholic solution.  相似文献   

12.
BackgroundSeveral clinical reports have documented a beneficial effect of the addition of a low dose of risperidone to the ongoing treatment with antidepressants, in particular selective serotonin reuptake inhibitors, in the treatment of drug resistant depression. The aim of our study was to understand the mechanism of the clinical efficacy of a combination of fluoxetine (FLU) and risperidone (RIS) in drug-resistant depression.We studied the effect of FLU and RIS, given separately or jointly on the extracellular levels of dopamine (DA), serotonin (5-HT) and noradrenaline (NA) in the rat frontal cortex.MethodsAnimals were given single intraperitoneal injections of RIS at a doses of 0.1 or 1 mg/kg and FLU at a dose of 10 mg/kg. The release of DA, 5-HT and NAin the rat frontal cortex was investigated using microdialysis in freely moving animals. The extracellular level of DA, 5-HT and NA was assayed by HPLC with coulochemical detection.ResultsRIS (0.1 and 1 mg/kg) and FLU (10 mg/kg) increased the extracellular level of cortical DA, 5-HT and NA. Co-treatment of both drugs was more effective in increasing DA release than administration of each of the drugs alone at doses of RIS 1 mg/kg and FLU 10 mg/kg. Co-treatment of FLU and RIS 0.1 mg/kg was more potent than FLU alone, while the effect of joint injection of FLU and RIS 1 mg/kg was stronger than RIS 1 mg/kg alone on 5-HT release. The combination of FLU with both doses of RIS was not effective in increasing NA release as compared to drugs given alone.ConclusionsOur data indicate that the effect of the combined administration of RIS and FLU on DA and 5-HT release in the rat frontal cortex may be of crucial importance to the pharmacotherapy of drug resistant depression.  相似文献   

13.
Different ethylene vinyl acetate grades (EVA9, EVA15, EVA28 and EVA40 having a VA content of 9%, 15%, 28% and 40%, respectively) were characterized via differential scanning calorimetry. Glass transition temperature (Tg), polymer crystallinity, melting point and polymer flexibility were positively influenced by the vinyl acetate content. The processability of EVA-based formulations produced by means of hot-melt extrusion (2 mm die) was evaluated in function of VA content, extrusion temperature (60–140 °C) and metoprolol tartrate (MPT, used as model drug) concentration (10–60%). Matrices containing 50% MPT resulted in smooth-surfaced extrudates, whereas at 60% drug content severe surface defects (shark skinning) were observed. Drug release from EVA/MPT matrices (50/50, w/w) was affected by the EVA grades: 90% after 24 h for EVA15 and 28, while EVA9 and EVA40 formulations released 80% and 60%, respectively. Drug release also depended on drug loading and extrusion temperature. For all systems, the total matrix porosity (measured by X-ray tomography) was decreased after dissolution due to elastic rearrangement of the polymer. However, the largest porosity reduction was observed for EVA40 matrices as partial melting of the structure (melt onset temperature: 34.7 °C) also contributed (thereby reducing the drug release pathway and yielding the lowest release rate from EVA40 formulations).The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) used to evaluate the stability of EVA during gastrointestinal transit showed that EVA was not modified during GI transit, nor did it affect the GI ecosystem following oral administration.  相似文献   

14.
A series of semi-empirical equations were utilised to design two solution based pressurised metered dose inhaler (pMDI) formulations, with equivalent aerosol performance but different physicochemical properties. Both inhaler formulations contained the drug, beclomethasone dipropionate (BDP), a volatile mixture of ethanol co-solvent and propellant (hydrofluoroalkane-HFA). However, one formulation was designed such that the emitted aerosol particles contained BDP and glycerol, a common inhalation particle modifying excipient, in a 1:1 mass ratio. By modifying the formulation parameters, including actuator orifice, HFA and metering volumes, it was possible to produce two formulations (glycerol-free and glycerol-containing) which had identical mass median aerodynamic diameters (2.4 μm ± 0.1 and 2.5 μm ± 0.2), fine particle dose (⩽5 μm; 66 μg ± 6 and 68 μg ± 2) and fine particle fractions (28% ± 2% and 30% ± 1%), respectively. These observations demonstrate that it is possible to engineer formulations that generate aerosol particles with very different compositions to have similar emitted dose and in vitro deposition profiles, thus making them equivalent in terms of aerosol performance. Analysis of the physicochemical properties of each formulation identified significant differences in terms of morphology, thermal properties and drug dissolution of emitted particles. The particles produced from both formulations were amorphous; however, the formulation containing glycerol generated particles with a porous structure, while the glycerol-free formulation generated particles with a primarily spherical morphology. Furthermore, the glycerol-containing particles had a significantly lower dissolution rate (7.8% ± 2.1%, over 180 min) compared to the glycerol-free particles (58.0% ± 2.9%, over 60 min) when measured using a Franz diffusion cell. It is hypothesised that the presence of glycerol in the emitted aerosol particles altered solubility and drug transport, which may have implications for BDP pharmacokinetics after deposition in the respiratory tract.  相似文献   

15.
Luminescent functionalized mesoporous SiO2@Eu(OH)3 core-shell microspheres (LFMCSMs) were prepared by coating of europium hydroxide (Eu(OH)3) shell on mesoporous silica (SiO2) nanospheres via a facile one-pot process at low temperature. The FETEM images revealed that a well-defined luminescent europium hydroxide shell was successfully grafted on the surface of mesoporous silica nanospheres. These experimental results showed that the LFMCSM has a typical diameter of ca. 392 nm consisting of the silica core with about 230 nm in diameter and europium hydroxide shell with an average thickness of about 162 nm. LFMCSMs exhibited strong red emission peak upon irradiation with ultraviolet light, which originated from the electric-dipole transition 5D0  7F2 (614 nm) of Eu3 + ion. The biocompatibility of the synthesized LFMCSMs was evaluated in vitro by assessing their cytotoxic and genotoxic effect on human hepatoblastoma (HepG2) cells using MTT, TUNEL, fluorescent staining, DNA ladder and Gene expression assays respectively.From the Clinical EditorThis paper describes the development of a one-pot synthesis of luminescent mesoporous SiO2@Eu(OH)3 core-shell microspheres and evaluates their favorable in vitro cyto-toxicity and geno-toxicity, and their applications in bio-imaging of these particles that emit bright red signal under UV exposure.  相似文献   

16.
Polymeric micelles provide a promising platform for improving oral absorption of poorly soluble drugs. However, improved understanding of how drug retention within the hydrophobic micelle core can reduce drug absorption is required. We designed supersaturated polymeric micelles (Super-PMs) to increase molecularly dissolved drug concentration and gain an insight into the effect of the degree of supersaturation on oral absorption of cyclosporine A (CsA) in rats. The drug release from Super-PMs increased with an increase in initial supersaturation degrees in micelles. The cellular uptake of coumarin-6 was reduced by the retention of drug in polymer micelles. The transport flux of CsA across Caco-2 monolayer was increased with initial supersaturation degrees of 0.81–3.53 (p < 0.05). However, increase in supersaturation to 5.64 actually resulted in decreased CsA transport. The same trend was observed in a rat in vivo absorption study, in which the highest bioavailability of 134.6 ± 24.7% (relative to a commercial product, Sandimmun Neoral®, p < 0.01) was achieved when the supersaturation degree was 3.53. These results demonstrated that Super-PMs were a promising drug delivery system for compounds with low aqueous solubility. This study also provided an experimental proof for the hypothesis that moderately supersaturated formulations are valuable alternative to high supersaturation formulations, resulting in optimal in vivo performance, and the degree of supersaturation should be carefully controlled to optimize drug absorption.  相似文献   

17.
The aim of the current study was to evaluate the potential of the dynamic lipolysis model to simulate the absorption of a poorly soluble model drug compound, probucol, from three lipid-based formulations and to predict the in vitro–in vivo correlation (IVIVC) using neuro-fuzzy networks. An oil solution and two self-micro and nano-emulsifying drug delivery systems were tested in the lipolysis model. The release of probucol to the aqueous (micellar) phase was monitored during the progress of lipolysis. These release profiles compared with plasma profiles obtained in a previous bioavailability study conducted in mini-pigs at the same conditions. The release rate and extent of release from the oil formulation were found to be significantly lower than from SMEDDS and SNEDDS. The rank order of probucol released (SMEDDS  SNEDDS > oil formulation) was similar to the rank order of bioavailability from the in vivo study. The employed neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for different data formations (correlation greater than 0.91 and prediction error close to zero), without employing complex configurations. These preliminary results suggest that the dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the prediction of the in vivo behavior of lipid-based formulations.  相似文献   

18.
Gastrointestinal side effects may interrupt essential therapy with indomethacin, a non-steroidal anti-inflammatory drug. Formulation of this drug into sustained release multiparticulate form may reduce some of these side effects by avoiding contact of drug crystals with gastrointestinal mucosa at high concentrations, as may happen with immediate release dosage forms. Indomethacin (IM) sustained release pellets containing 5 or 10 % w/w of the drug were prepared using an extrusion-spheronization technique. Different concentrations of hydrophilic polymers, polyethylene glycol 4000 (PEG 4000), hydroxypropyl methylcellulose E5 LV premium (HPMC) and polyvinyl pyrrolidone (PVP K30), were mixed at different concentrations (5,10 and 20 %) with Avicel PH 101 to prepare the sustained release formulae. Moreover, a mixer torque rheometer was used to quantitatively determine the suitable moisture content in the pastes before the extrusion process. The resulting pellets were characterized for content, particle size, shape and dissolution profile. The studies on the effect of the polymers used on Avicel rheological properties revealed that the magnitude of torque for the system was decreasing as the polymer concentration increased. The in vitro release of IM from the prepared Avicel pellets was found to be dependent upon the type and concentration of the added polymer. The rank order of IM release in the presence of the investigated polymers was as follows: PEG > HPMC > PVP. Furthermore, the magnitude of IM release rate from the pellet formulations was found to be dependent on the magnitude of the peak torque of the pellet forming paste, which in turn depends on the type and concentration of the added polymer. Increasing IM loading from 5 to 10 % has led to an increase in dissolution rates. At least two of the prepared pellet formulations showed dissolution profiles similar to the commercial product Bonidon 75 SR capsules. In conclusion, the formulation of IM sustained release pellets successfully controlled the drug release which might be beneficial in lowering the risk of side effects and improving patient convenience as an advantage of the pellets as a drug delivery system.  相似文献   

19.
Sucrose esters are effective solubilizers and there is an interest to use them as pharmaceutical excipients for nasal drug delivery. We have determined for the first time the non-toxic doses of laurate and myristate sucrose esters by four independent methods, and their effects on epithelial permeability using RPMI 2650 human nasal epithelial cell line. Based on real-time cell electronic sensing, MTT dye conversion and lactate dehydrogenase release methods reference surfactant Cremophor RH40 proved to be the least toxic excipient, and could be used at 5 mg/mL concentration for 1 h in epithelial cells without cellular damage. The non-toxic dose of Tween 80 was 1 mg/mL, while the dose of laurate and myristate sucrose esters that could be safely used on cells for 1 h was 0.1 mg/mL. Both the reference surfactants and the sucrose esters significantly enhanced the permeability of epithelial cell layers for the paracellular marker FITC-labelled 4.4 kDa dextran at 0.1 mg/mL concentration. The effects of sucrose esters on epithelial permeability were dose-dependent. These data indicate that laurate and myristate sucrose esters can be potentially used as permeability enhancers in nasal formulations to augment drug delivery to the systemic circulation.  相似文献   

20.
Three time-delayed capsule (TDC) formulations were investigated in a pharmacoscintigraphic study, using a three-way crossover design in eight healthy male volunteers. Additionally, the pulsed release of a TDC was investigated with time-lapse photography, using a nondisintegrating riboflavin tablet. The photographic study indicated how the release characteristics of the TDC relied on the erosion of a tablet containing hypromellose (HPMC). Each TDC was duel radio labelled with indium-111 and technetium-99 m DTPA complexes, to observe drug release scintigraphically (theophylline was a marker compound). Three formulations, having in vitro dissolution release times of 1.8, 2.9 or 4.0 h were shown to compare favourably with mean in vivo scintigraphic release times of 2.7, 3.0 and 4.0 h for each formulation containing 20, 24 or 35% (w/w) HPMC concentrations respectively. An increase in HPMC concentration was associated with a delayed technetium release time, and followed the same rank order as the in vitro dissolution study. Observed radiolabel dispersion always occurred in the small intestine. In conclusion, the study established that the TDC performs and demonstrates an in vitroin vivo correlation. Additionally, time and site of release were accurately visualized by gamma scintigraphy, and confirmed with determination of theophylline absorption. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4251–4263, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号