首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Lectins have been used extensively to detect changes in carbohydrate moieties on the surface of embryonic cells during early development. Peanut agglutinin (PNA) in particular has been used to investigate changes related to cell differentiation. PNA has also been used to differentiate between the rostral and caudal sclerotome halves which have been shown to be functionally different, with neural crest cells and neurites traversing only the rostral half during their migration. In this study, we have sectioned and stained chick embryos between 3 and 8 days of age with PNA to examine the distribution of PNA binding sites associated with the vertebral column during this period and also to determine the fates of the rostral and caudal sclerotome halves. Ultrastructural localisation of PNA-gold conjugate showed that binding sites for this lectin were present intracellularly and extracellularly both on cell surfaces and in the matrix. At the light microscope level, a clear banding pattern emerged after staining with PNA which consisted of alternating light and dark staining along the entire length of the vertebral axis of the embryo. In the younger embryos, a simple banding pattern emerged where the rostral sclerotome half of each segment stained only lightly while the caudal half stained darkly. This banding pattern was present throughout the 6 day period of development and could be traced continuously but grew more complex as the sclerotome cells migrated to surround the notochord and neural tube and as the dorsal root ganglia developed. The rostral sclerotome half was found to contribute to the caudal part of one vertebral body and its neural arch, while the caudal sclerotome half was found to contribute to the intervertebral disc, the rostral half of the next caudal vertebra, and part of its neural arch.  相似文献   

2.
3.
Somitocoele cells previously have been shown to form the proximal part of the ribs, the intervertebral discs, and the intervertebral joints (synovial joints). To determine whether the somitocoele cells are necessary for the development of axial skeleton joints, we microsurgically ablated the somitocoele cells in epithelial somites of 2-day-old chick embryos. The operated embryos were analyzed after whole-mount skeletal preparations and in sections. Removal of the somitocoele cells led to two major outcomes: (1) Intervertebral joints failed to develop and resulted in the fusion of the superior articular process and the inferior articular process; (2) Adjacent vertebral bodies fused and lacked the intervertebral disc. These results demonstrate that somitocoele cells specifically give rise to intervertebral joints and discs. Furthermore, these results suggest that neighboring sclerotome cells cannot adapt to form vertebral joints in the absence of the somitocoele compartment. Thus, we provide for the first time experimental evidence for the existence of a joint forming compartment in the somites, which we term the "arthrotome."  相似文献   

4.
The paraxial mesenchyme in seven human embryos aged between Carnegie stages 12 and 17 was studied by lectin histochemistry with the lectins AIA, Con A, GSA II, LFA, LTA, PNA, RCA I, SBA, SNA, WGA. The paraxial mesenchyme was found to be segmented into sclerotomes by intersegmental vessels and from late stage 12 by intrasclerotomal clefts dividing each sclerotome into a cranial and caudal half. The lectins Con A, GSA II, LFA, LTA, SBA and SNA did not react at all in the paraxial mesenchyme. Staining for AIA, PNA, RCA I and WGA was found in the developing sclerotomes. However, no differences in the staining pattern between the two sclerotomal halves could be seen. It was striking that in contrast to the chick embryo no differences in binding for PNA between the cranial and caudal sclerotomal parts was observed. These findings reveal that PNA-binding sites do not play the same functional role in segmented axonal outgrowth and neural crest immigration into cranial sclerotomal halves in the human embryo, as found in chick embryonic development. Beginning with the stage 16-embryo, the already condensed caudal sclerotomal halves express Con A-, RCA- and PNA-binding sites. The staining for PNA in particular marked the differentiation of chondrogenous structures developing in this half. From the late stage 12 or stage 13, the walls of intersegmental and other vessels showed binding sites for AIA, PNA, RCA I, SNA and WGA.  相似文献   

5.
The Pax-1 gene has been found to play an important role in the development of the vertebral column. The cervico-occipital transitional zone is a specialized region of the vertebral column, and malformations of this region have frequently been described in humans. The exact embryonic border between head and trunk is a matter of controversy. In order to determine a possible role of Pax-1 in the development of the cervico-occipital transitional zone we studied the expression of this gene in a series of quail embryos and murine fetuses with in situ hybridization and immunohistochemistry. Pax-1 is expressed in all somites of the embryo, including the first five occipital ones. During embryonic days 3–5 the gene is down-regulated in the caudal direction within the first five somites, whereas more caudally Pax-1 is strongly expressed in the cells of the perinotochordal tube. In 5-day-old quail embryos, the cartilaginous anlage of the basioccipital bone has developed and there is no more expression of Pax-1 in this region. The fusion of the dens axis with the body of the axis also coincides with switching off of the Pax-1 gene. More caudally, the gene is continuously expressed in the intervertebral discs of murine embryos and therefore seems to be important for the process of resegmentation. Quail embryos do not possess permanent intervertebral discs. “Hyper-” or “hyposegmentation” defects may be explained by an over- or under-expression of Pax-1 during development. We also reinvestigated the border between the head and trunk in chick embryos by performing homotopical grafting experiments of the 5th somite between chick and quail embryos. Grafted quail cells formed mainly the caudal end of the basioccipital bone. They were also located in the cranial half of the ventral atlantic arch, and only a few cells were found in the tip of the dens axis.  相似文献   

6.
From somites to vertebral column.   总被引:7,自引:0,他引:7  
We report on the development and differentiation of the somites with respect to vertebral column formation in avian and human embryos. The somites, which are made up of different compartments, establish a segmental pattern which becomes transferred to adjacent structures such as the peripheral nervous system and the vascular system. Each vertebra arises from three sclerotomic areas. The paired lateral ones give rise to the neural arches, the ribs and the pedicles of vertebrae, whereas the vertebral body and the intervening disc develop from the axially-located mesenchyme. The neural arches originate from the caudal half of one somite, whereas the vertebral body is made up of the adjacent parts of two somites. Interactions between notochord and axial mesenchyme are a prerequisite for the normal development of vertebral bodies and intervening discs. The neural arches form a frame for the neural tube and spinal ganglia. The boundary between head and vertebral column is located between the 5th and 6th somites. In the human embryo, proatlas, body of the atlas segment, and body of the axis fuse to form the axis.  相似文献   

7.
The backbone or vertebral column is the defining feature of vertebrates and is clearly metameric. Given that vertebrae arise from segmented paraxial mesoderm in the embryo, this metamerism is not surprising. Fate mapping studies in a variety of species have shown that ventromedial sclerotome cells of the differentiated somite contribute to the developing vertebrae and ribs. Nevertheless, extensive studies in amniote embryos have produced conflicting data on exactly how embryonic segments relate to those of the adult. To date, much attention has focused on the derivatives of the somites, while relatively little is known about the contribution of other tissues to the formation of the vertebral column. In particular, while it is clear that signals from the notochord induce and maintain proliferation of the sclerotome, and later promote chondrogenesis, the role of the notochord in vertebral segmentation has been largely overlooked. Here, we review the established role of the notochord in vertebral development, and suggest an additional role for the notochord in the segmental patterning of the vertebral column.  相似文献   

8.
The backbone or vertebral column is the defining feature of vertebrates and is clearly metameric. Given that vertebrae arise from segmented paraxial mesoderm in the embryo, this metamerism is not surprising. Fate mapping studies in a variety of species have shown that ventromedial sclerotome cells of the differentiated somite contribute to the developing vertebrae and ribs. Nevertheless, extensive studies in amniote embryos have produced conflicting data on exactly how embryonic segments relate to those of the adult. To date, much attention has focused on the derivatives of the somites, while relatively little is known about the contribution of other tissues to the formation of the vertebral column. In particular, while it is clear that signals from the notochord induce and maintain proliferation of the sclerotome, and later promote chondrogenesis, the role of the notochord in vertebral segmentation has been largely overlooked. Here, we review the established role of the notochord in vertebral development, and suggest an additional role for the notochord in the segmental patterning of the vertebral column.  相似文献   

9.
《Journal of anatomy》2017,231(2):260-274
The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5–10 weeks of development) were visualized using Amira 3D® reconstruction and Cinema 4D® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial‐ and caudal‐most vertebral bodies fused to form the basioccipital (occipital vertebrae 1–4) and sacrum (sacral vertebrae 1–5). In the sacrum, fusion of its so‐called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for the (human) embryo between 6 and 10 weeks of development.  相似文献   

10.
We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline.  相似文献   

11.
Summary The cells of individual somites in 2-day-old chick embryos were marked by injecting a fluorescent dye into the somitocoele. This procedure permanently marked the cells and allowed their subsequent development and distribution to be followed. The cells were found to remain in close association with each other within limited boundaries and did not mix to any great extent with similar cells from adjacent somites. Fluorescent cells from single somites were found in the intervertebral disc, connective tissue surrounding two adjacent neural arches, all the tissues between the neural arches, the dermatome, and the associated myotome. No fluorescent cells were found in the notochord or in any nervous tissue apart from accompanying connective tissue. Surprisingly, the vertebral bodies and neural arches did not contain any fluorescent cells apart from those in the connective tissue surrounding them, but this absence of fluorescent cells was thought to be due to the dilution of the fluorescence following cell proliferation. These results provide further experimental support for the theory of resegmentation in vertebral formation, and also provide evidence of a compartmental method of development along the rostrocaudal axis in vertebrates, similar to that already discovered in insects. On the basis of cell lineage criteria, the sclerotome might be considered as a developmental compartment.  相似文献   

12.
13.
The development of the avian vertebral column   总被引:5,自引:0,他引:5  
Segmentation of the paraxial mesoderm leads to somite formation. The underlying molecular mechanisms involve the oscillation of ”clock-genes” like c-hairy-1 and lunatic fringe indicative of an implication of the Notch signaling pathway. The cranio-caudal polarity of each segment is already established in the cranial part of the segmental plate and accompanied by the expression of genes like Delta1, Mesp1, Mesp2, Uncx-1, and EphA4 which are restricted to one half of the prospective somite. Dorsoventral compartmentalization of somites leads to the development of the dermomyotome and the sclerotome, the latter forming as a consequence of an epithelio-to-mesenchymal transition of the ventral part of the somite. The sclerotome cells express Pax-1 and Pax-9, which are induced by notochordal signals mediated by sonic hedgehog (Shh) and noggin. The craniocaudal somite compartmentalization that becomes visible in the sclerotomes is the prerequisite for the segmental pattern of the peripheral nervous system and the formation of the vertebrae and ribs, whose boundaries are shifted half a segment compared to the sclerotome boundaries. Sclerotome development is characterized by the formation of three subcompartments giving rise to different parts of the axial skeleton and ribs. The lateral sclerotome gives rise to the laminae and pedicles of the neural arches and to the ribs. Its development depends on signals from the notochord and the myotome. The ventral sclerotome giving rise to the vertebral bodies and intervertebral discs is made up of Pax-1 expressing cells that have invaded the perinotochordal space. The dorsal sclerotome is formed by cells that migrate from the dorso-medial angle of the sclerotome into the space between the roof plate of the neural tube and the dermis. These cells express the genes Msx1 and Msx2, which are induced by BMP-4 secreted from the roof plate, and they later form the dorsal part of the neural arch and the spinous process. The formation of the ventral and dorsal sclerotome requires directed migration of sclerotome cells. The regionalization of the paraxial mesoderm occurs by a combination of functionally Hox genes, the Hox code, and determines the segment identity. The development of the vertebral column is a consequence of a segment-specific balance between proliferation, apoptosis and differentiation of cells. Accepted: 25 May 2000  相似文献   

14.
A technique was developed for ensuring complete removal of single somites with minimal damage to surrounding tissues in 2-day-old chick embryos. Histological examination of the site of somite removal at various time intervals after operation revealed that a regeneration mechanism could be triggered. Replacement of the cells that had been removed could occur, but the extent of the replacement was dependent on the immediate fate of the gap created. If the gap was closed by enlargement of the adjacent somites, no replacement of the cells occurred. If the gap remained, then cells invaded the gap and were able to produce a normal sclerotome and dermomyotome. By labelling adjacent cells with the carbocyanine dye. DiI, it was shown that the replacement cells could come from the adjacent somites, as well as the intermediate mesoderm. Use of an antibody to HNK-1 established that the replacement cells did not come from the neural crest and that the neural crest cell distribution was little affected. Staining with peanut agglutinin showed that the replacement cells were able to adopt the characteristics associated with rostral and caudal halves of the normal sclerotome. These results provide possible explanations for the variety of vertebral anomalies produced by removal of somites and for the production of some congenital vertebral anomalies.  相似文献   

15.
Early stages of chick somite development   总被引:17,自引:0,他引:17  
We report on the formation and early differentiation of the somites in the avian embryo. The somites are derived from the mesoderm which, in the body (excluding the head), is subdivided into four compartments: the axial, paraxial, intermediate and lateral plate mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental pattern of the body. They are formed in pairs by epithelialization, first at the cranial end of the paraxial mesoderm, proceeding caudally, while new mesenchyme cells enter the paraxial mesoderm as a consequence of gastrulation. After their formation, which depends upon cell-cell and cell-matrix interactions, the somites impose segmental pattern upon peripheral nerves and vascular primordia. The newly formed somite consists of an epithelial ball of columnar cells enveloping mesenchymal cells within a central cavity, the somitocoel. Each somite is surrounded by extracellular matrix material connecting the somite with adjacent structures. The competence to form skeletal muscle is a unique property of the somites and becomes realized during compartmentalization, under control of signals emanating from surrounding tissues. Compartmentalization is accompanied by altered patterns of expression of Pax genes within the somite. These are believed to be involved in the specification of somite cell lineages. Somites are also regionally specified, giving rise to particular skeletal structures at different axial levels. This axial specification appears to be reflected in Hox gene expression. MyoD is first expressed in the dorsomedial quadrant of the still epithelial somite whose cells are not yet definitely committed. During early maturation, the ventral wall of the somite undergoes an epithelio-mesenchymal transition forming the sclerotome. The sclerotome later becomes subdivided into rostral and caudal halves which are separated laterally by von Ebner's fissure. The lateral part of the caudal half of the sclerotome mainly forms the ribs, neural arches and pedicles of vertebrae, whereas within the lateral part of the rostral half the spinal nerve develops. The medially migrating sclerotomal cells form the peri-notochordal sheath, and later give rise to the vertebral bodies and intervertebral discs. The somitocoel cells also contribute to the sclerotome. The dorsal half of the somite remains epithelial and is referred to as the dermomyotome because it gives rise to the dermis of the back and the skeletal musculature. The cells located within the lateral half of the dermomyotome are the precursors of the muscles of the hypaxial domain of the body, whereas those in the medial half are precursors of the epaxial (back) muscles. Single epithelial cells at the cranio-medial edge of the dermomyotome elongate in a caudal direction, beneath the dermomyotome, and become anchored at its caudal margin. These post-mitotic and muscle protein-expressing cells form the myotome. At limb levels, the precursors of hypaxial muscles undergo an epithelio-mesenchymal transition and migrate into the somatic mesoderm, where they replicate and later differentiate. These cells express the Pax-3 gene prior to, during and after this migration. All compartments of the somite contribute endothelial cells to the formation of vascular primordia. These cells, unlike all other cells of the somite, occasionally cross the midline of the developing embryo. We also suggest a method for staging somites according to their developmental age.  相似文献   

16.
The Pax-1 gene has been found to play an important role in the development of the vertebral column. The cervico-occipital transitional zone is a specialized region of the vertebral column, and malformations of this region have frequently been described in humans. The exact embryonic border between head and trunk is a matter of controversy. In order to determine a possible role of Pax-1 in the development of the cervico-occipital transitional zone we studied the expression of this gene in a series of quail embryos and murine fetuses with in situ hybridization and immunohistochemistry. Pax-1 is expressed in all somites of the embryo, including the first five occipital ones. During embryonic days 3–5 the gene is down-regulated in the caudal direction within the first five somites, whereas more caudally Pax-1 is strongly expressed in the cells of the perinotochordal tube. In 5-day-old quail embryos, the cartilaginous anlage of the basioccipital bone has developed and there is no more expression of Pax-1 in this region. The fusion of the dens axis with the body of the axis also coincides with switching off of the Pax-1 gene. More caudally, the gene is continuously expressed in the intervertebral discs of murine embryos and therefore seems to be important for the process of resegmentation. Quail embryos do not possess permanent intervertebral discs. Hyper- or hyposegmentation defects may be explained by an over- or under-expression of Pax-1 during development. We also reinvestigated the border between the head and trunk in chick embryos by performing homotopical grafting experiments of the 5th somite between chick and quail embryos. Grafted quail cells formed mainly the caudal end of the basioccipital bone. They were also located in the cranial half of the ventral atlantic arch, and only a few cells were found in the tip of the dens axis.  相似文献   

17.
When body segmentation goes wrong   总被引:1,自引:0,他引:1  
The segmented or metameric aspect is a basic characteristic of many animal species ranging from invertebrates to man. Body segmentation usually corresponds to a repetition, along the anteroposterior (AP) axis, of similar structures consisting of derivatives from the three embryonic germ layers. In humans, segmentation is most obvious at the level of the vertebral column and its associated muscles, and also in the peripheral nervous system (PNS). Functionally, segmentation is critical to ensure the movements of a rod-like structure, such as the vertebral column. The segmented distribution of the vertebrae derives from the earlier metameric pattern of the embryonic somites. Recent evidence from work performed in fish, chick and mouse embryos indicates that segmentation of the embryonic body relies on a molecular oscillator called the segmentation clock, which requires Notch signaling for its proper functioning. In humans, mutations in genes required for oscillation, such as Delta-like 3 (DLL3), result in abnormal segmentation of the vertebral column, as found in spondylocostal dysostosis syndrome, suggesting that the segmentation clock also acts during human embryonic development.  相似文献   

18.
The vertebral column is a defined feature of vertebrates. In birds and mammals, the sclerotome yields cartilaginous material for the vertebral column. In teleosts, however, it remains uncertain whether the sclerotome participates in vertebral column formation. To investigate osteoblast development in the teleost, we established transgenic systems that allow in vivo observation of osteoblasts and their progenitors marked by fluorescence of DsRed and enhanced green fluorescent protein (EGFP), respectively. In twist-EGFP transgenic medaka, EGFP-positive cells first appeared in the ventromedial portion of respective somites corresponding to the sclerotome, migrated dorsally around the notochord, and concentrated in the intervertebral regions. Ultrastructural analysis of the intervertebral regions revealed that some of these cells were directly located on the osteoidal surface of the perichordal centrum, and enriched with rough endoplasmic reticulum in their cytoplasm. By using the double transgenic medaka of twist-EGFP and osteocalcin-DsRed, we clarified that the EGFP-positive cells in the intervertebral region differentiated into mature osteoblasts expressing the DsRed. In vivo bone labeling in fact confirmed active matrix formation and mineralization of the perichordal centrum exclusively in the intervertebral region of zebrafish larvae as well as medaka larvae. These findings strongly suggest that the teleost intervertebral region acts as a growth center of the perichordal centrum, where the sclerotome-derived cells differentiate into osteoblasts.  相似文献   

19.
The first seven somites, the rhombomeres, and the pharyngeal arches were reassessed in 145 serially sectioned human embryos of stages 9-23, 22 of which were controlled by precise graphic reconstructions. Segmentation begins in the neuromeres, somites and aortic arches at stage 9. The following new observations are presented. (1) The first somite in the human, unlike that of the chick, is neither reduced in size nor different in structure, and it possesses sclerotome, somitocoel and dermatomyotome. (2) Somites 1-4, unlike those of the chick, are related to rhombomere 8 (rather than 7 and 8) and are caudal to pharyngeal arch 4 (rather than in line with 3 and 4). (3) Occipital segment 4 resembles a developing vertebra more than do segments 1-3. (4) The development of the basioccipital resembles that of the first two cervical vertebrae in that medial and lateral components arise in a manner that differs from that in the rest of the vertebral column. (5) The two groups of somites, occipital 1-4 and cervical 5-7, each form a median skeletal mass. (6) An 'S-shaped head/trunk interface', described for the chick and unjustifiably for the mouse, was not found because it is not compatible with the topographical development of the otic primordium and somite 1, between which neural crest migrates without hindrance in mammals. (7) Occipital segmentation and related features are documented by photomicrographs and graphic interpretations for the first time in the human. It is confirmed that the first somite, unlike that of the chick, is separated from the otic primordium by a distance, although the otic anlage undergoes a relative shift caudally. The important, although frequently neglected, distinction between lateral and medial components is emphasized. Laterally, sclerotomes 3 and 4 delineate the hypoglossal foramen, 4 gives rise to the exoccipital and participates in the occipital condyle, 5 forms the posterior arch of the atlas and 6 provides the neural arch of the axis, which is greater in height than the arches of the other cervical vertebrae. Medially, the perinotochord and migrated sclerotomic cells give rise to the basioccipital as well as to the vertebral centra, including the tripartite column of the axis. Registration between (1) the somites and (2) the occipital and cervical medial segments becomes interrupted by the special development of the axis, the three components of which come to occupy the height of only 2 1/2 segments.  相似文献   

20.
The early somite of avian embryos is made up of an epithelial wall and mesenchymal cells located within the somitocoele. We have studied the fate of somitocoele cells for a period of up to 6 days, using the quailchick marker technique. We also applied the QH-1 antibody, which specifically stains hemangiopoietic cells of quail origin, and studied the proliferative activity of epithelial somites with the BrdU anti-BrdU method. Our results show that somitocoele cells mainly give rise to the ribs and peripheral parts of the intervertébral discs. After 1 and 2 days of reincubation, the grafted somitocoele cells were located in the lateral part of the sclerotome, and only a few cells migrated axially towards the notochord. In frontal sections, the cells were located in a triangular area within the cranial part of the caudal sclerotome half. After 3 days of reincubation, some of the cells had migrated cranially along the myotome. After longer reincubation periods, cells grafted into one somite could be found in two adjacent ribs. The studies with the QH-1 antibody show that a subpopulation of somitocoele cells has angiogenic potency. Endothelial cells originating from the mesenchyme of the somitocoele migrated actively and even invaded the ipsilateral half of the neural tube. In the epithelial wall of the somite, BrdU-labelled nuclei were found basally, whereas more apically the nuclei were not stained, but mitotic figures were frequently present. The somitocoele cells also showed a high proliferative activity with about 26% of nuclei labelled with BrdU.Supported by grants (Ch 44/9-2, Ch 44/12-1) from the Deutsche Forschungsgemeinschaft  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号