首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
 The effects of Mg2+ on single mechanosensitive (MS) channel currents recorded from Xenopus oocytes were studied using cell-attached and inside-out patch configurations. Mg2+ both permeates and blocks MS channels. Under symmetrical ionic conditions, the blocking effects of Mg2+ can be described by a Hill coefficient of 0.9 at ±100 mV and IC50s of 0.12 mM (–100 mV) and 0.60 mM at (+100 mV). Although block by intracellular Mg2+ may contribute to inward MS channel rectification, significant current rectification is retained even under symmetrical KCl concentrations and in the complete absence of Mg2+. The observed voltage dependencies of the IC50 for Mg2+ block and the Km for K+ current saturation indicate asymmetries in the MS channel pore. In addition, the absence of K+ self block and anomalous mole fraction effects with K+/Tl+ mixtures indicate a single site pore model. Received: 11 September 1997 / Received after revision: 21 November 1997 / Accepted: 24 November 1997  相似文献   

2.
Using the patch clamp technique, we identified an inwardly rectifying K+ channel in the membrane of opossum kidney cells. The single channel conductance was about 90 pS for inward currents and 30 pS for outward currents under a symmetrical high-K+ condition. The activity of the channel was found to decrease with time during recording from inside-out patches. In the solution with submicromolar Ca2+, the activity disappeared within 4–20 min. Intracellular Ca2+ promoted the run-down of the channel activity at 0.1–1 mM, whereas millimolar Mg-ATP restored the activity after run-down. The run-down channels could never be reactivated by ATP in the absence of Mg2+, or by a nonhydrolyzable ATP analog, AMPPNP, even in the presence of Mg2+.  相似文献   

3.
 The effects of removing extracellular Ca2+ and Mg2+ on the membrane potential, membrane current and intracellular Na+ activity (a i Na) were investigated in guinea-pig and rat ventricular myocytes. Membrane potential was recorded with a patch pipette and whole-cell membrane currents using a single-electrode voltage clamp. Both guinea-pig and rat cells depolarize when the bathing Ca2+ and Mg2+ are removed and the steady-state a i Na increases rapidly from a resting value of 6.4± 0.6 mM to 33±3.8 mM in guinea-pig (n=9) and from 8.9±0.8 mM to 29.3±3.0 mM (n=5) in rat ventricular myocytes. Guinea-pig myocytes partially repolarized when, in addition to removal of the bathing Ca2+ and Mg2+, K+ was also removed, however rat cells remained depolarized. A large diltiazem-sensitive inward current was recorded in guinea-pig and rat myocytes, voltage-clamped at –20 mV, when the bathing divalent cations were removed. When the bathing K+ was removed after Ca2+ and Mg2+ depletion, a large outward K+ current developed in guinea-pig, but not in rat myocytes. This current had a reversal potential of –80±0.7 mV and was not inhibited by high Mg2+ or glybenclamide indicating that it is not due to activation of non-selective cation or adenosine triphosphate (ATP)-sensitive K channels. The current was not activated when Li+ replaced the bathing Na+ and was blocked by R-56865, suggesting that it was due to the activation of KNa channels. Received: 15 October 1998 / Received after revision: 22 January 1999 / Accepted: 5 February 1999  相似文献   

4.
The whole-cell configuration of the patch-clamp technique was used to examine K+ currents in HeLa cells. Under quasi-physiological ionic gradients, using an intracellular solution containing 10–7 mol/l free Ca2+, mainly outward currents were observed. Large inwardly rectifying currents were elicited in symmetrical 145 mmol/l KCl. Replacement of all extracellular K+ by isomolar Na+, greatly decreased inward currents and shifted the reversal potential as expected for K+ selectivity. The inwardly rectifying K+ currents exhibited little or no apparent voltage dependence within the range of from –120 mV to 120 mV. A square-root relationship between chord conductance and [K+]0 at negative potentials could be established. The inwardly rectifying nature of the currents was unaltered after removal of intracellular Mg2+ and chelation with ATP and ethylenediaminetetraacetic acid (EDTA). Permeability ratios for other monovalent cations relative to K+ were: K+ (1.0)>Rb+ (0.86)>Cs+ (0.12)>Li+ (0.08)>Na+ (0.03). Slope conductance ratios measured at –100 mV were: Rb+ (1.66)>K+ (1.0)>Na+ (0.09)>Li+ (0.08)>Cs+ (0.06). K+ conductance was highly sensitive to intracellular free Ca2+ concentration. The relationship between conductance at 0 mV and Ca2+ concentration was well described by a Hill expression with a dissociation constant, K D, of 70 nmol/l and a Hill coefficient, n, of 1.81. Extracellular Ba2+ blocked the currents in a concentration- and voltage-dependent manner. The dependence of the K D for the blockade was analysed using a Woodhull-type treatment, locating the ion interaction site at 19 % of the distance across the electrical field of the membrane and a K D (0 mV) of 7 mmol/l. Tetraethylammonium and 4-aminopyridine were without effect whilst quinine and quinidine blocked the currents with concentrations for half-maximum effects equal to 7 mol/l and 3.5 mol/l, respectively. The unfractionated venom of the scorpion Leiurus quinquestriatus (LQV) blocked the K+ currents of HeLa cells. The toxins apamin and scyllatoxin had no detectable effect whilst charybdotoxin, a component of LQV, blocked in a voltage-dependent manner with half-maximal concentrations of 40 nmol/l at –120 mV and 189 nmol/l at 60 mV; blockade by charybdotoxin accounts for the effect of LQV. Application of ionomycin (5–10 mol/l), histamine (1 mmol/l) or bradykinin (1–10 mol/l) to cells dialysed with low-buffered intracellular solutions induced K+ currents showing inward rectification and a lack of voltage dependence.  相似文献   

5.
Fetal guinea-pig lung alveolar type II (ATII) cells have inwardly rectifying (IR) K+ currents that display Mg2+- and G-protein-dependent run-down. We have used the whole-cell patch-clamp technique to investigate further the regulation of these currents. Under control conditions [KCl-rich pipette solution (1 mM free Mg2+, 10 nM free Ca2+) and KCl-rich bath solution], we found that IR K+ currents diminished with a t 1/2 of 7.6 min and were absent by 30 min. Experimental manoeuvres designed to inhibit phosphorylation increased the rate of current run-down. Thus, intracellular addition of 100 μM H-7, a general kinase inhibitor, reduced the t 1/2 to 4.7 min and the currents were absent by 16 min. Similarly, protein kinase A (PKA) inhibitor peptide (50 nM) also accelerated run-down. Agents known to increase phosphorylation, such as db-cAMP (0.5 mM) and forskolin (10 μM), resulted in a significant slowing of run-down (t 1/2>16 min) as did intracellular addition of the catalytic subunit of PKA (100 nM). Similarly, inhibition of dephosphorylation by either 1 μM okadaic acid [protein phosphatase 1/2A (PP-1/2A) inhibitor] or anti-human protein phosphatase 2Cα (PP2C) antiserum decreased the rate of run-down. These results indicate that the phosphorylation-dependent activation state of the fetal ATII cell IR K+ channel is regulated by a complex interplay of kinases and phosphatases involving PKA (activation), and PP2C and PP-1/2A (inactivation). Received: 10 February 1999 / Received after revision and accepted: 31 March 1999  相似文献   

6.
K+ and Cl channel currents in the plasma membrane of isolated canine pancreatic acinar cells were studied by patch-clamp single-channel and whole-cell current recording techniques. In excised inside-out patches, we found a Ca+-activated (control range 0.01–0.4 M) and voltage-activated K2+-selective channel with a unit conductance of approximately 40 pS in symmetrical K+-rich solutions. In intact cells, addition of acetylcholine (1 M) or bombesin tetradecapeptide (0.1 nM) to the bath evoked an increase in frequency of K+ channel opening. In whole-cell recordings on cells dialyzed with K+-rich and Ca2+-free solution containing 0.5 mM EGTA, the resting potential was about –40mV. Depolarizing voltage pulses activated outward K+ currents, which were blocked by 10 mM tetraethylammonium, whereas hyperpolarizing pulses evoked smaller inward currents. Acetylcholine or bombesin activated the K+ current and enhanced the inward current, which was reduced by a low Cl (10 mM) intracellular solution at –90 mV holding potential. These results suggest that both Ca2+- and voltage-activated K+ channels and Ca2+-activated Cl channels exist in the plasma membrane of canine pancreatic acinar cells.  相似文献   

7.
 Elevation of extracellular potassium concentration by as little as some tenth of mM activates rat adrenal glomerulosa cells. In the present study some factors responsible for this high K+ sensitivity were examined. Using whole-cell voltage-clamp technique we found that both T-type and L-type voltage-dependent Ca2+ channels have very low threshold potential (–71 and –58 mV, resp.). By means of patch-clamp technique combined with single-cell fluorimetry we also provided evidence that the activation of Igl, a K+-activated inward rectifying current is associated with Ca2+ influx. Both the low activation threshold of voltage-dependent Ca2+ channels and the function of Igl contribute to the exceptional K+ sensitivity of the glomerulosa cells. Received: 30 September 1997 / Accepted: 4 November 1997  相似文献   

8.
We have previously reported a depolarization-activated 4-aminopyridine-resistant transient outward K+ current with inward rectification (I to.ir) in canine and guinea pig cardiac myocytes. However, molecular identity of this current is not clear. The present study was designed to investigate whether Kir2.1 channel carries this current in stably transfected human embryonic kidney (HEK) 293 cells using whole-cell patch-clamp technique. It was found that HEK 293 cells stably expressing human Kir2.1 gene had a transient outward current elicited by voltage steps positive to the membrane potential (around −70 mV). The current exhibited a current–voltage relationship with intermediate inward rectification and showed time-dependent inactivation and rapid recovery from inactivation. The half potential (V 0.5) of availability of the current was −49.4 ± 2.1 mV at 5 mM K+ in bath solution. Action potential waveform clamp revealed two components of outward currents; one was immediately elicited and then rapidly inactivated during depolarization, and another was slowly activated during repolarization of action potential. These properties were similar to those of I to.ir observed previously in native cardiac myocytes. Interestingly, inactivation of the I to.ir was strongly slowed by increasing intracellular free Mg2+ (Mg2+ i , from 0.03 to 1.0, 4.0, and 8.0 mM). The component elicited by action potential depolarization increased with the elevation of Mg2+ i . Inclusion of spermine (100 μM) in the pipette solution remarkably inhibited both the I to.ir and steady-state current. These results demonstrate that the Mg2+ i -dependent current carried by Kir2.1 likely is the molecular identity of I to.ir observed previously in cardiac myocytes.  相似文献   

9.
We have used whole-cell patch-clamp techniques to study the conductances in the plasma membranes of human parathyroid cells. With a KCl-rich pipette solution containing Ca2+ buffered to a concentration of 0.1 mol/l, the zero current potential was –71.1±0.5 mV (n=19) and the whole-cell current/ voltage (I/V) relation had an inwardly rectifying and an outwardly rectifying component. The inwardly rectifying current activated instantaneously on hyperpolarization of the plasma membrane to potentials more negative than –80 mV, and a semi-logarithmic plot of the reversal potential of the inward current (estimated by extrapolation from the range in which it was linear) as a function of extracellular K+ concentration ([K+]o) revealed a linear relation with a slope of 64 mV per decade change in [K+]o, which is not significantly different from the Nernstian slope, demonstrating that the current was carried by K+ ions. The conductance exhibited a square root dependence on [K+]o as has been observed for inward rectifiers in other tissues. The current was blocked by the presence of Ba2+ (1 mmol/l) or Cs+ (1.5 mmol/l) in the bath. The outwardly rectifying current was activated by depolarization of the membrane potential to potentials more positive than –20 mV. It was inhibited by replacement of pipette K+ with Cs+, indicating that it also was a K+ current: it was partially (42%) blocked when tetraethylammonium (TEA+, 10 mmol/l) was added to the bath. The outwardly rectifying, but not the inwardly rectifying K+ current, was regulated by intracellular free Ca2+ concentration ([Ca2+]i) such that increasing [Ca2+]i above 10 nmol/l inhibited the outwardly rectifying current, the half-maximum effect being seen at 1 mol/l. Since it is known that increases in [Ca2+]o produce increases in [Ca2+]i, and that they depolarize parathyroid cells by reducing the membrane K+ conductance, we suggest that it is the reduction of the outwardly rectifying K+ conductance by increases in [Ca2+]i which is responsible for the reduction in K+ conductance seen when [Ca2+]o is increased.  相似文献   

10.
 By using the whole-cell patch-clamp technique, an amiloride-sensitive Na+-selective conductance was found in epithelial cells from the endolymphatic sac (ES) epithelia of guinea-pigs. In the current-clamp configuration, the average resting membrane potential was –41.7±8.4 mV (n = 22). Application of amiloride at a concentration of 20 μM elicited a decrease in cation conductance that was responsible for a membrane hyperpolarization by 17.9±6.0 mV (n = 22). Substitution of N-methyl d-glucamine chloride (NMDG-Cl) for external NaCl led to a more significant membrane hyperpolarization by 28.4±8.3 mV (n = 22). At holding potential of –70 mV, amiloride and ethylisopropylamiloride (EIPA) blocked the inward current in a concentration-dependent manner over the range of concentrations of between 0.1 μM and 50 μM, with an inhibitory constant (K i) of 1.3±0.4 μM (n = 7) and 1.5±0.3 μM (n = 5), respectively. In the voltage-clamp configuration, substitution of NMDG-Cl for external NaCl significantly reduced the inward current (n = 9), indicating that the whole-cell conductance has a high permeability for Na+. Superfusion with 20 μM amiloride induced a significant reduction of the inward current, shifted the reversal potential from –39.4±8.8 mV to –60.4±10.5 mV (n = 12), and decreased the inward conductance from 5.0±1.3 nS to 3.7±1.5 nS (n = 12). The permeability ratio of Na+ over K+, calculated from the difference in reversal potential between the currents before and after application of amiloride, was approximately 5:1. Additionally, the conductance was not activated by application of forskolin, 3-isobutyl-1-methylxanthine (IBMX) and 8-bromo-cAMP (8-Br-cAMP). These findings suggest that a low-amiloride-affinity Na+ channel localized in the ES epithelial cells may be involved in uptake of Na+ in the ES. Received: 29 May 1996 / Received after revision: 1 August 1996 / Accepted: 2 August 1996  相似文献   

11.
 To investigate the Mg2+ regulation in neuropile glial (NG) cells and pressure (P) neurones of the leech Hirudo medicinalis the intracellular free Mg2+ ([Mg2+]i) and Na+ ([Na+]i) concentrations, as well as the membrane potential (E m), were measured using Mg2+- and Na+-selective microelectrodes. The mean steady-state values of [Mg2+]i were found to be 0.91 mM (mean E m=–63.6 mV) in NG cells and 0.20 mM (mean E m=–40.6 mV) in P neurones with a [Na+]i of 6.92 mM (mean E m=–61.6 mV) and 7.76 mM (mean E m=–38.5 mV), respectively. When the extracellular Mg2+ concentration ([Mg2+]o) was elevated, [Mg2+]i in P neurones increased within 5–20 min whereas in NG cells a [Mg2+]i increase occurred only after long-term exposure (6 h). After [Mg2+]o was reduced back to 1 mM, a reduction of the extracellular Na+ concentration ([Na+]o) decreased the inwardly directed Na+ gradient and reduced the rate of Mg2+ extrusion considerably in both NG cells and P neurones. In P neurones Mg2+ extrusion was reduced to 15.4% in Na+-free solutions and to 6.0% in the presence of 2 mM amiloride. Mg2+ extrusion from NG cells was reduced to 6.2% in Na+-free solutions. The results suggest that the major [Mg2+]i-regulating mechanism in both cell types is Na+/ Mg2+ antiport. In P neurones a second, Na+-independent Mg2+ extrusion system may exist. Received: 11 August 1998 / Received after revision: 14 October 1998 / Accepted: 15 October 1998  相似文献   

12.
Patch-clamp whole-cell current recordings under voltage-clamp conditions were carried out on isolated mouse exorbital lacrimal acinar cells. Acetylcholine evoked outward current at a membrane potential of –20 mV whereas an inward current was observed at –80 mV. The outward current is due to the well-known calcium-activated K+ channels whereas the inward current was Cl dependent. The acetylcholine-evoked Cl current was abolished when the intracellular Ca2+ concentration was clamped at very low levels by a high intracellular EGTA concentration. Acetylcholine therefore activates a Ca2+-dependent Cl conductance in mouse lacrimal acinar cells.  相似文献   

13.
The properties of the Ca2+-activated K+ channel in unfertilized hamster oocytes were investigated at the single-channel level using inside-out excised membrane patches. The results indicate a new type of Ca2+-activated K+ channel which has the following characteristics: (1) single-channel conductance of 40–85 pS for outward currents in symmetrical K+ (150 mM) solutions, (2) inward currents of smaller conductance (10–50 pS) than outward currents, i.e. the channel is outwardly rectified in symmetrical K+ solutions, (3) channel activity dependent on the internal concentration of free Ca+ and the membrane potential, (4) modification of the channel activity by internal adenosine 5 diphosphate (0.1 mM) producing a high open probability regardless of membrane potential.  相似文献   

14.
Ionic currents of hypophyseal intermediate lobe cells were studied using a thin-slice preparation of the rat pituitary in conjunction with conventional and perforated whole-cell patch-clamp recording techniques. A majority (89%) of the cells studied generated Na+, Ca2+ and K+ currents upon depolarizing voltage steps and responded to bath application of -aminobutyric acid (GABA; 20–50 M) with inward currents (in symmetrical chloride, holding potential –80 mV). A small percentage of cells (11%) did not display inward membrane currents upon depolarization and was unresponsive to GABA. In the first type of cells, Ca2+ and K+ currents were further studied in isolation. Ca2+ tail currents showed a biphasic time course upon repolarization, with time constants and amplitudes of 2.07±0.29 ms, 123±22 pA (for the slowly deactivating component) and 0.14±0.06 ms, 437±33 pA (for the fast-deactivating component; means±SD of n=4 cells). Slowly and fast-deactivating conductances were half-maximally activated at around –10 mV and +10 mV respectively. Depolarizing voltage steps elicited two types of K+ current, which were separated using a prepulse protocol. A fast-activating, transient component showed half-maximal steadystate inactivation between –65 mV and –45 mV depending on the divalent cation composition of the external solution. Its decay was fitted by single-exponential functions with time constants of 36±11 ms and 3.9±0.9 ms at –20 mV and +40 mV respectively (mean±SD; n=4 cells). Whereas the peak current amplitudes of the transient K+ current component remained stable, the amplitude of the second, delayed component increased progressively throughout the course of whole-cell experiments. In cells recorded with the perforated whole-cell technique, bath application of dopamine (10 nM–1 M) induced large hyperpolarizations from a spontaneous membrane potential of –40 mV, but did not consistently affect the amplitude of the voltage-gated K+ conductances. These data are compared to previous studies using other preparations of the intermediate lobe, and differences are discussed, thus helping to extend our knowledge of electrical excitability of hypophyseal cells.  相似文献   

15.
The effects of adrenaline and the β-adrenergic agonist isoprenaline on K+-evoked tension (K+-contracture) and Ba2+ current were investigated in chicken slow (anterior latissimus dorsi (ald)) muscle using isometric-tension measurements and current recording. Addition of adrenaline (10−7–10−5M) or isoprenaline (10−6–10−5 M) to the bath reduced the amplitude of the K+-contractures. These effects were blocked by the β-antagonist propranolol (5 × 10−6 M). External application of a cAMP analogue (8-bromo cyclic AMP; 1 × 10−4 M) also decreased the amplitude of the K+-contractures. To analyze the possible relationship between the induced tension reduction and effects on sarcolemmal Ca2+ channels, a slow action potential and a slow inward membrane current were studied in intact ald chicken muscle fibres. When the ald muscle was immersed in a Na+- and Cl-free solution containing Ba2+ and depolarizing pulses were delivered from a −80 mV holding potential, the muscle fibres exhibited a small, slow Ba2+-dependent potential (observed at about −26 mV, peak amplitude, around −10 mV). The response was blocked by the addition of Co2+ (5 mM) or Cd2+ (2 mM). Using the three-microelectrode voltage-clamp technique, a slow inward membrane current underlying the Ba2+ potential could be discerned. The current had a mean threshold of −60 mV, reached maximum at about −5 mV and ranged from ca. 9 to 19 μA/cm2 (depending on the external Ba2+ concentration). It had a mean reversal potential of +45 mV. The Ba2+ inward current was diminished when adrenaline or isoprenaline was added to the bath (1 × 10−5 M); however, this decrease did not occur when propranolol was present (5 × 10−6 M). These results suggest that the decreases in the tension of K+-contractures induced by adrenaline and isoprenaline may occur through β-adrenergic effects on sarcolemmal Ca2+ channels in ald chicken slow muscle fibres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
 The effects of potassium channel opening drugs and intracellular nucleotides on the ATP-sensitive K+ (KATP) channel composed of SUR2A and Kir6.2 in HEK293T cells were examined using the patch-clamp technique. The SUR2A/Kir6.2 channel was activated effectively by pinacidil, marginally by nicorandil but not by diazoxide. The pinacidil-activated channel currents were inhibited by glibenclamide with a K i value of 160 nM. Upon formation of inside-out (I-O) patches, spontaneous openings of the channels appeared, which were inhibited by intracellular ATP (ATPi) equipotently in the presence and in the absence of intracellular Mg2+ (Mg2+ i). The channel activity ran-down gradually in I-O patches. The run-down channels could be reactivated by ATPi only in the presence of Mg2+ i. Uridine 5’-diphosphate (UDP) antagonized the ATPi-mediated inhibition of the channel activity before run-down. After run-down, UDP activated the channel without antagonizing ATPi-mediated channel inhibition. Thus, the SUR2A/Kir6.2 reproduced the major properties of the native cardiac KATP channel well in terms of nucleotide regulation and pharmacology, and therefore can be a useful tool with which to elucidate the molecular mechanisms characterizing the KATP channel. Received: 24 October 1997 / Received after revision and accepted: 4 December 1997  相似文献   

17.
Single isolated myocytes were obtained from the ventricles of adult guinea pig hearts. The whole-cell recording configuration of the patch-clamp technique was used to measure membrane currents. A decrease (run-down) of the Ca2+ inward current and an increase of a time-independent K+ outward current were observed during long lasting (1–3 h) recordings. The time at which the outward current developed depended on the intracellular ATP concentration in the pipette, suggesting that this current is identical to the ATP-dependent K+ current described by Noma and Shibasaki (1985). However, the maximum outward current reached in the experiments was independent of the ATP concentration indicating a limited diffusion of ATP in the cell interior. In single-channel experiments on isolated patches of cell membrane and in whole-cell recordings the ATP-dependent K+ current could be blocked by the hypoglycaemic sulphonylurea tolbutamide. The IC50 of 0.38 mM was about 50 times higher than that reported for pancreatic -cells (Trube et al. 1986). The Ca2+ inward current and the inwardly retifying K+ current were not affected by tolbutamide (3 mM).  相似文献   

18.
Pancreatic B-cells, kept in culture for 1–4 days, were studied in the whole-cell, cell-attached and outside-out modes of the patch clamp technique. B-cells were identified by the appearance of electrical activity in the cell-attached mode when the bath glucose was raised from 3 to 20 mM. In whole-cell, 80% of these cells showed a transient inward Na+ current, when depolarizing pulses were preceded by holding potentials, or prepulses to potentials more negative than –80 mV. The midpoint (E h) of the inactivation curve (h ) was at –109 mV in 2.6 mM Ca2+, 1.2 mM Mg2+ and –120 mV in 0.2 mM Ca2+, 3.6 mM Mg2+. In 2.6 mM Ca2+, inactivation was fully removed atE<–150 mV. Na+ currents activated atE>–60 mV and were largest at around –10 mV (120 mM Na+). The kinetic parameters of activation (t p) and inactivation ()h were similar to those of other mammalian Na+ channels. Unitary currents with an amplitude of approximately 1 pA at –30 mV (140 mM Na+) with a similar voltage-dependence and time-course of mean current were recorded from outside-out patches. The results show that B-cells have a voltage-dependent Na+ current which, owing to the voltage-dependence of inactivation, is unlikely to play a major role in glucose-induced electrical activity.  相似文献   

19.
BK channels modulate cell firing in excitable cells in a voltage-dependent manner regulated by fluctuations in free cytosolic Ca2+ during action potentials. Indeed, Ca2+-independent BK channel activity has ordinarily been considered not relevant for the physiological behaviour of excitable cells. We employed the patch-clamp technique and selective BK channel blockers to record K+ currents from bovine chromaffin cells at minimal intracellular (about 10 nM) and extracellular (free Ca2+) Ca2+ concentrations. Despite their low open probability under these conditions (V50 of +146.8 mV), BK channels were responsible for more than 25% of the total K+ efflux during the first millisecond of a step depolarisation to +20 mV. Moreover, BK channels activated about 30% faster (τ = 0.55 ms) than the rest of available K+ channels. The other main source of fast voltage-dependent K+ efflux at such a low Ca2+ was a transient K+ (IA-type) current activating with V 50 = −14.2 mV. We also studied the activation of BK currents in response to action potential waveforms and their contribution to shaping action potentials both in the presence and the absence of extracellular Ca2+. Our results show that BK channels activate during action potentials and accelerate cell repolarisation even at minimal Ca2+ concentration, and suggest that they could do so also in the presence of extracellular Ca2+, before Ca2+ entering the cell facilitates their activity.  相似文献   

20.
Effects of extracellular ATP were investigated in cultured rat hippocampal neurons using whole-cell voltage-clamp techniques. When a depolarizing step to +10 mV was applied from a holding potential of -60 mV, an outward K+ current was activated. ATP (3 to 300 μM) reduced the K+ current. Among adenosine derivatives, ADP (100 μM) slightly inhibited the K+ current, and AMP or adenosine (100 μM) was ineffective. UTP was as potent as ATP and α,β-methylene ATP was less effective than ATP. The inhibition by ATP of the K+ current was abolished by inclusion of 2 mM GDPβS in the intracellular solution. The results indicate that ATP inhibits K+ channels in rat hippocampal neurons through UTP-responsive P2-purinoceptors coupled with GTP-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号