首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid (RA) inhibits proliferation of numerous breast carcinoma cells and prevents estrogen stimulation of growth of several estrogen receptor (ER)-positive cell lines. RA inhibition of human breast carcinoma cell proliferation is associated with marked inhibition of the synthesis of a Mr 39,000 protein in the ER-positive human breast carcinoma cell lines investigated. Inhibition of the synthesis of the Mr 39,000 protein occurred within 24 h of RA addition and coincides with the onset of inhibition of cellular proliferation. Increasing the dose of RA results in increasing inhibition of Mr 39,000 synthesis. RA does not inhibit the proliferation of the ER-negative human breast carcinoma cell line MDA MB-231; synthesis and inhibition of the Mr 39,000 protein is not noted in this cell line. Tamoxifen, which inhibits ER-positive breast carcinoma proliferation, moderately inhibits Mr 39,000 synthesis, while a concentration of difluoromethylornithine which inhibits cellular proliferation by greater than 50% does not affect Mr 39,000 protein synthesis. Thus, inhibition of the Mr 39,000 protein appears not to be simply related to the cessation of cellular proliferation.  相似文献   

2.
Summary Antiestrogens have proven to be effective in controlling the growth of hormone-responsive breast cancers. At the concentrations of antiestrogens achieved in the blood of breast cancer patients taking antiestrogens (up to 2 × 10–6 M), antiestrogens selectively inhibit the proliferation of estrogen receptor-containing breast cancer cells, and this inhibition is reversible by estradiol. Antiestrogens also inhibit estrogen-stimulation of several specific protein synthetic activities in breast cancer cells, including increases in plasminogen activator activity, progesterone receptor levels and production of several secreted glycoproteins and intracellular proteins.Antiestrogens bind with high affinity to the estrogen receptor and to additional microsomal binding sites to which estrogens do not bind. These latter sites, called antiestrogen binding sites (AEBS), are present in equal concentrations in estrogen receptor-positive and -negative breast cancer cells and are present in a wide variety of tissues, with highest concentrations being found in the liver. The antiestrogenic and growth suppressive potencies of a variety of antiestrogens correlate best with their affinity for estrogen receptor and not with affinity for AEBS.Antiestrogens undergo bioactivation and metabolismin vivo and hydroxylated forms of the antiestrogen have markedly enhanced affinities for the estrogen receptor. Detailed studies with high affinity radiolabelled antiestrogens indicate that antiestrogens induce important conformational changes in receptor that are reflected in the enhanced maintenance of a 5 S form of the estrogen receptor complex; reduced interaction with DNA; and altered activation and dissociation kinetics of the antiestrogen-estrogen receptor complex. These conformational changes effected by antiestrogens likely result in different interactions with chromatin, causing altered cell proliferation and protein synthesis.Analyses of the rates of synthesis and turnover of the estrogen receptor through pulse-chase experiments utilizing the covalently attaching antiestrogen, tamoxifen aziridine, and studies employing dense amino acid labeling of estrogen receptor reveal that the antiestrogen-occupied receptor is degraded at a rate (t 1/2 = 4 h) similar to that of the control unoccupied receptor. Hence, antiestrogens do not prevent estrogen receptor synthesis and they do not either accelerate or block estrogen receptor degradation.Our findings raise serious doubts about the role of the AEBS in mediating directly the growth suppressive actions of antiestrogens, and suggest that interaction with the estrogen receptor is most likely the mechanism underlying the growth-inhibitory effects of antiestrogens. At present, the role of the AEBS in the actions of antiestrogens or in possible antiestrogen metabolism remains unclear.  相似文献   

3.
The human breast cancer cell line MCF-7 contains estrogen receptors and responds to estrogens with an increase in growth rate and to antiestrogens with a decrease in growth rate. Estrogen stimulation of cell proliferation is concomitant with an increase in the synthesis and secretion of three proteins with mol. wt 52 kDa, 61 kDa and 66 kDa and a decrease in the synthesis and secretion of a 42 kDa protein. The antiestrogen ICI 164,384 has a complete estrogen antagonistic effect on the synthesis of these secreted proteins, whereas the antiestrogen tamoxifen has an agonistic effect on the synthesis and secretion of the 52 kDa protein. We believe that the above mentioned estrogen regulated secreted proteins are either directly or indirectly involved in control of cell proliferation, and the less pronounced inhibitory effect of tamoxifen on cell proliferation compared to ICI 164,384 may be due to agonistic effects of tamoxifen. A tamoxifen resistant variant of the MCF-7 cell line, the AL-1 subline, can be growth inhibited by ICI 164,384, although a higher concentration is needed to inhibit the AL-1 cells compared to the parent MCF-7 cells. Tamoxifen has no effect on secreted proteins from the AL-1 cells, whereas ICI 164,384 has a complete estrogen antagonistic effect on secreted proteins, indicating that the mechanisms by which estrogens and antiestrogens influence cell proliferation may be via up and down regulation of secreted proteins with growth regulatory functions.  相似文献   

4.
5.
Laboratory evidence is presented that estrogens are able to induce the production of numerous growth factors which can act in an autocrine or paracrine fashion in estrogen dependent breast cancer. Estrogen independent tumors can produce these same growth factors constitutively and so escape the need for estrogen stimulation. Growth inhibitory factors such as TGF-β can also be controlled by estrogens and antiestrogens. It is unclear at present, however, how much of the cytostatic effect of antiestrogens in vivo is explained by the production of growth inhibitors. the overall control of breast cancer growth is mediated by the combined effects of these growth stimulatory and inhibitory factors in both breast stroma and epithelium. Interruption of the action of growth factors and the use of growth inhibitors may provide opportunities for new approaches to the treatment of breast cancer.  相似文献   

6.
The molecular mechanisms by which antiestrogens inhibit breast cancer cell proliferation are not well understood. Using cultured breast cancer cell lines, we studied the effects of antiestrogens on proliferation and cell cycle progression and used this information to select candidate cell cycle regulatory genes that are potential targets for antiestrogens. Under estrogen- and serum-free conditions antiestrogens inhibited proliferation of MCF-7 cells stimulated with insulin. Cells were blocked at a point in G1 phase. These effects are comparable with those in serum- and estrogen-containing medium and were also seen to a lesser degree in nude mice bearing MCF-7 tumors. Similar observations with other peptide mitogens suggest that the process inhibited by antiestrogens is common to estrogen and growth factor activated pathways. Other studies have identified G1 cyclins as potential targets for growth factor and steroid hormone/steroid antagonist regulation of breast epithelial cell proliferation. In MCF-7 cells growing in the presence of fetal calf serum, cyclin D1 mRNA was rapidly down-regulated by steroidal and nonsteroidal antiestrogens by an apparently estrogen receptor mediated mechanism. Cyclin D1 gene expression was maximally inhibited before effects on entry into S phase and inhibition was therefore not merely a consequence of changes in cell cycle progression. Together with data on the effects of antiestrogens in serum-free conditions [1], these results suggest down-regulation of cyclin D1 by antiestrogens may be a general phenomenon in estrogen receptor-positive breast cancer cells, independent of culture conditions and class of antiestrogen. These observations are compatible with the hypothesis that reductions in cyclin D1 levels may mediate in part the action of antiestrogens in blocking entry of cells into S phase.  相似文献   

7.
Estradiol induces vascular endothelial growth factor (VEGF) expression in the rat uterus and this may contribute to the hyperemia and increased vascularity produced by estrogens in this target tissue. Triphenylethylene antiestrogens such as tamoxifen have mixed agonist/antagonist activity and their specific effects are tissue and gene specific. These drugs exhibit primarily antiestrogenic actions in mammary tissue and are thus used for the treatment of breast cancer. These drugs are also suggested to be inhibitors of angiogenesis. However, uterine side effects of tamoxifen are thought to stem largely from the agonist activity of the drug in this tissue. Since side effects of tamoxifen such as uterine bleeding and endometrial cancer seem likely to have an angiogenic component, we have examined the effects of this drug, its metabolite, 4-hydroxy-tamoxifen and two additional triphenylethylene antiestrogens, nafoxidine and clomiphene, on the expression of VEGF and another estrogen regulated gene, c-fos, using the rat uterus as an experimental system. All four compounds increase uterine VEGF and c-fos mRNA levels indicating that the triphenylethylene class of antiestrogens are predominantly agonists for the induction of these genes in the uterus.  相似文献   

8.
A monoclonal antibody (323/A3) with a high degree of selectivity for binding to breast cancer cells was produced by immunization of mice with MCF-7 human breast cancer cells. The antigen recognized by 323/A3 on MCF-7 appears to be surface localized, and by enzyme-linked immunosorbent assay, the antibody was found to bind strongly with four of six breast cancer cell lines examined while no binding was detectable with nonbreast cancer cell lines. In vivo distribution of the 323/A3 antigen was screened by immunoperoxidase staining of formalin-fixed paraffin sections of normal human tissues and tumors. Among breast tissues, positive staining was detected with 75% (6 of 8) of metastatic lymph nodes, 59% (76 of 128) of primary breast tumors, 20% (13 of 63) of benign breast lesions, and 0% (0 of 10) of normal breast. No immunostaining was detected with a large variety and number of other normal human tissues with the exception of staining observed with epithelium of normal colon. Antigen distribution appears not to be disease specific, since positive staining was also observed with adenocarcinomas other than breast. The antigen recognized by the 323/A3 antibody was identified by Western blot analysis as a Mr 43,000 protein. The glycoprotein nature of the antigen was demonstrated by its binding to concanavalin A, specific elution with sugar, and immunoprecipitation of a Mr 43,000 radiolabeled protein from extracts of MCF-7 cells after pulse labeling with [3H]glucosamine. The 323/A3 antigen appears to be the same Mr 43,000 protein in cell lines as in breast tumors in vivo. Based on a comparison with the molecular weights of other known tumor-associated antigens and with their immunocytochemical tissue distribution, the Mr 43,000 glycoprotein described here represents a tumor-associated antigen previously undescribed in breast cancer or in other tumors. Since the Mr 43,000 glycoprotein is present on the surface of most breast cancer cells and is either absent or expressed at very low levels in most normal tissues including normal breast, the monoclonal antibody described here may have potential applications in diagnosis and management of breast cancer.  相似文献   

9.
Summary The rationale for seeking to identify new pure antiestrogens was based on the recognition that existing antiestrogens, exemplified by tamoxifen, all possess partial agonist (estrogenic) activity. Conceptually, pure antiestrogens should be more effective than tamoxifen in ablating the mitogenic action of estrogens on breast tumor growth. The discovery and properties of the pure antiestrogens ICI 164,384 and ICI 182,780 are described and contrasted with those of tamoxifen. Key characteristics of these compounds which may be of particular relevance to their therapeutic application in the treatment of breast cancer are described. These include experimental data which predict efficacy in patients whose disease recurs during tamoxifen treatment, and the potential for pure antiestrogens to demonstrate greater efficacy than tamoxifen in first-line treatment of advanced breast cancer. The data imply that gains in efficacy could emerge as more rapid, more complete, or longer-lasting tumor remissions. Clinical trials with ICI 182,780 will reveal whether one or more of these predictions is correct.  相似文献   

10.
Antiestrogens block by definition specifically the actions of estrogens. In the classical uterotropic assay in immature rodents, where estrogens cause fluid retention and cell proliferation, triphenylethylenes have also species-specific estrogen-like (agonistic) effects. 4-hydroxylated triphenylethylenes have in general less estrogenic properties than unhydroxylated ones, and ICI 164,384 has no estrogenic activity in this model. Uterus responds to estrogens by stimulation of cell proliferation. Some other tissues, like breast, liver, and bone respond by regulation of specific protein synthesis. Some of the proteins act as growth factors, and some have unknown functions. The regulation of gene expression is a complex phenomenon: estrogens may turn the responsive gene on or off. Similarly antiestrogens may participate in the gene regulation by mimicking or antagonising estrogen-like actions. This paper summarizes the estrogenic and antiestrogenic effects of classical and new antiestrogens in different tissues.  相似文献   

11.
A secreted glycoprotein with a molecular weight of 52,000 is induced by estrogen in breast cancer cells and has been purified to prepare monoclonal antibodies. The protein has been detected in some breast cancers but not in normal breast and uterus. In order to study its potential value as a marker, we have tested by immunohistochemistry frozen sections of several normal and malignant tissues and of benign mastopathies. Among different tissues tested, the Mr 52,000 protein was detected only in liver, sweat glands, and some sebaceous glands, and in malignant melanomas and some breast tumors. Other estrogen-responsive tissues (ovary, placenta, endometrium, etc.) gave negative results. Immunoradiometric assay of the Mr 52,000 protein in biological fluid revealed an elevated concentration in cyst fluid (0.5 to 7.4 micrograms/ml), pleural effusions of certain metastatic breast cancer, and sweat. By immunohistochemistry, the Mr 52,000 antigen was also detected in 42% of 129 benign mastopathies. Gynecomastia, fibrous disease, fibroadenoma, and adenosis were mainly negative, whereas ductal hyperplasia and cysts were positive. The Mr 52,000 protein was found mostly in proliferative ducts and in cysts but not in lobular hyperplasia and nonproliferative lesions without cyst. More Mr 52,000 protein was found in postmenopausal patients than in premenopausal patients. We conclude that the Mr 52,000 protein is a marker associated with mammary cysts and proliferative ducts. On the basis of the increased risk of breast cancer in proliferative mastopathies, we suggest that the Mr 52,000 protein is useful for predicting high-risk mastopathies acting as a marker associated with the proliferation of ductal tissue.  相似文献   

12.
Suppression of synthesis of specific tropomyosin (TM) isoforms occurs commonly in human, murine, and avian fibroblasts transformed by retroviral oncogenes or other modalities. The resulting deficiency or altered distribution of TMs may predispose the cells to microfilament instability and contribute to expression of the transformed phenotype. In this study we have asked whether defects in TM expression had relevance to human neoplasia, which arises most often in cells of the epithelial lineage rather than in fibroblasts and often is unrelated to demonstrable expression of oncogenes. TMs were characterized in normal primary human mammary epithelial cells (HMEC) and in an immortalized nontumorigenic cell line derived from them. Seven TM isoforms were identified in primary HMEC, two of which may be unique to epithelial cells. Immortalized nontumorigenic HMEC expressed the same array of isoforms. Of six established human breast carcinoma cell lines studied, all failed to express the Mr 39,000 TM isoform and five of six also lacked expression of either the Mr 38,000 or 35,000 isoform. Northern blot analysis with probes specific for the 1.1-kilobase mRNA of fibroblast TM1 detected a mRNA of this size in normal HMEC. This mRNA, which probably encodes the Mr 39,000 TM missing from all the carcinoma lines, was absent from five of the six breast cancer cell lines. These results indicate that abnormalities in TM expression in neoplastic cells are not limited to fibroblasts. The high frequency and consistent nature of such abnormalities among cell lines derived from human breast cancer raises the possibility that such abnormalities in expression of a major cytoskeletal protein may play a role in human neoplasia.  相似文献   

13.
We have examined the effect of short-term and long-term growth in the absence of estrogens on the proliferation rate and estrogen and antiestrogen responsiveness of MCF-7 human breast cancer cells. The removal of phenol red, the pH indicator in tissue culture medium that is weakly estrogenic (Y. Berthois et al., Proc. Natl. Acad. Sci. USA, 83:2496-2500, 1986), immediately slows the cell proliferation rate, and MCF-7 cells grown in phenol red-free medium with charcoal dextran-treated serum for periods up to 1 mo maintain this reduced rate of cell proliferation. In these short-term phenol red-withdrawn cells, estradiol stimulates proliferation markedly and reproducibly, and antiestrogens inhibit estrogen-stimulated proliferation. Antiestrogens by themselves appear as partial agonists/antagonists; at low concentrations they stimulate proliferation weakly, but they show no stimulation at the high concentrations where they fully inhibit estrogen-stimulated proliferation. In contrast to the short-term phenol red-withdrawn cells, cells maintained for several months (5 to 6 mo) in the apparently complete absence of estrogens (no phenol red, with charcoal dextran-treated calf serum) show a markedly increased basal rate of cell proliferation; estradiol is unable to increase this rate of proliferation further, but antiestrogens are able to decrease proliferation. This change in growth pattern is associated with a 3-fold increase in cellular estrogen receptor levels. Despite their differing basal growth rates, cells grown in either the short-term (less than 1 mo) or long-term (greater than 6 mo) absence of estrogens both have progesterone receptor levels that are very low and, in both cases, estradiol increases progesterone receptor levels markedly. Thus, under long-term estrogen-free conditions, there is a dissociation between the stimulation of cell proliferation and of specific protein synthesis (progesterone receptor) by estrogen. The increase in the cell proliferation rate observed in cells grown in the long-term absence of estrogen may reflect altered regulation of growth factor production or altered sensitivity to growth factors in the medium or produced by the cells themselves. Hence, these breast cancer cells adapt significantly to long-term growth in estrogen-free conditions, an observation that may be relevant to understanding the growth of hormone-responsive human breast cancers in vivo.  相似文献   

14.
The effect of estrogens and antiestrogens is examined on three enzymes the activities of which are known to correlate with cell growth. Estrogen treatment increases thymidylate synthetase binding sites up to 4-fold over controls. The extent of induction is dependent on incubation time and the basal rate of cell growth in untreated cells. Amount of active enzyme generally shows a positive correlation with rates of DNA synthesis and cell growth. Thymidine kinase activity and the number of dihydrofolate reductase binding sites are similarly induced by estrogen treatment. Conversely, the effect of antiestrogens on MCF-7 cells is exceedingly complex in that responses in enzyme activities and several generally accepted indices of cell growth (cell number, protein content, rate of DNA synthesis) are dissimilar. Dose response, magnitude of response, and direction of response (increase or decrease) are distinct for each enzyme and for each measure of cell growth with each antiestrogen tested. These results suggest that specific cellular activities are modulated independently by estrogens and antiestrogens and that changes in ligand-receptor complex cannot be the sole explanation for the specificity of estrogen and antiestrogen action. Some degree of specificity and heterogeneity may reside at the level of receptor interaction with the various genes subject to estrogenic modulation.  相似文献   

15.
We have recently demonstrated that physiological levels of androgens exert direct and potent inhibitory effects on the growth of human breast cancer ZR-75-1 cells in vivo in nude mice as well as in vitro under both basal and estrogen-stimulated conditions. The inhibitory effect of androgens has also been confirmed on the growth of dimethylbenz(a)anthracene (DMBA)-induced mammary carcinoma in the rat. Such observations are in close agreement with the clinical data showing that androgens and the androgenic compound medroxyprogesterone acetate (MPA) have beneficial effects in breast cancer in women comparable to other endocrine therapies, including tamoxifen. Although the inhibitory action of androgens on cell proliferation in estrogen-induced ZR-75-1 cells results, in part, from their suppressive effect on expression of the estrogen receptor, the androgens also exert a direct inhibitory effect independent of estrogens. Androgens cause a global slowing effect on the duration of the cell cycle. These observations support clinical data showing that androgenic compounds induce an objective remission after failure of antiestrogen therapy as well as those indicating that the antiproliferative action of androgens is additive to that of antiestrogens. We have also recently demonstrated in ZR-75-1 human breast cancer cells the antagonism between androgens and estrogens on the expression of GCDFP-15 and GCDFP-24 which are two major proteins secreted in human gross cystic disease fluid. The effects of androgens and estrogens as well as those of progestins and glucocorticoids on GCDFP-15 and GCDFP-24 mRNA levels and secretion are opposite to those induced by the same steroids on cell growth in ZR-75-1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Jordan VC  Knudson AG 《Oncology (Williston Park, N.Y.)》2006,20(6):553-62; discussion 567-8, 573, 577
Twenty years ago, antiestrogen therapy with tamoxifen played only a secondary role in breast cancer care. All hopes to cure metastatic breast cancer were still pinned on either the discovery of new cytotoxic drugs or a dose-dense combination of available cytotoxic drugs with bone marrow transplantation. A similar strategy with combination chemotherapy was employed as an adjuvant for primary breast cancer. Simply stated, the goal was to kill the cancer with nonspecific cytotoxic drugs while keeping the patient alive with supportive care. However, medical research does not travel in straight lines, and an alternative approach emerged to solve the problem of controlling tumor growth with minimal side effects: targeted therapy. The approach of using long-term antihormone therapy to control early-stage breast cancer growth would revolutionize cancer care by targeting the tumor estrogen receptor (ER). The success of the strategy would contribute to a decrease in the national mortality figures for breast cancer. More importantly, translational research that targeted the tumor ER with a range of new antiestrogenic drugs would presage the current fashion of blocking survival pathways for the tumor by developing novel targeted treatments. But a surprise was in store when the pharmacology of "antiestrogens" was studied in detail: The nonsteroidal "antiestrogens" are selective ER modulators--ie, they are antiestrogens in the breast, estrogens in the bone--and they lower circulating cholesterol levels. This knowledge would establish a practical approach to breast cancer chemoprevention for women at high risk (tamoxifen) and low risk (raloxifene).  相似文献   

17.
Wang  WL; Porter  W; Burghardt  R; Safe  SH 《Carcinogenesis》1997,18(5):925-933
Treatment of estrogen receptor (ER)-negative MDA-MB-468 human breast cancer cells with 10 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced formation of a nuclear aryl hydrocarbon (Ah) receptor complex as determined by ligand-binding and gel electrophoretic mobility shift assays. TCDD also induced CYP1A1-dependent activity in MDA-MB-468 cells, which represents the first ER-negative Ah receptor-positive human breast cancer cell line that has been identified. Treatment of this cell line with TCDD and related compounds also caused a 50% inhibition of cell growth, which resembled the growth inhibitory effects previously reported for epidermal growth factor (EGF). However, EGF expression is minimal in this cell line and is not induced by TCDD; moreover, EGF and TCDD induced a different pattern of oncogene expression and apoptosis in MDA-MB-468 cells. In contrast, TCDD caused a rapid and sustained induction of transforming growth factor alpha (TGF alpha) gene expression and secreted protein (nearly 2-fold); moreover, the growth-inhibitory effects of TCDD could be blocked by antibodies to the EGF receptor. In a separate experiment, it was shown that TGF alpha also inhibited growth of MDA-MB-468 cells. The results of this study indicate that the mechanism of growth inhibition of MDA- MB-468 cells by TCDD is due to induction of TGF alpha, which is a potent antimitogen in this cell breast cancer line.   相似文献   

18.
Endocrine therapy with estrogen deprivation or with antiestrogens results in tumor regression in a subset of patients with advanced breast cancer. To better understand the mechanisms by which estrogens and antiestrogens modulate breast cancer growth in vivo, we have studied the effects of endocrine manipulation on the development and growth of tumors derived from cultured human breast cancer cells in the athymic nude mouse. MCF-7 breast cancer cells were inoculated into 6-week-old female BALB/c athymic nude mice. Tumor growth did not occur in ovariectomized mice. Cells remained viable, however, since estrogen supplementation more than 30 days later resulted in tumor formation. Minimal tumor growth was observed in intact female nude mice which have low circulating estrogen levels. Tumor development and growth in ovariectomized or intact mice supplemented with 17 beta-estradiol in the form of a s.c. pellet were dose dependent; growth rates increased with estrogen doses ranging from 0.01 to 0.5 mg. Antiestrogen treatment with either tamoxifen or LY156758 caused transient stimulation of tumor growth, followed by a prolonged stationary phase. Growth resumed with estrogen supplementation. Treatment of mice bearing established MCF-7 tumors with estrogen withdrawal (removal of estrogen pellet) resulted in cessation of tumor growth, but not in tumor regression. Growth inhibition was also observed with antiestrogens and was dose dependent. However, tumor regression did not occur, even in mice treated with high doses of tamoxifen (serum concentration of 1.0 microM) for as long as 60 days. Tumor growth was restored in these mice with estrogen replenishment. Tumor cells also remained viable histologically despite prolonged (1 month) estrogen deprivation or antiestrogen therapy, although the mitotic index was markedly reduced. Similar observations were made with mice inoculated with the hormone-responsive ZR75-1 human breast cancer cells, but not with hormone-independent MDA-231 cells which were not influenced by estrogen or antiestrogen treatment. In summary, development and growth of MCF-7 and ZR75-1 tumors in nude mice are estrogen dependent. Endocrine therapy by estrogen deprivation or antiestrogen treatment inhibits tumor cell proliferation in nude mice, but does not cause tumor regression or loss of cell viability.  相似文献   

19.
BACKGROUND: The effects of antiestrogens on angiogenesis in breast cancer are not fully defined. In this study we investigated the in vitro effects of antiestrogens at different concentrations on vascular endothelial growth factor (VEGF) production in estrogen receptor (ER)-positive breast cancer cells. METHODS: The dose-dependent effects of 17beta-estradiol (E2), 4-hydroxytamoxifen (4OHT), and ICI182,780 were analyzed both with reference to growth rates and VEGF protein production using enzyme-linked immunosorbent assay (ELISA) in MCF-7 cells. RESULTS: E2 stimulated both the growth rates and VEGF production of MCF-7 cells in the same manner. Although 4OHT stimulated the growth rates as an agonistic effect in an estrogen-free media at levels ranging from 1 nM to 1 micro M, it did not stimulate VEGF expression at the same levels except for at 1 micro M. Although 4OHT had a weak agonistic effect on VEGF production at 1 micro M in an estrogen-free media, it significantly inhibited E2-stimulated VEGF production at the same level. A cytotoxic effect was observed with 10 micro M 4OHT that paradoxically caused a prominent increase in VEGF production. ICI182,780 had no significant effects on the growth rates or VEGF production in this cell line. CONCLUSIONS: These results support the hypothesis that tamoxifen could inhibit angiogenesis induced by estrogens in ER-positive breast cancer cells.  相似文献   

20.
Calmodulin-dependent protein kinase III (CaM kinase III, elongation factor-2 kinase) is a unique member of the Ca2+/CaM-dependent protein kinase family. Activation of CaM kinase III leads to the selective phosphorylation of elongation factor 2 (eEF-2) and transient inhibition of protein synthesis. Recent cloning and sequencing of CaM kinase III revealed that this enzyme represents a new superfamily of protein kinases. The activity of CaM kinase III is selectively activated in proliferating cells; inhibition of the kinase blocked cells in G0/G1-S and decreased viability. To determine the significance of CaM kinase III in breast cancer, we measured the activity of the kinase in human breast cancer cell lines as well as in fresh surgical specimens. The specific activity of CaM kinase III in human breast cancer cell lines was equal to or greater than that seen in a variety of cell lines with similar rates of proliferation. The specific activity of CaM kinase III was markedly increased in human breast tumour specimens compared with that of normal adjacent breast tissue. The activity of this enzyme was regulated by breast cancer mitogens. In serum-deprived MDA-MB-231 cells, the combination of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) stimulated cell proliferation and activated CaM kinase III to activities observed in the presence of 10% serum. Inhibition of enzyme activity blocked cell proliferation induced by growth factors. In MCF-7 cells separated by fluorescence-activated cell sorting. CaM kinase III was increased in S-phase over that of other phases of the cell cycle. In summary, the activity of Ca2+/CaM-dependent protein kinase III is controlled by breast cancer mitogens and appears to be constitutively activated in human breast cancer. These results suggest that CaM kinase III may contribute an important link between growth factor/receptor interactions, protein synthesis and the induction of cellular proliferation in human breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号