首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of isoquinoline derivatives, HA1077 (1-[5-isoquinolinesulfonyl]-homopiperazine) and H-7 (1-[5-isoquinoline-sulfonyl]-2-methylpiperazine), on cytosolic Ca2+ levels ([Ca2+]i) and muscle tension were examined in vascular smooth muscle of rat aorta. High K+ (72.7 mM) and norepinephrine (1 μM) induced a sustained contraction with a sustained increase in [Ca2+]i. HA1077 and H-7 (3–10 μM) inhibited the increse in muscle tension more strongly than the increase in [Ca2+]i. Verapamil (10 μM) completely inhibited the increase in [Ca2+]i and the contraction induced by K+ whereas it inhibited the increase in [Ca2+]i more strongly than the contraction due to norepinephrine. The verapamil-insensitive portion of the norepinephrine-induced contraction was inhibited by HA1077 or H-7. In Ca2+-free solution, 0.1 μM norepinephrine induced a transient increase in [Ca2+]i and muscle tension. The transient contraction was inhibited by 10 μM HA1077 or 10 μM H-7 without inhibiting the increase in [Ca2+]i. 12-Deoxyphorbol 13-isobutyrate (DPB) (1 μM) caused a sustained contraction, and this contraction was inhibited by HA1077 and H-7 at similar concentrations needed to inhibit the contractions induced by high K+ or norepinephrine. In rabbit mesenteric artery permeabilized with Staphylococcus aureus -toxin, 100 μM HA1077 and 100 μM H-7 inhibited the contraction induced by 0.3 μM Ca2+. These results suggest that the inhibitory effects of isoquinoline derivatives, HA1077 and H-7, are due to a decrease in [Ca2+]i and in the Ca2+ sensitivity of contractile elemenst in vascular smooth muscle.  相似文献   

2.
The effects of the L-type (nifedipine and verapamil) and the T-type (mibefradil) Ca2+ channel blockers on the increase in intracellular Ca2+ concentration ([Ca2+]i) induced by NaCN metabolic inhibition and hyperkalemia were examined in chicken cardiomyocytes using fluorescence imaging with Fura-2. NaCN induced a slow and sustained rise in [Ca2+]i, which was not affected by pretreating the cells for 5 min with nifedipine, verapamil, or mibefradil at 100 nM or 10 μM. Pretreatment of the cells with 10 μM nifedipine, verapamil, or mibefradil for 5 min remarkably inhibited the K+-induced increase in [Ca2+]i. These inhibitory effects diminished after 48-h pretreatment with nifedipine or verapamil but not with mibefradil. Ryanodine also induces an increase in [Ca2+]i, and this effect was enhanced by 48-h pretreatment of the cells with 10 μM verapamil but not with 10 μM mibefradil. We conclude that the NaCN-induced increase in [Ca2+]i is independent of the Ca2+ influx though the L-type or T-type Ca2+ channels. Chronic inhibition of the L-type Ca2+ channels but not T-type channels may enhance the ryanodine receptor-mediated Ca2+ release, which may be responsible for the development of tolerance to their inhibitory effects on K+-induced increase in [Ca2+]i.  相似文献   

3.
The effects of Ni2+, a non-selective cation channel inhibitor, on 5-hydroxytryptamine (5-HT)- and angiotensin II (Ang II)-induced intracellular Ca2+ dynamics in rat aortic smooth muscle cells were investigated. Ni2+ (1 mM) significantly inhibited the transient increase in intracellular Ca2+ concentration ([Ca2+]i) induced by Ang II (100 nM) in aortic smooth muscle cells, as measured using fura-2. However, Ni2+ did not suppress the transient increase in Ca2+ influx induced by 5-HT (10 μM), while significantly suppressed the sustained increase. Ca2+ influx evoked by high KCl (80 mM), thapsigargin (TG) (1 μM) or depletion of intracellular Ca2+ store was almost completely suppressed by Ni2+. Ni2+ had no effect on 5-HT-induced inositol triphosphate production and Ca2+ release from the intracellular store(s). These results suggest that 5-HT, but not Ang II, induces transient Ca2+ influx through Ni2+-insensitive Ca2+ channels, which are distinguishable from the voltage-dependent or store-operated Ca2+ channels.  相似文献   

4.
The in vitro effects of the insecticide lindane have been investigated in rat testis peritubular myoid cells (PMCs). Upon PMC exposure to lindane, polarity increase and decrease of dipole dynamics were seen at the membrane level (EC50 20 μM), leading to a partial dissipation of the membrane intrinsic dipole potential. The initial membrane depolarization was increased by Cl efflux and limited by Ca2+-activated repolarizing currents. Concomitantly, lindane produced an increase in [Ca2+]i (EC50 125 μM) resulting from both Ca2+ release from an inositol 1,4,5-trisphosphate-sensitive intracellular store and a voltage-dependent Ca2+ influx from the extracellular medium. Of particular interest from a toxicologic point of view, insecticide concentrations well below those effective in altering ion homeostasis potently inhibited both [Ca2+]i increase and contraction induced by the natural agonists vasopressin and endothelin-1 (IC50s < 10 μM). These data demonstrate that PMCs are highly susceptible to lindane and suggest that the insecticide may exert testicular toxicity by interfering with hormone-regulated PMC function.  相似文献   

5.
Prolonged exposure to cannabinoids results in desensitization of cannabinoid receptors. Here, we compared the desensitization produced by the partial agonist, Δ9-tetrahydrocannabinol (THC) to that produced by the full agonist Win55,212-2 on cannabinoid-mediated inhibition of glutamatergic synaptic transmission. Synaptic activity between rat hippocampal neurons was determined from network-driven increases in the intracellular Ca2+ concentration ([Ca2+]i spikes). To assess the effects of prolonged treatment, cultures were incubated with cannabinoids, washed in 0.5% fatty-acid-free bovine serum albumin to ensure the removal of the lipophilic drug and then tested for inhibition of [Ca2+]i spiking by Win55,212-2. In control experiments, 0.1 μM Win55,212-2 inhibited [Ca2+]i spiking by 93 ± 5%. Win55,212-2 produced significantly less inhibition of [Ca2+]i spiking following 18–24 h treatment with 1 μM THC (48 ± 5%) or treatment with 1 μM Win55,212-2 (29 ± 6%). Thus, THC produced significantly less functional desensitization than Win55,212-2. The desensitization produced by THC was maximal at 0.3 μM, remained stable between 1 and 7 days of preincubation and shifted the EC50 of acute inhibition by Win55,212-2 from 27 to 251 nM. Differences in the long-term effects of cannabinoid receptor agonists on synaptic transmission may prove important for evaluating their therapeutic and abuse potential.  相似文献   

6.
Hansen ME  Pessah IN  Matsumura F 《Toxicology》2006,220(2-3):218-231
The effects of the organochlorine (OC) liver tumor promoter heptachlor epoxide (HE) and a related non-tumor promoting OC, delta-hexachlorocyclohexane (δ-HCH), on the dynamics of intracellular calcium (Ca2+) were investigated in mouse 1c1c7 hepatoma cells. HE induced a non-capacitative, Ca2+ entry-like phenomenon, which was transient and concentration-dependent with 10 and 50 μM HE. The plasma membrane Ca2+ channel blocker SKF-96365 antagonized this HE-induced Ca2+ entry. δ-HCH failed to induce Ca2+ entry, rather it antagonized the HE-induced Ca2+ entry. Both HE and δ-HCH induced Ca2+ release from endoplasmic reticulum (ER) at treatment concentrations as low as 10 μM; at 50 μM, the former induced 5× as much Ca2+ release as the latter. The HE-induced Ca2+ release from the ER was antagonized using the IP3 receptor/channel blocker xestospongin C, suggesting that HE induces ER Ca2+ release through the IP3 receptor/channel pore. These results show that the effect of HE on cellular Ca2+ mimics that of mitogens such as epidermal and hepatocyte growth factors. They also provide insight into the similarities and differences between tumorigenic and non-tumorigenic OCs, in terms of the mechanisms and the extent of the [Ca2+]i increased by these agents.  相似文献   

7.
The present study established a model of RyR2 knockdown cardiomyocytes and elucidated the role of RyR2 in aconitine-induced arrhythmia. Cardiomyocytes were obtained from hearts of neonatal Sprague–Dawlay rats. siRNAs were used to down-regulate RyR2 expression. Reduction of RyR2 expression was documented by RT-PCR, western blot, and immunofluorescence. Ca2+ signals were investigated by measuring the relative intracellular Ca2+ concentration, spontaneous Ca2+ oscillations, caffeine-induced Ca2+ release, and L-type Ca2+ currents. In normal cardiomyocytes, steady and periodic spontaneous Ca2+ oscillations were observed, and the baseline [Ca2+]i remained at the low level. Exposure to 3 μM aconitine increased the frequency and decreased the amplitude of Ca2+ oscillations; the baseline [Ca2+]i and the level of caffeine-induced Ca2+ release were increased but the L-type Ca2+ currents were inhibited after application of 3 μM aconitine for 5 min. In RyR2 knockdown cardiomyocytes, the steady and periodic spontaneous Ca2+ oscillations almost disappeared, but were re-induced by aconitine without affecting the baseline [Ca2+]i level; the level of caffeine-induced Ca2+ release was increased but L-type Ca2+ currents were inhibited. Alterations of RyR2 are important consequences of aconitine-stimulation and activation of RyR2 appear to have a direct relationship with aconitine-induced arrhythmias. The present study demonstrates a potential method for preventing aconitine-induced arrhythmias by inhibiting Ca2+ leakage through the sarcoplasmic reticulum RyR2 channel.  相似文献   

8.
9.
The effects of 7-chloro-3,5-dihydro-5-phenyl-1H-4,1-benzothiazepine-2-on (CGP37157), an inhibitor of mitochondrial Na+/Ca2+ exchange, on depolarization-induced intracellular free Ca2+ concentration ([Ca2+]i) transients were studied in cultured rat dorsal root ganglion neurons with indo-1-based microfluorimetry. A characteristic plateau in the recovery phase of the [Ca2+]i transient resulted from mitochondrion-mediated [Ca2+]i buffering. It was blocked by metabolic poisons and was not dependent on extracellular Ca2+. CGP37157 produced a concentration-dependent decrease in the amplitude of the mitochondrion-mediated plateau phase (IC50=4±1 μM). This decrease in [Ca2+]i was followed by an increase in [Ca2+]i upon removal of the drug, suggesting that Ca2+ trapped in the matrix was released when the CGP37157 was removed from the bath. CGP37157 also inhibited depolarization-induced Ca2+ influx at the concentrations required to see effects on [Ca2+]i buffering. Thus, CGP37157 inhibits mitochondrial Na+/Ca2+ exchange and directly inhibits voltage-gated Ca2+ channels, suggesting caution in its use to study [Ca2+]i regulation in intact cells.  相似文献   

10.
The mechanisms responsible for somatostatin (SRIF)-induced increases in intracellular Ca2+ concentration ([Ca2+]i) and subsequent desensitisation were studied in CHO-K1 cells expressing human sst5 receptors (CHOsst5 cells). To study the nature of the desensitisation, interactions with uridine triphosphate (UTP) were examined. SRIF (pEC50 7.10) and UTP (pEC50 5.14) caused concentration-dependent increases in [Ca2+]i but the SRIF maximum was about 40% of that to UTP. SRIF-, but not UTP-, induced increases in [Ca2+]i were transient and abolished by pertussis toxin. SRIF and UTP caused sustained increases in Ins(1,4,5)P3 but the SRIF maximum was about 30% of that to UTP. Removal of [Ca2+ ]e attenuated the SRIF-induced peak rise in [Ca2+]i but had no effect on the peak increases in Ins(1,4,5)P3. UTP-induced increases in [Ca2+]i and Ins(1,4,5)P3 were attenuated in the absence of [Ca2+]e. Following pre-exposure to SRIF (1 μM) or UTP (100 μM) for 5 min, subsequent SRIF responses were desensitised. Similar results were obtained in the absence of [Ca2+]e. Pre-exposure to SRIF had no effect on subsequent responses to UTP but in the absence of [Ca2+]e, responses to UTP were attenuated. The results suggest that SRIF but not UTP-induced increases in [Ca2+]i in CHOsst5 cells are mediated by pertussis toxin sensitive G proteins and are caused by an entry of extracellular Ca2+ and release from an Ins(1,4,5)P3 sensitive Ca2+ store. Homologous or heterologous desensitisation of agonist-induced increases in [Ca2+]i could be demonstrated in the presence or absence of extracellular Ca2+ respectively, and the latter appeared to involve depletion of a common intracellular Ca2+ store.  相似文献   

11.
The cellular electrophysiological effect of azimilide (0.1–30 μM) was analyzed in canine ventricular preparations by applying the standard microelectrode and patch-clamp techniques at 37 °C. In papillary muscle, the drug prolonged the action potential duration (APD) in a concentration-dependent manner at a cycle length (CL) of 1000 ms. In Purkinje fibers, at the same CL, the concentration-dependent lengthening of the APD was observed in the presence of up to 3 μM azimilide (at 3.0 μM: 24.1±4.2%, n=9); at higher drug concentration, no further APD prolongation was observed. Azimilide lengthened APD in a reverse frequency-dependent manner in papillary muscle and Purkinje fibers alike. Azimilide (10 μM) caused a rate-dependent depression in the maximal upstroke velocity of the action potential (Vmax) in papillary muscle. The time and rate constants of the offset and onset kinetics of this Vmax block were 1754±267 ms (n=6) and 5.1±0.4 beats (n=6), respectively. Azimilide did not prevent the APD shortening effect of 10 μM pinacidil in papillary muscle, suggesting that the drug does not influence the ATP-sensitive K+ current. Azimilide inhibited the rapid (IKr) and slow component (IKs) of the delayed rectifier K+ current and the L-type Ca2+ current (ICa). The estimated EC50 value of the drug was 0.59 μM for IKs, 0.39 μM for IKr and 7.5 μM for ICa. The transient outward (Ito) and the inward rectifier (Ik1) K+ currents were not influenced by the drug. It is concluded that the site of action of azimilide is multiple, it inhibits not only K+ (IKr, IKs) currents but, in higher concentrations, it also exerts calcium- and use-dependent sodium channel block.  相似文献   

12.
Adenosine has been shown to increase the release of neurotransmitters by stimulation of adenosine A2 receptors. This effect probably depends on Ca2+ entry into presynaptic nerve terminals. In the present work the ability of the mixed adenosine A1/A2 agonist, 2-chloroadenosine, to stimulate Ca2+ uptake into rat brain synaptosomes was investigated. 45Ca2+ uptake was induced by 20 μM veratridine. In the absence of other drugs, 2-chloroadenosine (1 μM) decreased 45Ca2+ uptake into synaptosomes. Blocking the adenosine A1 receptor with 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 2-chloroadenosine (1 μM) increased rather than decreased the uptake of 45Ca2+ into synaptosomes. The excitatory effect of 2-chloroadenosine observed in the presence of DPCPX was reversed by 200 nM of ω-agatoxin-IVA, a specific P-type Ca2+ channel antagonist, but not by L-type (nifedipine, 100 nM to 1 μM; methoxyverapamil 1-10 μM) or N-type (ω-conotoxin GVIA, 500 nM) Ca2+ channel antagonists. The adenosine A2A selective agonist, 2-p-(2-carboxyethyl)-phenethylamino-5′-N-ethyl-carboxamido-adenosine (CGS 21680), did not significantly modify Ca2+ uptake induced by veratridine. In contrast, the selective adenosine A2 receptor agonist, N6-(2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl)-adenosine (DPMA), in concentrations ranging from 10 nM to 1 μM increased Ca2+ uptake induced by veratridine. The selective adenosine A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine (DPMX) at a concentration of 10 μM antagonized the stimulatory effect of DPMA (0.1 μM) on 45Ca2+ uptake. In conclusion, activation of adenosine A2 receptors increases Ca2+ uptake by synaptosomes depolarized by veratridine, which could explain the increase of neurotransmitter release observed when A2 receptors are activated.  相似文献   

13.
The effects of the K+ channel opener cromakalim on phasic contractions induced by noradrenaline and caffeine were studied in the rat isolated mesenteric bed. In the presence of 1.4 mM Ca2+, 1-s pulses of noradrenaline increased the perfusion pressure of the preparation concentration dependently (midpoint at 92 ± 10 μM noradrenaline). Cromakalim (0.3 and 1 μM) inhibited these contractions in a non-competitive manner. Contractions elicited by 1-s pulses of noradrenaline (100 μM) were inhibited by the dihydropyridine Ca2+ antagonist isradipine by maximally 24 ± 1%, indicating that only a minor component of this contraction depended on Ca2+ entry via dihydropyridine-sensitive Ca2+ channels. Cromakalim was a much more effective inhibitor of these contractions (maximum inhibition by 80%, midpoint of the inhibition curve at 171 ± 15 nM). The effect of cromakalim was stereoselective, inhibited by the sulphonylurea glibenclamide, and abolished in partially depolarizing media (KC1 = 35 and 50 mM). In Ca2+-free medium, cromakalim inhibited the contraction induced by noradrenaline (100 μM) by maximally 69 ± 4%, with a midpoint at 58 ± 14 nM. The effect of cromakalim was again stereoselective, inhibited by glibenclamide, and abolished in the presence of 50 mM KC1. Contractions induced by caffeine (10 and 100 μM) were not affected by cromakalim (1 μM). The results indicate that, in rat mesenteric resistance vessels, cromakalim interferes with the ability of noradrenaline, but not caffeine, to mobilize Ca2+ from intracellular stores. The antivasoconstrictor effect of cromakalim against noradrenaline is inhibited by glibenclamide and appears to be linked to the ability of cromakalim to hyperpolarize the cell membrane.  相似文献   

14.
Vasoinhibitory effects of (−)-(S)-2-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-[3-[N-methyl-N-[2-(3,4-methylenedioxyphenoxy)ethyl]amino]propyl]-1,3-thiazolidin-4-one hydrogen fumarate (CP-060S), a synthesized cardioprotective agent, were examined. In the rat aortic rings, the contractile responses to cumulative application of angiotensin II, [Arg8]-vasopressin (vasopressin), or prostaglandin F2 were inhibited by CP-060S in a concentration-dependent manner. The Ca2+-induced contractions in the presence of vasopressin or prostaglandin F2 were also inhibited by CP-060S in a concentration-dependent manner. The inhibitory effect of 10−5 M CP-060S on phenylephrine-induced contraction was as potent as that of 10−6 M nifedipine, and the combined addition of 10−6 M nifedipine and 10−5 M CP-060S showed the effect similar to that of 10−5 M CP-060S alone. In rat aorta loaded with a Ca2+ indicator, fura-PE3, 10−5 M CP-060S completely inhibited the high K+-induced increase in cytosolic Ca2+ level ([Ca2+]i) and contraction. In contrast, 10−5 M CP-060S only partially inhibited the increase in [Ca2+]i and contraction due to phenylephrine or prostaglandin F2. In the presence of 10−6 M nifedipine, 10−5 M CP-060S did not inhibit the increase in [Ca2+]i and contraction induced by prostaglandin F2. In a Ca2+-free medium, the phasic increases in contraction and [Ca2+]i induced by phenylephrine were not affected by 10−5 M CP-060S. These results suggest that the vasoinhibitory effect of CP-060S in rat aortic rings is due mainly to the inhibition of L-type voltage-dependent Ca2+-channels.  相似文献   

15.
In thc present study we tested the effect of dihydropyridine (DHP) Ca2+ channel antagonists and of ω-conotoxin GVIA on [3H]dopamine (DA) release evoked by the activation of excitatory amino acid (EAA) receptors in cultures of fetal rat ventral mesencephalon, in order to investigate the role of voltage-sensitive L- and N-type Ca2+ channels in these EAA-mediated processes. Micromolar concentrations (10–30 μM) of DHP L-type Ca2+ channel antagonists inhibited [3H]DA release evoked by N-methyl-D-aspartate (NMDA), kainate, quisqualate or veratridine. [3H]DA release evoked by the L-type Ca2+ channel agonist, Bay K 8644, was inhibited by lower concentrations (0.1–1 μM) of the DHP antagonist, nitrendipine, than was the release evoked by EAAs. The DHP antagonist, ( + )-PN 200-110, was more potent than ( − )-PN 200-110 in inhibiting [3H]DA release evoked by Bay K 8644, but the two stereoisomers were equipotent in inhibiting NMDA-evoked release. These results indicate that activation of L-type Ca2+ channels is able to evoke [3H]DA release. However activation of L-type channels is not involved in EAA-induced [3H]DA release and therefore inhibition of EAA-induccd [3H]DA release by micromolar concentrations of DHPs must be mediated by actions other than inhibition of L-type Ca2+ channels. ω-Conotoxin GVIA (3 μM) had no effect on [3H]DA release evoked by Bay K 8644, indicating that the toxin may selectively inhibit N-type channels in this preparation. ω-Conotoxin GVIA (3 μM) partially inhibited [3H]DA release evoked by NMDA or kainate, suggesting that N-type Ca2+ channels could possibly play a role in FAA-mediated responses in these cells.  相似文献   

16.
The force–frequency relationship (FFR) is an important intrinsic regulatory mechanism of cardiac contractility. The FFR in most mammalian ventricular myocardium is positive; that is, an increase in contractile force in association with an increase in the amplitude of Ca2+ transients is induced by elevation of the stimulation frequency, which reflects the cardiac contractile reserve. The relationship is different depending on the range of frequency and species of animal. In some species, including rat and mouse, a ‘primary-phase’ negative FFR is induced over the low-frequency range up to approximately 0.5–1 Hz (rat) and 1–2 Hz (mouse). Even in these species, the FFR over the frequency range close to the physiological heart rate is positive and qualitatively similar to that in larger mammalian species, although the positive FFR is less prominent. The integrated dynamic balance of the intracellular Ca2+ concentration ([Ca2+]i) is the primary cellular mechanism responsible for the FFR and is determined by sarcoplasmic reticulum (SR) Ca2+ load and Ca2+ flux through the sarcolemma via L-type Ca2+ channels and the Na+-Ca2+ exchanger. Intracellular Na+ concentration is also an important factor in [Ca2+]i regulation. In isolated rabbit papillary muscle, over a lower frequency range (<0.5 Hz), an increase in duration rather than amplitude of Ca2+ transients appears to be responsible for the increase in contractile force, while over an intermediate frequency range (0.5–2.0 Hz), the amplitude of Ca2+ transients correlates well with the increase in contractile force. Over a higher frequency range (>2.5 Hz), the contractile force is dissociated from the amplitude of Ca2+ transients probably due to complex cellular mechanisms, including oxygen limitation in the central fibers of isolated muscle preparations, while the amplitude of Ca2+ transients increases further with increasing frequency (‘secondary-phase’ negative FFR). Calmodulin (CaM) may contribute to a positive FFR and the frequency-dependent acceleration of relaxation, although the role of calmodulin has not yet been established unequivocally. In failing ventricular myocardium, the positive FFR disappears or is inverted and becomes negative. The activation and overexpression of cardiac sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) is able to reverse these abnormalities. Frequency-dependent alterations of systolic and diastolic force in association with those of Ca2+ transients and diastolic [Ca2+]i levels are excellent indicators for analysis of cardiac excitation-contraction coupling, and for evaluating the severity of cardiac contractile dysfunction, cardiac reserve capacity and the effectiveness of therapeutic agents in congestive heart failure.  相似文献   

17.
To study the cellular basis of the neurotoxicity of methylmercury, the effects of methylmercury on dissociated rat cerebellar neurons were examined using a flow cytometer, a confocal laser microscope and three fluorescent dyes, fluo-3 for monitoring the changes in intracellular Ca2+ concentration ([Ca2+]i) and for detecting live neurons, ethidium for assessing the neurons that are dead or have compromised membranes, and 5-chloromethylfluorescein (CMF) for estimating the cellular content of nonprotein thiols. Methylmercury at concentrations of 1 μM or greater increased the [Ca2+]i of almost all neurons. Prolonged exposure to methylmercury (3 and 10 μM) produced a further increase in [Ca2+]i, in association with compromising membranes in some neurons. Thereafter, methylmercury induced blebs on membranes of some neurons with increased [Ca2+]i. Methylmercury at concentrations of 0.3 μM or greater dose-dependently decreased the cellular content of nonprotein thiols. Results suggest that methylmercury may induce the loss of membrane integrity through destabilized Ca2+ homeostasis and oxidative stress in mammalian brain neurons.  相似文献   

18.
Tetrabromobisphenol A (TBBPA) is a commonly used brominated flame retardant (BFR) utilized to reduce the flammability of a variety of products. Studies have indicated that a number of BFRs are becoming widely distributed within the environment and are bio-accumulating within organisms. There has been much speculation that a variety of phenolic pollutants (including compounds chemically related to TBBPA, such as bisphenol A) may cause endocrine disruption and Ca2+ dysregulation in cells involved in spermatogenesis. In this study we therefore investigate the effects of TBBPA on mouse TM4 Sertoli cells (essential for sperm development). Results show that TBBPA increases Ca2+ within these cells in the 5–60 μM concentration range (EC50, 21 μM). TBBPA also causes cell death (LC50, 18 μM) partly via apoptosis, involving Ca2+-dependent mitochondrial depolarisation. Studies on intracellular Ca2+ transporters shows that TBBPA can inhibit sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA) at low concentrations (IC50, 0.4 to 1.2 μM) and also activate the Ryanodine receptor Ca2+ channel within the 0.4–4 μM concentration range. Therefore these studies suggest that the cytotoxic effects of TBBPA on cells is partly due to dysregulation of Ca2+ signalling, by directly affecting Ca2+ transport proteins.  相似文献   

19.
Phasic release of calcium from the sarcoplasmic reticulum occurs in all mammalian cardiac preparations when the intracellular calcium concentration is sufficiently high. The phasic calcium release is often sufficient to trigger electrophysiological responses and aftercontractions. These can be detrimental to normal cardiac function. We induced phasic calcium release in ferret papillary muscles loaded with the calcium indicator aequorin. Development of phasic calcium release was associated with an increase in resting and peak [Ca2+]i. Inhibiting sodium channels with yohimbine reduced resting [Ca2+]i and prevented phasic calcium release. We propose a mechasism where by reduced [Na+]i, and the subsequent increased efflux of calcium via sodium/calcium exchange reduced [Ca2+]i.  相似文献   

20.
Exogenously administered cannabinoids are neuroprotective in several different cellular and animal models. In the current study, two cannabinoid CB1 receptor ligands (WIN 55,212-2, CP 55,940) markedly reduced hippocampal cell death, in a time-dependent manner, in cultured neurons subjected to high levels of NMDA (15 μM). WIN 55,212-2 was also shown to inhibit the NMDA-induced increase in intracellular calcium concentration ([Ca2+]i) indicated by FURA-2 fluorescence imaging in the same cultured neurons. Changes in [Ca2+]i occurred with similar concentrations (25–100 nM) and in the same time-dependent manner (pre-exposure 1–15 min) as CB1 receptor mediated neuroprotective actions. Both effects were blocked by the CB1 receptor antagonist SR141716A. An underlying mechanism was indicated by the fact that (1) the NMDA-induced increase in [Ca2+]i was inhibited by ryanodine, implicating a ryanodine receptor (RyR) coupled intracellular calcium channel, and (2) the cannabinoid influence involved a reduction in cAMP cAMP-dependent protein kinase (PKA) dependent phosphorylation of the same RyR levels that regulate channel. Moreover the time course of CB1 receptor mediated inhibition of PKA phosphorylation was directly related to effective pre-exposure intervals for cannabinoid neuroprotection. Control studies ruled out the involvement of inositol-trisphosphate (IP3) pathways, enhanced calcium reuptake and voltage sensitive calcium channels in the neuroprotective process. The results suggest that cannabinoids prevent cell death by initiating a time and dose dependent inhibition of adenylyl cyclase, that outlasts direct action at the CB1 receptor and is capable of reducing [Ca2+]i via a cAMP/PKA-dependent process during the neurotoxic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号