首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Serotonin (5-HT, 5-hydroxytryptamine) is known to be an inductor of the brain development [Whitaker-Azmitia, P.M., Druse, M., Walker, P., Lauder, J.M., 1996. Serotonin as a developmental signal. Behav. Brain Res. 73, 19-29; Ugrumov, M.V., 1997. Hypothalamic monoaminergic systems in ontogenesis: development and functional significance. Int. J. Dev. Biol. 41, 809-816]. This study was aimed to test whether it provides long-lasting effects on the differentiating vasoactive intestinal polypeptide (VIP) and vasopressin (VP) neurons of the suprachiasmatic nucleus (SCN) in rats. To this aim, 5-HT was depleted in fetal brain by daily injections of p-chlorophenylalanine (pCPA), an inhibitor of 5-HT synthesis, to pregnant rats from the 13th to the 21st day of gestation. Pregnant rats injected with saline served as controls. The offsprings (males) of pCPA-treated and control pregnant rats were maintained after birth for two months under normal laboratory conditions. Then, the SCN was processed for immunocytochemistry of VIP and VP and in situ hybridization of appropriate mRNAs. There were no differences in concentrations of VIP and VP mRNAs in the SCN in adult offsprings of the 5-HT-depleted pregnant rats compared to the controls. Moreover, 5-HT deficiency did not induce any change in size of VIP-immunoreactive (IR) and VP-IR neurons. Conversely, both the numbers of VIP- and VP-immunoreactive neurons and concentrations of the peptides in cell bodies increased significantly. It is concluded that 5-HT provides long-lasting effects on differentiating VIP and VP neurons in the SCN resulting in attenuated release rather than elevated synthesis of both peptides in adulthood.  相似文献   

3.
Glutamate has been reported to be involved in the transmission of photic information from the retina to the suprachiasmatic nucleus (SCN). Therefore, we investigated whether the application of N-methyl-d-aspartate (NMDA), a glutamate receptor agonist could, reset the circadian rhythm of SCN firing activity in vitro. Treatment with NMDA for 1 h between projected zeitgeber time (ZT) 13–14 produced a phase delay in a concentration-dependent manner. The NMDA-induced phase delay was antagonized by an NMDA-receptor antagonist, MK-801 (100 μM). The retinohypothalamic tract has been reported to make terminals on neurons possessing vasoactive intestinal polypeptide (VIP). Therefore, we investigated the effects of NMDA on VIP release from the SCN and on VIP immunoreactivity in the SCN. Application of NMDA for 15 min between ZT 13–15 increased release of VIP from the SCN. In contrast to release, the content of VIP in the SCN tissue was reduced by application of NMDA. Immunohistochemical analysis revealed that application of NMDA for 4 h or 1 h reduced VIP immunoreactivity in the SCN. To investigate the possibility that VIP released by NMDA could reset SCN neuronal activity, we examined the effects of VIP on the SCN neuronal activity rhythm. Cotreatment with VIP (1 μM) and gastrin-releasing peptide (1 μM) for 1 h between ZT 13–14 caused a phase-delay of SCN activity rhythm. These findings suggest that activation of NMDA receptors during early subjective night causes a phase delay of the SCN neuronal activity via facilitation of VIP release in this nucleus.  相似文献   

4.
5.
Age‐related changes in circadian rhythms, including attenuation of photic phase shifts, are associated with changes in the central pacemaker in the suprachiasmatic nucleus (SCN). Aging decreases expression of mRNA for vasoactive intestinal peptide (VIP), a key neuropeptide for rhythm generation and photic phase shifts, and increases expression of serotonin transporters and 5‐HT1B receptors, whose activation inhibits these phase shifts. Here we describe studies in hamsters showing that aging decreases SCN expression of mRNA for gastrin‐releasing peptide, which also modulates photic phase resetting. Because serotonin innervation trophically supports SCN VIP mRNA expression, and serotonin transporters decrease extracellular serotonin, we predicted that chronic administration of the serotonin‐selective reuptake inhibitor, fluoxetine, would attenuate the age‐related changes in SCN VIP mRNA expression and 5‐HT1B receptors. In situ hybridization studies showed that fluoxetine treatment does not alter SCN VIP mRNA expression, in either age group, at zeitgeber time (ZT)6 or 13 (ZT12 corresponds to lights off). However, receptor autoradiographic studies showed that fluoxetine prevents the age‐related increase in SCN 5‐HT1B receptors at ZT6, and decreases SCN 5‐HT1B receptors in both ages at ZT13. Therefore, aging effects on SCN VIP mRNA and SCN 5‐HT1B receptors are differentially regulated; the age‐related increase in serotonin transporter sites mediates the latter but not the former. The studies also showed that aging and chronic fluoxetine treatment decrease total daily wheel running without altering the phase of the circadian wheel running rhythm, in contrast to previous reports of phase resetting by acute fluoxetine treatment.  相似文献   

6.
7.
The development of the hypothalamic vasopressin (VP) and oxytocin (OT) systems has been studied in rats from the 16th embryonic day (E16) until the 11th postnatal day (P11). The VP and OT mRNA-producing neurons were identified on cryostat sections by in situ hybridization using oligonucleotide probes Iabeled by [35S], [3H] or digoxigenin. Moreover, VP and OT gene expressions were evaluated either at E21 or at P11 following chronic depletion of catecholamines (CA). For this purpose, pregnant rats were daily injected with α-methyl-m(p)-tyrosine from gestational day 13 to 20, while neonates were daily injected with a-methyl-m(p)-tyrosine and neurotoxin 6-hydroxydopamine from postnatal day 2 to 10. No VP mRNA- or OT mRNA-expressing cells were observed in the hypothalamus of intact fetuses at E16, while 2 days later rather numerous VP and OT neurons occupied the anterior hypothalamus. One major bilateral group of VP and OT neurons was located in the supreoptic nucleus (SON). Less numerous labeled cab were found in the developing paraventricular nucleus (PVN). Some VP and OT neurons were also spread along the ventrolateral surface of the hypothalamus from the level of the median eminence, caudally, to the level of the optic nerves, rostrally. From E18 until birth, the OT neurons were localized in the dorsal portion of the SON, while its ventral portion was occupied by the VP neurons. The VP mRNA- and OT mRNA-expressing cells seemed to increase both in size and in number over the perinatal period. Frequent relatively long neuronal processes contained VP and OT mRNAs in fetuses and in newborns. When performed during the second half of the fetal life, the chronic depletion of CA did not cause any change in the VP and OT mRNA concentrations in the SON and PVN of fetuses. By contrast, similar treatment of neonates resulted in a significant increase of both mRNA levels in the SON. These data suggest that at least in the SON VP and OT gene expressions might be under the inhibitory control of CA during the neonatal period.  相似文献   

8.
Theexpression of vasoactive intestinal peptide (VIP) and gastrin-releasing peptide (GRP) in the suprachiasmatic nucleus (SCN) changes depending on light. VIP mRNA increases and GRP mRNA decreases in the light phase, while they do not show change without light. In the present study we investigated the involvement of serotonin (5-HT) in the expression of VIP and GRP messenger RNA in the SCN of the rat. The decrease in VIP mRNA and the increase in GRP mRNA in the light phase were amplified by 5-HT depletion using 5,6-dihydroxytryptamine injected into the lateral ventricle. These enhancements due to 5-HT depletion were reversed to control levels by applying 5-HT1B agonists TFMPP and CGS12066A, but not a 5-HT1A/5-HT7 agonist, 8-OH-DPAT. The 5-HT1B receptor is known to exist on the terminals of the retinohypothalamic tract (RHT). Therefore, next we investigated the morphological relationship of RHT and 5-HT terminals by double-labeling immunocytochemistry and demonstrated that 5-HT-immunoreactive fibers and cholera toxin B subunit-labeled RHT terminals were intermingled in the ventrolateral SCN, and 5-HT axon processes had close contact with RHT terminals. Collectively, these pharmacological and morphological results suggest that 5-HT afferents from raphe nuclei modulate VIP and GRP expression in neurons of the ventrolateral SCN by activating the 5-HT1B receptor in the RHT.  相似文献   

9.
The hamster suprachiasmatic nucleus (SCN) is anatomically and functionally heterogeneous. A group of cells in the SCN shell, delineated by vasopressin-ergic neurons, are rhythmic with respect to Period gene expression and electrical activity but do not receive direct retinal input. In contrast, some cells in the SCN core, marked by neurons containing calbindin-D28k, gastrin-releasing peptide (GRP), substance P (SP), and vasoactive intestinal polypeptide (VIP), are not rhythmic with respect to Period gene expression and electrical activity but do receive direct retinal input. Examination of the timing of neurogenesis using bromodeoxyuridine indicates that SCN cells are born between embryonic day 9.5 and 12.5. Calbindin, GRP, substance P, and VIP cells are born only during early SCN neurogenesis, between embryonic days 9.5-11.0. Vasopressin cells are born over the whole period of SCN neurogenesis, appearing as late as embryonic day 12.5. Examination of the ontogeny of peptide expression in these cell types reveals transient expression of calbindin in a cluster of dorsolateral SCN cells on postnatal days 1-2. The adult pattern of calbindin expression is detected in a different ventrolateral cell cluster starting on postnatal day 2. GRP and SP expression appear on postnatal day 8 and 10, respectively, after the retinohypothalamic tract has innervated the SCN. In summary, the present study describes the ontogeny-specific peptidergic phenotypes in the SCN and compares these developmental patterns to previously identified patterns in the appearance of circadian functions. These comparisons suggest the possibility that these coincident appearances may be causally related, with the direction of causation to be determined.  相似文献   

10.
Altered gene expression for a number of molecules has been suggested as one of the underlying mechanisms of epileptogenesis. Changes in expression of the immediate early genes, zif268 and c-fos, were investigated in chronic focal epilepsy induced by tetanus toxin (TT, 20–35 ng) injected in the rat motor cortex. Most rats injected with TT and perfused on postoperative day 5, 7 or 14 had recurrent focal seizures after a latent period of 4–13 days, and showed enhanced Zif268 immunoreactivity in a cluster of neurons at the injection site, as well as reduced Zif268 immunoreactivity in a distinct cortical zone around this cluster. C-fos or Fos-related immunoreactivity was decreased over widespread areas of frontoparietal and piriform cortex in epileptic rats, except for a focus at the injection site which, in most cases, showed increases in Fos-like immunoreactivity. Some epileptic rats showed increased Zif268 immunoreactivity in neurons of the ipsilateral ventral lateral and central lateral thalamic nuclei and increased Zif268 and Fos-like immunoreactivity in the pontine nuclei. Rats perfused before onset of seizures, showed no overt changes other than a slight decrease in Zif268 and Fos-like immunoreactivity at the injection site. The reciprocal changes in Zif268 immunoreactive neurons in the epileptic focus and the immediate surround parallel changes in gene expression for a number of molecules important in epileptogenesis and suggest a state of functional disconnection of the epileptic focus from other cortical areas that may contribute to the development and maintenance of focal epilepsy.  相似文献   

11.
Expression of the cellular immediate-early gene,zif268, was investigated using immunocytochemical methods in cervical spinal cord of neonatal and adult rats. The postnatal expression ofzif268 follows a specific temporal and spatial sequence in the spinal dorsal horn. Neurons immunoreactive for Zif268 protein were not present in cervical spinal cord before postnatal day (P) 6. At P6 they were occasionally observed in Rexed's lamina I. By P11, a few additional, faintly labeled, Zif268-positive neurons appeared in lamina III. Around P16, however, many immunoreactive neurons were found in laminae I–III and a few in laminae IV–VIl. The number of Zif268-immunoreactive neurons decreased markedly by P21 and was further reduced by P26 to become virtually absent in adult rats. In adults, surgical exposure of peripheral nerves alone enhanced Zif268 expression, but this effect largely disappeared in less than 6 h. Electrical stimulation of the nerves with high-frequency long trains, typical of those known to elicit long-term neural plasticity, induced a marked increase in Zif268 expression in the dorsal horn. Stimulation with single pulses had a much weaker effect. Zif268 may thus play a role in stimulus-induced, long-term neural plasticity in the spinal cord.  相似文献   

12.
13.
The peptide neurotransmitter vasoactive intestinal peptide (VIP) has neurotrophic properties and influences neurobehavioral development. To assess the role of VIP during neural ontogeny, the present work traces the development of VIP mRNA with in situ hybridization and VIP receptors with in vitro autoradiography in rat central nervous system (CNS) from embryonic day 14 (E14) to the adult. VIP mRNA was not evident in the CNS until birth. Postnatally, it was expressed in several distinct brain regions, but its distribution bore little relation to that of VIP receptors. VIP receptors were present and expressed changing patterns of distribution throughout CNS development. The changing patterns were the result of (1) the transient appearance of GTP-insensitive VIP receptors in several regions undergoing mitosis or glial fasciculation and (2) the transient appearance of GTP-sensitive VIP receptors homogeneously distributed throughout the CNS during the first 2 postnatal weeks, the period of the brain growth spurt. At E14-16 VIP binding was dense throughout the brainstem and spinal cord, but limited in the rest of the brain. From E19 to postnatal day 14 (P14), while VIP binding was higher in germinal zones, it tended to be uniformly dense throughout the remainder of the brain. By P21 the adult pattern began to emerge; VIP binding was unevenly distributed and was related to specific cytoarchitectural sites. Since the expression of VIP in the CNS is limited to postnatal development but VIP receptors are abundant prenatally, we suggest that extraembryonic VIP may act upon prenatal VIP receptors to regulate ontogenic events in the brain. © 1994 Wiley-Liss, Inc.  相似文献   

14.
We studied the effects of serotonin and noradrenaline on the expression of arginine-vasopressin (AVP) and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN). We used transgenic Tg8 mice knockout for the MAO-A (monoamine oxidase A) gene, which are characterized by increased amounts of serotonin and noradrenaline in brain compared to wild-type mice (C3H). The MAO-A deficiency caused an increase in AVP and VIP expression (determined by immunohistochemistry, enzyme immunoassay, and in situ hybridization) compared to C3H mice. The number of peptidergic neurons was also increased. Inhibiting serotonin or noradrenaline synthesis in Tg8 mice by the administration of parachlorophenylalanine or alpha-methylparatyrosine, respectively, the amounts of AVP, VIP and their mRNAs were decreased, but not the number of peptidergic neurons. This study indicates that serotonin and noradrenaline stimulate AVP and VIP expression, and could participate in the differentiation of the neurochemical phenotype in the mouse SCN.  相似文献   

15.
This study compared patterns of Fos expression within the suprachiasmatic nucleus (SCN), the region immediately dorsal to the SCN (the lower subparaventricular zone, LSPV), and the supraoptic nucleus (SON) of grass rats (Arvicanthis niloticus) and lab rats (Rattus norvegicus). Among grass rats we also compared individuals exhibiting nocturnal and diurnal patterns of wheel running. In the SCN of both groups of grass rats, as well as laboratory rats, Fos was elevated during the light compared to the dark portions of the day, and was expressed in 7–12% of cells containing vasoactive intestinal polypeptide (VIP). Fos was higher in the LSPV during the night compared to the day in both forms of grass rats but not in laboratory rats. In the SON, Fos rose from day to night in the diurnal grass rats and in laboratory rats, but not in nocturnal grass rats. These patterns are consistent with the hypothesis that VIP cells in the SCN function similarly in nocturnal and diurnal rodents, but that the SON and the region dorsal to the SCN are associated with intra and interspecific differences in rhythmicity, respectively.  相似文献   

16.
The developing brain is known to be sensitive to uranium (U) and exposure to this element during postnatal brain development results in behavioral disorders in adulthood. Moreover, we have previously shown that U exposure during gestation and lactation affects neurogenesis, in particular neural cell proliferation and cell death. In this study, we investigated whether exposure to depleted U (DU) affects neuronal differentiation during prenatal and postnatal brain development. We assessed in situ expression of specific genes involved in neuronal differentiation and expression of neuronal protein markers. The effects of DU on neurobehavioral function were investigated in parallel. Neuronal differentiation involves many signaling pathways that regulate the balance between cell proliferation and the transition to neuronal differentiation. In the present study pregnant rats were exposed from gestational day (GD) 1 throughout lactation to postnatal day (PND) 21. Using in situ hybridization, our results show decreased expression of Wnt3a in the hippocampal neuroepithelium in GD 13 embryos from DU exposed dams and decreased expression of Notch1 and increased expression of Mash1 in the hippocampal and dentate neuroepithelia of GD 18 fetuses from DU exposed dams. Expression of the NeuroD and NeuroD2 genes was not modified in the hippocampal neuroepithelium of GD18 fetuses from DU exposed dams. There was no change in the expression of any of these genes in the dentate gyrus of PND 5 pups from DU exposed dams. No change in nestin or doublecortin immunestaining was observed in the prenatal or early postnatal stages. However, the number of doublecortin-positive cells increased in the granular cell layer of PND 21 pups from DU exposed dams. Finally, depressive-like behavior was induced in PND21 rats, without modification of locomotor and exploratory activities or of spatial memory. In conclusion, these results showed that exposure of pregnant and lactating rats to DU affects brain development by causing disturbed cell proliferation and neuronal differentiation at the prenatal stage. Moreover, this exposure increased the pool of immature neurons in the dentate gyrus and induced depressive-like behavior in neonatal rats. Therefore, these data strongly suggest that exposure to DU during gestation and lactation affects brain development in embryos, fetuses and neonates with behavioral consequences in the offspring.  相似文献   

17.
The initial appearance of tyrosine hydroxylase (TH)-, serotonin (5-HT)-, gamma-aminobutyric acid (GABA)-, calcitonin gene-related peptide- (CGRP), substance P-, and synaptophysin-immunoreactivity in the rat pituitary gland, and in the related brain regions was investigated. Several groups of TH-immunoreactive neurons were first detected in the brain stem on day E17, and in the hypothalamus on day E18, followed by TH-immunoreactivity in the median eminence and infundibulum on E19–E20. TH-positive fibers appeared in the posterior lobe on day E20 and in the intermediate lobe on day P0. 5-HT-immunoreactivity was first detected on day E17 in neurons and nerve fibers in the brain stem and in the median eminence, respectively. On day E18, a few 5-HT-immunoreactive fibers were detected in the posterior lobe of the pituitary, although they were consistently seen in the infundibulum from day E19. In newborn rats, some 5-HT-immunoreactive fibers, but no neurons, were seen in the hypothalamus. GABA immunoreactivity appeared on day E17 in several nerve fibers of the infundibulum and the posterior lobe. Some neurons in the cortex and ventral hypothalamus transiently expressed GABA immunoreactivity on day E17. In newborn rats, a plexus of GABA-immunoreactive fibers was detected for the first time in the intermediate lobe. No CGRP-immunoreactive fibers could be detected in the prenatal pituitary. On day P10, CGRP-immunoreactive fibers were first observed in the anterior lobe. Later their number considerably increased, while only sporadic fibers could be found in the intermediate or posterior lobes. No substance P-immunoreactivity could be detected in any of the lobes in the embryonic or developing postnatal rat pituitary, instead the adult anterior lobe occasionally showed some substance P-immunoreactive fibers. Synaptophysin-immunoreactivity was first detected in the posterior lobe on day E20, followed shortly by its expression in the intermediate lobe in newborn rats. The time course of GABA and 5-HT expression revealed in the present study suggests that these transmitters, which are initially expressed in the developing pituitary clearly before synaptic maturation, may act as trophic molecules during the prenatal period.  相似文献   

18.
Aging leads to many changes in the expression of circadian rhythms, including reduced amplitude, altered relationship to the environmental illumination cycle, and reduced sensitivity to phase resetting signals. Neuropeptide synthesizing neurons in the suprachiasmatic nucleus (SCN), the principal circadian pacemaker in mammals, play a role in regulating pacemaker function and in coupling the pacemaker to overt circadian rhythms. Aging may alter the activity of neuropeptide neurons in the SCN, which could be reflected in changes in mRNA expression. Therefore, this study investigated whether aging alters the level or rhythm of expression of neuropeptide mRNAs in the SCN of male Syrian hamsters, a well established model for the study of age-related changes in circadian rhythms. Three age groups of hamsters (young [3--5 months old], middle-aged [12--15 months old] and old [19--22 months old] were sacrificed at five times of day. Their brains were dissected and sections through the suprachiasmatic nucleus were prepared and used for in situ hybridization for mRNAs for vasoactive intestinal peptide (VIP), arginine vasopressin (AVP) and somatostatin (SS). Aging selectively decreased the SCN expression of VIP mRNA without affecting AVP mRNA or SS mRNA. Also, only AVP mRNA expression exhibited a robust 24-h rhythm, in contrast to previous findings in other species that VIP mRNA and SS mRNA, as well as AVP mRNA, exhibit 24-h rhythms in the SCN. The present findings suggest that age-related reductions in VIP mRNA expression may contribute to the alterations in entrainment and attenuated sensitivity to phase resetting signals that are characteristic of aging. Furthermore, the results demonstrate that neuropeptide gene expression in the SCN is differentially regulated by aging and varies among species.  相似文献   

19.
The number of neurons in the ventrobasal thalamus (VB) in the adolescent rat is unaffected by prenatal exposure to ethanol. This is in sharp contrast to other parts of the trigeminal-somatosensory system, which exhibit 30–35% fewer neurons after prenatal ethanol exposure. The present study tested the hypothesis that prenatal ethanol exposure affects dynamic changes in the numbers of VB neurons; such changes reflect the sum of cell proliferation and death. Neuronal number in the VB was determined during the first postnatal month in the offspring of pregnant Long–Evans rats fed an ethanol-containing diet or pair-fed an isocaloric non-alcoholic liquid diet. Offspring were examined between postnatal day (P) 1 and P30. The size of the VB and neuronal number were determined stereologically. Prenatal exposure to ethanol did not significantly alter neuronal number on any individual day, nor was the prenatal generation of VB neurons affected. Interestingly, prenatal ethanol exposure did affect the pattern of the change in neuronal number over time; total neuronal number was stable in the ethanol-treated pups after P12, but it continued to rise in the controls until P21. In addition, the rate of cell proliferation during the postnatal period was greater in ethanol-treated animals. Thus, the rate of neuronal acquisition is altered by ethanol, and by deduction, there appears to be less ethanol-induced neuronal loss in the VB. A contributor to these changes is a latent effect of ethanol on postnatal neurogenesis in the VB and the apparent survival of new neurons.  相似文献   

20.
The variation in the levels of the monoamine and amino acid neurotransmitters was studied during the period of neurogenesis in male mouse hypothalamus, from embryonic day 15 until the age of young adult. The results shown in this study demonstrate that the monoamines appear early in the fetal brain and that the maximum expression of the catecholaminergic system, particularly that of dopamine, occurs during the late neonatal period or mouse infancy, when the role played by the catecholamines on the maturation of the neurosecretory systems is more significant. In relation to the amino acid neurotransmitters, glutamate and taurine seem to be the principal transmitters of the hypothalamus since their concentrations were about five–tenfold higher than the levels of glycine and GABA. Both amino acids had the same pattern of variation during development, showing elevated values during the prenatal, late neonatal and early pubertal period. Increased concentrations of the inhibitory neurotransmitter GABA were observed on the day before birth, at the end of the neonatal period and throughout the prepubertal period, suggesting that the influence of GABA on hypothalamic neurogenesis increases by the time when the hypothalamic nuclei have reached maturity and the local circuits have been established. To determine the intrinsic neurotransmitter production, primary hypothalamic histotypic cultures prepared from mice at postnatal days 8–10 were analyzed for their content of neurotransmitters. The in vitro analysis revealed that the hypothalamic neurons intrinsically produce dopamine, glutamate, taurine and glycine in homologable amounts with those of young adult animals. The comparative analysis also showed that about 50% of the GABA content and less than 5% of the hypothalamic epinephrine level are locally produced, while serotonin comes mainly from extrinsically located neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号