首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurodegenerative pathology is typical of the transmissible spongiform encephalopathies (TSEs), and is thought to underlie clinical disease. Some morphometric studies have shown early focal neurone loss, but the full extent of TSE induced neuronal loss in the central nervous system is not known, and can only be accurately estimated using intensive morphometric techniques. We have used a murine scrapie model in which we determined the levels of N-acetyl aspartate (NAA), a putative neuronal marker, by both high-performance liquid chromatography and high resolution, proton magnetic resonance spectroscopy in samples taken sequentially from the hippocampus. This scrapie model develops severe neuronal loss in the hippocampus, and the NAA levels showed a significant positive correlation with our previous morphometric estimates of neurone number. NAA measurement may therefore provide a practical alternative to intensive morphometric techniques in the investigation of neurodegeneration in the TSEs.  相似文献   

2.
Numbers of neurones, synapses and axon terminals were quantified in a murine scrapie model with severe hippocampal pyramidal cell loss, in which definite clinical scrapie is evident from 226 days post-infection (dpi) and death occurs around 250 dpi. Disease-specific PrP accumulations were first seen at 70 dpi (28% of the incubation period (IP)) in thalamus and as sparse foci within the stratum pyramidale of CA1. By 98 dpi (39% IP), PrP was seen in the stratum radiatum and was found at later stages throughout all levels of the hippocampus. At the ultrastructural level in the stratum radiatum of CA1, a decrease in the numbers of simple synapses from 84 dpi (34% IP) and in perforated synapses from 98 dpi (42% IP) was found using an unbiased stereological method, the disector analysis. Degeneration of axon terminals was found from 98 dpi (39% IP) onwards. Neuronal loss was detected in CA1 from 180 dpi (72% IP). The results suggest that the fundamental lesion in the hippocampus of ME7-infected mice is associated with PrP release from CA1 pyramidal neurones, which perturbs synaptic function and leads to degeneration of preterminal axons, and that subsequent pathological changes including neurone loss are sequelae to this initial insult.  相似文献   

3.
Summary Retinal damages in mice infected with serapie are reported. The effects ranged from no histopathological changes, through partial loss of the outer nuclear layer (ONL) to the most severe changes with complete loss of ONL cells and photoreceptors. For the most part, cells of the inner nuclear and ganglion layers were spared. These changes were found in 23% of C57BL/6J mice injected with the ME7 strain of scrapie and in 28.5% of VM mice injected with the 87V strain, while no changes were found in 13 IM mice injected with the 87V strain of scrapie. The possible relation of these changes to scrapie infection and to light induced retinopathy is discussed.  相似文献   

4.
Chung YH  Shin C  Kim MJ  Lee B  Park KH  Cha CI 《Brain research》2000,885(1):137-141
A role for p53-mediated modulation of neuronal viability has been suggested by the finding that p53 expression is increased in damaged neurons in models of ischemia and epilepsy. P53 gene upregulation precedes apoptosis in many cell types, and a potential role for this molecule in apoptosis of neurons has already been demonstrated in Alzheimer's disease. Recent studies suggest that p53-associated apoptosis may be a common mechanism of cell loss in several important neurodegenerative diseases. In the present study, we examined changes in p53-immunoreactive (IR) neurons in the brains of aged rats for the first time employing immunocytochemical and in situ hybridization methods. P53-IR neurons were found in the CA1 region of hippocampus, septal region and cerebellum in the aged rats, but there was no p53-IR cell in the brains of adult rats. In the hippocampus of the aged rat, p53-IR cells predominated in the stratum oriens and pyramidal layers, while the molecular layer contained relatively few p53-IR cells. The most prominent population of immunoreactive labeling in cerebellar cortex was localised within the cell bodies of Purkinje cells and dendrites in molecular layers. Upregulation of p53 in the Purkinje cells observed in this study suggests that significant loss of Purkinje cells with aging may be regulated with several apoptosis-controlling factors including p53 and oxidative stress mechanism. Further investigations are required to establish whether direct functional relations exist between p53 and the apoptotic neuronal death in normal aging or Alzheimer brains.  相似文献   

5.
Mouse-adapted scrapie strains have been characterized by vacuolation profiles and incubation times, but the behavioral consequences have not been well studied. Here, we compared behavioral impairments produced by ME7, 79A, 22L, and 22A strains in C57BL/6J mice. We show that early impairments on burrowing, glucose consumption, nesting and open field activity, and late stage motor impairments show a very similar temporal sequence in ME7, 79A, and 22L. The long incubation time of the 22A strain produces much later impairments. However, the strains show clear late stage neuropathological differences. All strains showed clear microglial activation and synaptic loss in the hippocampus, but only ME7 and 79A showed significant CA1 neuronal death. Conversely, 22L and 22A showed significant cerebellar Purkinje neuron loss. All strains showed marked thalamic neuronal loss. These behavioral similarities coupled with clear pathological differences could serve to identify key circuits whose early dysfunction underlies the neurological effects of different prion strains.  相似文献   

6.
Previous epidemiological evidence suggested that in some instances a vector and/or reservoir is involved in the occurrence and spread of transmissible spongiform encephalopathies (TSEs). In a preliminary study, hay mite preparations from five Icelandic farms with a history of scrapie were injected into mice, and some of these mice became sick after long incubation periods. To confirm that the disease was scrapie, subsequent passages in mice were performed. In addition, the characteristics of the disease process in these passages were assessed and the results compared to those findings with standard scrapie strains. As expected for scrapie, subsequent passages in the same host led to shortened incubation periods compared to those in primary isolate mice, and all mice had spongiform changes in brain. Results were similar for three of four isolates with regard to clinical manifestations, the incubation periods in mice of the three scrapie incubation-period genotypes (s7s7, s7p7, p7p7), and the PrPSc Western blot (WB) pattern. The characteristics of the fourth isolate were markedly different from the other three isolates with regard to these parameters. Comparison of the characteristics of standard mouse-adapted scrapie strains and the four isolates revealed differences; these differences were particularly pronounced for the fourth isolate.  相似文献   

7.
Summary Inclusion bodies consisting of vesicles of about 25 nm diameter and occurring in the synaptic terminals of scrapie-infected animals have been described by a number of people. In the present study these inclusion bodies were looked for in the neocortex, hippocampus and corpus callosum in a variety of strains of mice (C3H, LM, RIII, IM, VL) infected with different strains of scrapie agent (22C, 79A, ME7, 87V) after intracerebral inoculation. In plaque-bearing models of scrapie, terminals containing synaptic inclusion bodies were frequently found surrounding the amyloid plaque cores in the neocortex but not in the corpus callosum. In non-plaque-bearing models, terminals containing synaptic inclusion bodies were found in the neuropil of the neocortex and hippocampus. For all models, these bodies were either presynaptic or postsynaptic but were not, as a rule, found on both sides of the same synapse. Fibrillary material was frequently seen in the postsynaptic terminals containing the inclusion bodies in both the plaque- and non-plaque-bearing models. On one occasion fibrillary material was seen, together with the inclusion bodies, in a neuron cell body. Inclusion bodies were also seen in the neocortex of hamsters infected with the 263K strain of scrapie agent and a Cheviot sheep infected with the ME7 strain of agent. The inclusion bodies and the fibrillary material were thought to be derived from the breakdown of neurotubules.  相似文献   

8.
The major neuropathological features of the transmissible spongiform encephalopathies (TSEs) are well documented, however, the underlying molecular events are poorly defined. We have applied cDNA expression arrays and quantitative RT-PCR to the study of gene expression in the brain, and more specifically in the hippocampus, of the well-characterized ME7/CV mouse model of scrapie. The number of genes showing consistent, scrapie-associated changes in expression was limited, and was primarily restricted to glial-associated genes. Increased expression of genes encoding glial fibrillary acidic protein, vimentin, complement component 1q (alpha and beta polypeptides), cathepsin D, clusterin and cystatin C was evident in the hippocampus from 170 days after inoculation (dpi), with expression increasing thereafter to terminal disease (225-235 dpi). Elevation of gene expression preceded clinical disease by approximately 30 days, and coincided with a 20-day period in the ME7/CV model during which 50% of the CA1 hippocampal neurones are lost. Increased expression of cystatin C, an inhibitor of lysosomal cysteine proteases, is a novel finding in the context of TSE neuropathology and was confirmed by Western analysis and immunocytochemistry.  相似文献   

9.
The neuropathological hallmarks of end-stage prion disease are vacuolation, neuronal loss, astrocytosis and deposition of PrPSc amyloid. We have also shown that there is an inflammatory response in the brains of scrapie-affected mice from 8 weeks post-injection. In this study we have investigated the acute CNS response to the intracerebral injection of scrapie-affected brain homogenate. The ME7 strain of scrapie (Neuropathogenesis Unit, Edinburgh) was used, and control mice were injected with brain homogenate derived from normal C57BL/6 J mice. One microlitre of 10% w/v ME7 (n = 33) and normal brain homogenate (n = 28) was injected stereotaxically into the right dorsal hippocampus. Cryostat sections of brains taken at 1, 2, 5, 7, 14 and 28 days post-injection were examined histologically for neuronal loss, and immunocytochemically to study the inflammatory response. This study shows that ME7 is not acutely neurotoxic in vivo. There is also no difference (ANOVA) in the inflammatory response, which peaked between 2 and 5 days and resolved by 4 weeks after intracerebral injection of either ME7 or normal brain homogenate. The well circumscribed inflammatory response seen previously at 8 weeks is therefore a consequence of a disease process rather than a surgical artefact. This disease process may be related to a localized accumulation of PrPSc sufficient to stimulate an inflammatory response which in turn may contribute to neuronal loss. The role of the inflammatory response in chronic neurodegeneration can be usefully studied using this mouse model of prion disease, and this will undoubtedly shed light on the pathogenic mechanisms underlying other chronic neurodegenerative diseases.  相似文献   

10.
Prion protein (PrP) is a cell surface, host coded, sialoglycoprotein which accumulates in excess in scrapie, Creutzfeldt‐Jakob disease, bovine spongiform encephalopathy and other transmissible spongiform encephalopathies. Infection of mice with the 87 V or ME7 scrapie strains results in distinctive and very different light microscopical patterns of vacuolation and disease specific PrP accumulation. In both of these scrapie strains immunogold electron microscopy was used to locate PrP to the plasmalemma of neurons from where it was released into the neuropil. Initial PrP accumulation around neurons and in early plaques lacking amyloid fibrils was generally not associated with morphological changes either of the neuron or dendrite releasing the PrP or in the adjacent neuropil in which excess PrP accumulated. However, accumulation of pre‐amyloid PrP in some brain areas was associated with specific degeneration of dendritic spines and axon terminals. Initial PrP aggregation into fibrils was also associated with tissue damage with both ME7 and 87 V plaques and diffuse accumulations. Tissue damage associated with fibrillogenesis was localized and would not be expected to have clinical significance. We conclude that pre‐amyloid PrP release and accumulation is not invariably toxic, either to the neuron releasing PrP or to the neuropil into which it is released. However, axon terminal degeneration and dendritic spine loss in some neuroanatomical areas may be indicative of specific PrP toxicity and may be the main cause of neurological dysfunction in murine scrapie.  相似文献   

11.
Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been implicated in pathological changes in inflammatory and apoptotic processes in various cell types including neurons. Here we report the delayed induction of p38 MAPKs in the brain of mice following kainic acid (KA)-induced seizure. The immunoreactivities of p38alpha and p38beta MAPKs were markedly increased in the brain 4 days after KA administration, especially in the areas undergoing selective neuronal loss. In particular, p38beta was dramatically increased in reactive astrocytes of CA3 and CA1 regions of hippocampus with its enriched localization in the nucleus of astrocytes. The induction of p38beta was sustained for more than 10 days after KA-treatment. Pre-administration of the selective neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI), which suppressed the delayed neuronal death as well as astrogliosis in hippocampus of seizure-experienced animals, dramatically repressed the delayed induction of p38beta MAPK in astrocytes. The repression was reversed by the co-injection with L-arginine (L-arg), a substrate for NOS, which coincided with the aggravation of neuronal death. Together, these data suggested a role of p38 MAPK signal pathway in delayed neuronal death and/or in reactive gliosis in mice with KA-induced seizure.  相似文献   

12.
Scrapie infectivity and degenerative vacuolation was initially localized within the contralateral superior colliculus following intraocular injection. The time course of these events was prolonged. With the ME7 strain of scrapie in Sincs7 genotype mice, infectivity began to rise in the superior colliculus from about 70 days, followed by the earliest asymmetrical lesions there from 120 days, with death occurring at about 250 days, at which time vacuolar degeneration was widespread in the brain. With other mouse Sinc genotype mouse/agent strain combinations the process was even further prolonged. With 87V scrapie strain in Sincp7 genotype mice the first lesions to appear were in the contralateral tectum at 300 days. It is concluded that scrapie agent can spread within ganglion cell axons.  相似文献   

13.
Summary Numbers of dystrophic neurites, seen with the electron microscope, in CA1 of the hippocampus of either C3H mice infected with 22C or 79A strains of scrapie, or LM mice infected with strain ME7 were greater than in age-matched control mice. Vacuolation, seen by light microscopy in CA1 of the hippocampus of mice infected with either 22C or 79A, preceded the increase in dystrophic neurites by up to about 20 days. In mice infected with ME7, however, the vacuolation followed the increase in dystrophic neurites by some 20 to 40 days. In view of the differences in the times at which dystrophic neurites and vacuolation were seen, no causative relationship between the two lesions appeared to exist.  相似文献   

14.
The present study investigated the relationship among PrP deposition, microglial activation, vacuolation, and neuronal death in the hippocampus of the 301V/VM murine scrapie model (mean incubation period 117 ± 1 days). PrP deposition was first detected after 30 days and microglial activation after 60 days. Vacuolation in the CA1 and CA2 pyramidal layer was present from 90 days onward. Only occasionalin situend labeling (ISEL)-positive neurons were present in the hippocampus of scrapie-infected mice from 75 days postinoculation (d.p.i.), except at 105 d.p.i. when relatively large numbers of apoptotic, ISEL-positive neurons in the CA1 hippocampal region were observed. Terminally ill animals showed almost complete loss of CA1 pyramidal neurons. Electron microscopy of the CA1 region at 105 days confirmed that these neurons were dying by apoptosis. These data suggest that microglial activation in scrapie is a response to abnormal PrP deposition rather than a response to neuronal cell loss.  相似文献   

15.
Scrapie is a transmissible spongiform encephalopathy, or "prion disease." We investigated the effects of intracerebral Sc237 scrapie inoculation in hamsters on the physiology and morphology of principal cells from neocortical and hippocampal slices. Scrapie inoculation resulted in increased branching of basal dendrites of hippocampal CA1 pyramidal cells (Sholl analysis), reduced amplitudes of medium and late afterhyperpolarizations (AHPs) in CA1 pyramidal cells and layer V neocortical cells, loss of frequency potentiation of depolarizing afterpotentials (DAPs), and double action potentials in synaptically evoked CA1 pyramidal cell responses. Postsynaptic double action potentials could also be evoked in normal hamster CA1 pyramidal cells by acute pharmacological block of AHPs, suggesting that the depressed AHPs in scrapie-infected hamsters caused the action potential doublets. Both the AHP and the DAP potentiations depend on increased intracellular calcium, which suggests that the underlying deficit, in hamsters infected with Sc237 scrapie, may lie in calcium entry and/or homeostasis. Fast IPSPs, passive membrane properties, and density of dendritic spines remained unchanged. These last two results differ markedly from recent studies on mice infected with ME7 scrapie, indicating diversity of pathophysiology in this group of diseases, perhaps associated with the progressive and substantial neuronal loss found in the ME7, and not the Sc237, model.  相似文献   

16.
The sequence of events involved in the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs) is not yet known. Using a murine scrapie model in which neurodegeneration in the hippocampus is restricted to CA2, we show that pyramidal neuron damage and death by an apoptotic mechanism occur early in the incubation period, prior to the appearance of CA2 disease-specific accumulation of PrP and the onset of clinical disease. We suggest that the initial hippocampal pathological event in this model is dendritic dysfunction and activation of an apoptotic pathway rather than PrP accumulation.  相似文献   

17.
Abnormal synaptic protein expression and cell death in murine scrapie   总被引:6,自引:0,他引:6  
Reduced expression of synaptophysin p38, synaptic-associated protein of molecular weight 25,000 (SNAP-25), syntaxin-1, synapsin-1, and alpha- and beta-synuclein, matching the distribution of spongiform degeneration, was found in the neurological phase of scrapie-infected mice. In addition, synaptophysin and SNAP-25 were accumulated in isolated neurons, mainly in the thalamus, midbrain and pons, and granular deposits of alpha- and beta-synuclein were present in the neuropil of the same areas. No modifications in the steady state levels of Bcl-2, Bax, Fas and Fas ligand were observed following infection. Yet antibodies against the c-Jun N-terminal peptide, which cross-react with products emerging after caspase-mediate proteolysis, recognize coarse granular deposits in the cytoplasm of reactive microglia. In situ end-labeling of nuclear DNA fragmentation showed positive nuclei with extreme chromatin condensation in the thalamus, pons, hippocampus and, in particular, the granular layer of the cerebellum. More importantly, expression of cleaved caspase-3, a major executioner of apoptosis, was seen in a few cells in the same regions, thus indicating that cell death by apoptosis in scrapie-infected mice is associated with caspase-3 activation. The present findings support the concept that synaptic pathology is a major substrate of neurological impairment and that caspase-3 activation may play a pivotal role in apoptosis in experimental scrapie. However, there is no correlation between decreased synaptic protein expression and caspase-3-associated apoptosis, which suggests that in addition to abnormal prion protein deposition, there may be other factors that distinctively influence synaptic vulnerability and cell death in murine scrapie.  相似文献   

18.
19.
Transmissible spongiform encephalopathies (TSEs) are slowly progressive and fatal neurodegenerative diseases affecting man and animals. They are caused by pathological isoforms (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)). There are two crucial factors for the initiation of infection, namely host cells PrP(C) expression and sufficient sequence homology between the PrP(Sc) to which the animal is exposed and its own PrP(C). In acquired TSEs, the gastrointestinal tract (GIT) is the main prion entry site. Hence, it is of paramount importance to an understanding of the early pathogenesis of prion infections, to characterize the GIT cell types constitutively expressing PrP(C). Twenty-three mice were utilized, including wild-type (WT), Prnp knock-out (KO), and PrP(C)-overexpressing (tga20/tga20) animals, of 20-30 g in weight and of either sex. In all three groups of mice, PrP(C)-immunoreactivity (IR), along with glial fibrillary acidic protein (GFAP)-IR and synaptophysin (Syn)-IR were investigated by means of indirect immunofluorescence in wholemount preparations from several gut regions, from duodenum to rectum. In WT mice, PrP(C)-IR and GFAP-IR co-localization was observed in enteric glial cells (EGCs) from all intestinal segments. PrP(C)-overexpressing mice showed a stronger PrP(C)-IR in EGCs, whereas the same cells exhibited no PrP(C)-IR in Prnp-KO mice. Our findings clearly indicate that EGCs of the mouse intestine constitutively express PrP(C); thus they could be a potential target for infectious prions.  相似文献   

20.
The role for phosphorylated p38 mitogen-activated protein kinase [p-p38(MAPK)] in β-amyloid plaque deposition [a hallmark of Alzheimer's disease (AD) pathology] remains ambiguous. We combined immunohistochemistry and stereological sampling to quantify the distribution of plaques and p-p38(MAPK)-immunoreactive (IR) cells in the sensorimotor cortex of 3-, 6- and 10-month-old TgCRND8 mice. The aggressive nature of the AD-related human amyloid-β protein precursor expressed in these mice was confirmed by the appearance of both dense-core (thioflavin-S-positive) and diffuse plaques, even in the youngest mice. p-p38(MAPK)-IR cells of the sensorimotor cortex were predominantly co-immunoreactive for the Macrophage-1 (CD11b/CD18) microglial marker. These p-p38(MAPK)-IR microglia were associated with both dense-core and diffuse plaques, but the expected age-dependent increase in the density of plaque-associated p-p38(MAPK)-IR microglia was restricted to dense-core plaques. Furthermore, the density of dense-core plaque-associated p-p38(MAPK)-IR microglia was inversely correlated with the size of the core within the given plaque, which supports a role for these microglia in restricting core growth. p-p38(MAPK)-IR microglia were also observed throughout wildtype and TgCRND8 mouse cortical parenchyma, but the density of these non-plaque-associated microglia remained constant, regardless of age or genotype. We conclude that the constitutive presence of p-p38(MAPK)-IR microglia in aging mouse brain is indicative of a longitudinal role for this kinase in normal brain physiology. We suggest that this fact, as well as the fact that a pool of p-p38(MAPK)-IR microglia appears to restrict β-amyloid plaque core development, needs to be duly considered when ascribing functions for p38(MAPK) signalling in the AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号