首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
To prevent drastic climate change due to global warming, it is necessary to transition to a carbon-neutral society by reducing greenhouse gas emissions in all industrial sectors. This study aims to prepare measures to reduce the greenhouse gas in the cement industry, which is a large source of greenhouse gas emissions. The research uses supercritical CO2 carbonation to develop a carbon utilization fixation technology that uses concrete slurry water generated via concrete production as a new CO2 fixation source. Experiments were conducted using this concrete slurry water and supernatant water under different conditions of temperature (40 and 80 °C), pressure (100 and 150 bar), and reaction time (10 and 30 min). The results showed that reaction for 10 min was sufficient for complete carbonation at a sludge solids content of 5%. However, reaction products of supernatant water could not be identified due to the presence of Ca(HCO3)2 as an aqueous solution, warranting further research.  相似文献   

2.
Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment.  相似文献   

3.
S235JR steel is used in many applications, but its resistance to the erosion processes has been poorly studied. To investigate this resistance, cavitation, and slurry erosion tests were conducted. These tests were carried out at different erosion intensities, i.e., different flow rates in the cavitation tunnel with a system of barricades and different rotational speeds in the slurry pot. The steel was tested as-received and after thermal treatment at 930 °C, which lowered the hardness of the steel. To better understand the degradation processes, in addition to mass loss measurements, surface roughness and hardness were measured. Along with increasing erosion intensity, the mass loss increased as well. However, the nature of the increase in mass loss, as well as the effect of steel hardness on this mass loss, was different for each of the erosion processes. In the cavitation erosion tests, the mass loss increased linearly with the increase in flow velocity, while in the slurry tests this relationship was polynomial, indicating a strong increase in mass losses with an increase in rotational speed. Cavitation erosion resulted in stronger and deeper strain hardening than slurry. Surface damage from cavitation erosion tests was mainly deep pits, voids, and cracks during the slurry tests, while flaking was the most significant damage.  相似文献   

4.
The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.  相似文献   

5.
The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.  相似文献   

6.
In this paper, properties of concretes incorporating recycling waste and corrosion susceptibility of reinforcing steel bars were studied. It was established that fineness of ground granulated blast furnace slag (GGBFS) and fly ash (FA) and their simultaneous combination have an influence on the kinetics of strength development of Portland cements and concretes. The compressive strength of concrete containing 10% by mass of GGBFS and 10% by mass of FA even exceeds the compressive strength of control concrete by 6.5% and concrete containing 20% by mass of GGBFS by 8.8% after 56 days of hardening. The formation of the extra amount of ettringite, calcium hydrosilicates as well as hydroaluminosilicates causes tightening of a cement matrix of concrete, reducing its water absorption, and improving its resistance to freezing and thawing damage.  相似文献   

7.
This article analyzes the integrated effect of industrial by-products (spent fluidized bed catalytic cracking catalyst waste (FCCCw) and paper sludge waste (PSw) generated in paper manufacturing) combined with nano-SiO2 (NS) on the properties of cement binder, when a certain part of the binder is replaced with the said by-products in the cement mix. Standard testing methods were used to analyze the physical and mechanical properties of cement-based materials. For structure analysis, we used X-ray diffraction (XRD), derivative thermogravimetry (DTG), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). It was found that the replacement of cement by a combined additive of FCCCw, PSw and NS is important not only for ecological reasons (abatement of CO2 emissions and recovery of waste through secondary raw materials), but also in order to enhance the properties of cement-based binders. Presumably, higher amounts of calcium silicate hydrate (CSH) and calcium alumina silicate hydrate (CASH) in the compound binder are the result of the low content of portlandite and alite in the test specimens. The specimens modified with all three additives had the highest density (~2100 kg/m3), ultrasonic pulse velocity (UPV) (~4160 m/s) and compressive strength (~105 MPa), which was ~40% higher than in the control specimens. The average pore diameter of the complex binder decreased by 21%, whereas the median pore diameter decreased by 47%.  相似文献   

8.
The article presents the results of detailed studies of the thermal conductivity of the water slurry of microencapsulated PCM (mPCM) and slurry based on water–propylene glycol solutions. The starting product, MICRONAL® 5428 X, which contains about 43% microencapsulated paraffin with a transformation temperature of 28 °C, was mixed with the base liquid to obtain slurries with mass fractions of mPCM of 4.3, 8.6, 12.9, 17.2, 21.5, 25.8, 30.1, 34.4, 38.7, and 43.0%. Detailed measurements were carried out in the temperature range of 10–40 °C. It was found that: (a) an increase in the temperature of the slurry caused an increase in its thermal conductivity, both when PCM was in the form of a solid and a liquid; (b) the thermal conductivity of the mPCM slurry when the PCM was in liquid form was greater than the thermal conductivity of the slurry when the PCM was liquid; (c) during the phase transformation, a significant increase in the thermal conductivity of the slurry was observed, and its peak occurred when the temperature of the slurry reached the temperature declared by the manufacturer at which the phase-transition peak occurs.  相似文献   

9.
By recycling used glass containers, we are able to recover and reuse their valuable properties, which is a way to preserve the relevant natural resources and lessen environmental burdens. For example, recycled waste glass (in the form of powder) can be used in the production of concrete. This article analyses the effect of waste glass addition on the properties of C12/15, which is used, for example, as concrete bedding material to support road drainage gutters and kerbs. Ground waste glass was used as a filler in the mix, i.e., without decreasing the amount of cement. Brown glass collected as municipal solid waste was used in this research. The research comprised an experiment prepared on the basis of the central composite design. The independent variables included water/cement ratio and the amount of glass powder, expressed as the glass to cement ratio by weight. The adopted research program mainly included the definition of the concrete compressive strength, water absorption and freeze–thaw resistance after 25 and 100 cycles of freezing and thawing. For selected systems, the characteristics of air voids in hardened concrete were also defined. The beneficial effect of ground waste glass added as a filler to the concrete mixture on the strength and durability of concrete was confirmed by the obtained test results.  相似文献   

10.
Quartz sandstone (QS) is a mine waste; therefore, its use in construction allows for both reducing the cost of the concrete and contributing to the utilization of waste. The scientific originality of this study is the identification of models of the effect of QS aggregate on the physicomechanical, durability characteristics, and eco-safety of greener high-strength concrete. The study used an energy-efficient method of non-thermal effects of electromagnetic pulses on the destruction mechanisms of quartz-containing raw materials. The characteristics of quartzite sandstone aggregates, including the natural activity of radionuclides, were comprehensively studied. The features of concrete hardening, including the formation of an interfacial transition zone between the aggregate and the cement matrix, were studied, taking into account the chemical and morphological features of quartzite sandstone. In addition, the microstructural and morphological properties of concrete were determined after a 28 day curing. In this study, the behaviors of the concrete with QS aggregate were investigated, bearing in mind the provisions of geomimetics science on the affinity of structures. The results obtained showed that the QS aggregate had the activity of natural radionuclides 3–4 times lower compared to traditional aggregates. Efficient greener concrete with a 46.3 MPa compressive strength, water permeability grade W14, and freeze–thaw resistance of 300 cycles were also obtained, demonstrating that the performance of this greener concrete was comparable to that of traditional concrete with more expensive granite or gabbro diabase aggregates.  相似文献   

11.
Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.  相似文献   

12.
The management of different industrial by-products, such as recycled aggregates from construction and demolition waste and alumina by-products, as well as the reduction of landfill deposits by incorporating these products in a second life cycle, were the focus of this work. The aim of this study was to demonstrate the technical viability of using these waste and by-product as a material for road pavement base layers. For this purpose, a real-scale application was carried out, and the behavior of three types of materials, applied on a section of an experimental road under real vehicle traffic conditions, was studied and compared. Three materials were used in these sections applied in the road sub-bases. First, a control material composed of a type of artificial gravel was used to be compared with the rest of materials; the second material was composed of recycled aggregates, and the third was composed of a mix of recycled aggregates and alumina waste. The results concluded that the effectiveness of the sections built using recycled aggregates and alumina waste was very positive and similar those constructed using natural aggregates.  相似文献   

13.
High-performance self-consolidating concrete is one of the most promising developments in the construction industry. Nowadays, concrete designers and ready-mix companies are seeking optimum concrete in terms of environmental impact, cost, mechanical performance, as well as fresh-state properties. This can be achieved by considering the mentioned parameters simultaneously; typically, by integrating conventional concrete systems with different types of high-performance waste mineral admixtures (i.e., micro-silica and fly ash) and ultra-high range plasticizers. In this study, fresh-state properties (slump, flow, restricted flow), hardened-state properties (density, water absorption by immersion, compressive strength, splitting tensile strength, flexural strength, stress-strain relationship, modulus of elasticity, oven heating test, fire-resistance, and freeze-thaw cycles), and cost of high-performance self-consolidating concrete (HPSCC) prepared with waste mineral admixtures, were examined and compared with three different reference mixes, including normal strength-vibrated concrete (NSVC), high-strength self-compacted concrete (HSSCC), and high-performance highly-viscous concrete (HPVC). Then, a multi parameter analytical approach was considered to identify the optimum concrete mix in terms of cost, workability, strength, and durability.  相似文献   

14.
Iron ore tailings (IOTs) are gradually used as building materials to solve the severe ecological and environmental problems caused by their massive accumulation. However, the bulk density of IOT as aggregate is too large, which seriously affects the concrete properties. Therefore, in this paper, the effect of hydroxypropyl methylcellulose (HPMC) on the workability, mechanical properties, and durability of concrete prepared from IOT recycled aggregate was studied. The action mechanism of HPMC on the workability and the mechanical properties of the IOT concrete was analyzed by mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM). The results show that HPMC can effectively improve the segregation problem caused by the sinking and air entrainment of IOT aggregate and improve the crack resistance of concrete with little effect on its compressive strength and electric flux. These results are due to the air-entraining thickening effect of HPMC, which improves the slurry viscosity, hinders the sinking of aggregate, and improves the workability. At the same time, HPMC film, after concrete hardening, will bridge the slurry and aggregate through physical and chemical effects, hinder the propagation of microcracks, and improve the crack resistance.  相似文献   

15.
This paper concerns the recovery of construction and demolition waste as coarse recycled aggregates for concrete. Coarse recycled aggregates may be used as a partial or total replacement of natural aggregates, contributing to the circular economy and minimizing landfill disposals as well as the consumption of natural mineral resources. However, construction and demolition waste is a heterogeneous material with undefined quality and the processing of this waste into recycled aggregates needs to ensure that the recycled aggregates have suitable properties for concrete. This paper summarizes several aspects related to coarse recycled aggregates, specifically addressing: (i) the typical composition of construction and demolition waste; (ii) the influence of different types of constituents on the properties of recycled aggregates and recycled aggregate concrete; (iii) requirements for recycled aggregates to be used in concrete; and (iv) production methods of recycled aggregates. It is argued that coarse recycled aggregates are a suitable construction material with adequate quality, even when common equipment is used in their production and preliminary separation as a key operation for ensuring the quality of the aggregates is recommended.  相似文献   

16.
17.
Ceramic-based wastes generated from different industrial activities have increasingly been reused as construction material incorporated into concrete. In general, these wastes just replace common concrete aggregates such as sand and gravel. In the present work, waste from clay brick industries composted of kaolinite minerals were for the first time evaluated for their potential to be reused as the pozzolan constituent of a cement for structural concrete. Initial standard testes revealed that the clay ceramic waste (CCW) displays high pozzolanicity. Concrete was then produced with 10 and 20 wt.% of CCW mixed with ordinary Portland cement (OPC) as its pozzolan constituent. Compression strength of these concretes and of pure OPC as a control sample were determined in standard tests after 14 and 28 days of curing. In addition, the corresponding density, water absorption, capillarity and percentage of voids were measured together with the evaluation of microstructural indices by scanning electron microscopy. The initial tests confirmed that the CCW is indeed an effective pozzolanic potential due to a chemical effect by reacting with CH to generate C–S–H. Moreover, the technological results proved that CCW might effectively replace the pozzolan cement constituent for structural concrete.  相似文献   

18.
Most of the historical and old building stock in Europe are constructed from masonry, when brick, stones, or their combination are bound with traditional mortars. Rising damp, due to accompanying effects, is the main factor influencing the quality of indoor climate as well as having an important impact on the durability of masonry structures. In this study, new types of lightweight concrete with waste aggregate content as a suitable material for remediation of damp damaged masonries were designed and tested. Alternative aggregate served as silica sand substitution in the range of 0–100 vol.%. Basic structural properties, mechanical resistance, water, and water vapor transport properties were measured after 28 days of water curing and were compared with dense reference concrete and with traditional masonry materials as well. Moreover, the porous structure of produced concretes and changes caused by usage of alternative aggregate usage were evaluated with the mercury intrusion porosimetry (MIP) technique. Obtained experimental data showed the suitability of modified concretes with 25–50 vol.% of waste aggregate content to ensure acceptable strength and hydric properties, and these properties were found to be comparable with masonry structures and materials used in the past.  相似文献   

19.
This article deals with the possibility of utilization of secondary-raw materials as a natural sand replacement in concrete. Four types of waste construction materials were examined—recycled aggregate from four different sources. The natural aggregate was examined as well as used as the reference sample. All the samples were tested to evaluate the water absorption, particle size distribution, and particle density. The basic chemical reactions in the view of ecotoxicology are investigated and measured based on Czech standards. Chemical analysis, Lemna growth inhibition test, freshwater algae, daphnia acute, and mustard germination toxicity test were made and discussed in this paper. Based on the physical and geometrical properties and ecotoxicology of examined waste materials, this work evaluated them as suitable for utilization in concrete as a sand replacement.  相似文献   

20.
Alkaline electrolyzed water, a kind of clean green water with excellent characteristics such as high activity, strong alkalinity, high ion penetrating ability, electrical charge, and good molecule adsorption, was significant to the resource utilization of industrial fly ash waste. This paper studies highly active potassium-based alkaline electrolyzed water’s impact, compared with ordinary water, on the cement hydration process using microstructural methods such as a hydration heat test, differential thermal analysis, X-ray diffraction (XRD) pattern, and Scanning electron microscope (SEM) image analysis. Fly ash cement-based materials were first prepared with alkaline electrolyzed water as the mixing water. The alkaline electrolyzed water’s influence on fly ash paste workability and the mechanical properties of fly ash mortar for varying fly ash proportions were ratified. Then alkaline electrolyzed water with the best pH value was selected to prepare fly ash concrete, and its durability was studied. The test results showed that it is feasible to increase the utilization rate of fly ash by using alkaline electrolyzed water. Furthermore, it promoted the process of cement hydration, increased the rate of the hydration reaction, and the promotion effect increased with the increase in pH value of the alkaline electrolyzed water, and also promoted the effective decomposition of the vitreous shell of fly ash to stimulate its early activity. Concurrent tests with ordinary water paste showed that the water requirement for normal consistency and setting time with alkaline electrolyzed water paste were significantly less. Alkaline electrolyzed water also solved the problem related to the low early strength of fly ash mortar. Furthermore, using alkaline electrolyzed water with an optimum pH value of 11.5 to prepare fly ash concrete effectively reduced concrete’s carbonation depth and carbonation rate and lessened the chloride ion migration coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号