首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Regulatory B cells (Breg) have attracted increasing attention for their roles in maintaining peripheral tolerance. Interleukin 33 (IL-33) is a recently identified IL-1 family member, which leads a double-life with both pro- and anti-inflammatory properties. We report here that peritoneal injection of IL-33 exacerbated inflammatory bowel disease in IL-10-deficient (IL-10−/−) mice, whereas IL-33-treated IL-10-sufficient (wild type) mice were protected from the disease induction. A phenotypically unconventional subset(s) (CD19+CD25+CD1dhiIgMhiCD5-CD23-Tim-1-) of IL-10 producing Breg-like cells (BregIL-33) was identified responsible for the protection. We demonstrated further that BregIL-33 isolated from these mice could suppress immune effector cell expansion and functions and, upon adoptive transfer, effectively blocked the development of spontaneous colitis in IL-10−/− mice. Our findings indicate an essential protective role, hence therapeutic potential, of BregIL-33 against mucosal inflammatory disorders in the gut.  相似文献   

2.
Inflammatory mechanisms play a key role in the pathogenesis of type 1 and type 2 diabetes. IL6, a pleiotropic cytokine with impact on immune and non-immune cell types, has been proposed to be involved in the events causing both forms of diabetes and to play a key role in experimental insulin-dependent diabetes development. The aim of this study was to investigate how beta-cell specific overexpression of IL-6 influences diabetes development. We developed two lines of rat insulin promoter (RIP)-lymphocytic choriomeningitis virus (LCMV) mice that also co-express IL6 in their beta-cells. Expression of the viral nucleoprotein (NP), which has a predominantly intracellular localization, together with IL6 led to hyperglycemia, which was associated with a loss of GLUT-2 expression in the pancreatic beta-cells and infiltration of CD11b+ cells, but not T cells, in the pancreas. In contrast, overexpression of the LCMV glycoprotein (GP), which can localize to the surface, with IL-6 did not lead to spontaneous diabetes, but accelerated virus-induced diabetes by increasing autoantigen-specific CD8+ T cell responses and reducing the regulatory T cell fraction, leading to increased pancreatic infiltration by CD4+ and CD8+ T cells as well as CD11b+ and CD11c+ cells. The production of IL-6 in beta-cells acts prodiabetic, underscoring the potential benefit of targeting IL6 in diabetes.  相似文献   

3.
The cytokine milieu is critical for orchestration of lineage development towards effector T cell (Teff) or regulatory T cell (Treg) subsets implicated in the progression of cancer and autoimmune disease. Importantly, the fitness and survival of the Treg subset is dependent on the cytokines Interleukin-2 (IL-2) and transforming growth factor beta (TGF-β). The production of these cytokines is impaired in autoimmunity increasing the probability of Treg conversion to aggressive effector cells in a proinflammatory microenvironment. Therapy using soluble TGF-β and IL-2 administration is hindered by the cytokines' toxic pleiotropic effects and hence bioavailability to CD4+ T cell targets. Thus, there is a clear need for a strategy that rectifies the cytokine milieu in autoimmunity and inflammation leading to enhanced Treg stability, frequency and number. Here we show that inert biodegradable nanoparticles (NP) loaded with TGF-β and IL-2 and targeted to CD4+ cells can induce CD4+ Tregs in-vitro and expand their number in-vivo. The stability of induced Tregs with cytokine-loaded NP was enhanced leading to retention of their suppressive phenotype even in the presence of proinflammatory cytokines. Our results highlight the importance of a nanocarrier-based approach for stabilizing and expanding Tregs essential for cell-immunotherapy of inflammation and autoimmune disease.  相似文献   

4.
Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19+ B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108loCD4NK1.1 phenotype, whereas the IL-21 secreting subset expressed the Ly108hiCD4+NK1.1 phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production.  相似文献   

5.
Despite presence of circulating retina-specific T cells in healthy individuals, ocular immune privilege usually averts development of autoimmune uveitis. To study the breakdown of immune privilege and development of disease, we generated transgenic (Tg) mice that express a T cell receptor (TCR) specific for interphotoreceptor retinoid-binding protein (IRBP), which serves as an autoimmune target in uveitis induced by immunization. Three lines of TCR Tg mice, with different levels of expression of the transgenic R161 TCR and different proportions of IRBP-specific CD4+ T cells in their peripheral repertoire, were successfully established. Importantly, two of the lines rapidly developed spontaneous uveitis, reaching 100% incidence by 2 and 3 months of age, respectively, whereas the third appeared “poised” and only developed appreciable disease upon immune perturbation. Susceptibility roughly paralleled expression of the R161 TCR. In all three lines, peripheral CD4+ T cells displayed a naïve phenotype, but proliferated in vitro in response to IRBP and elicited uveitis upon adoptive transfer. In contrast, CD4+ T cells infiltrating uveitic eyes mostly showed an effector/memory phenotype, and included Th1, Th17 as well as T regulatory cells that appeared to have been peripherally converted from conventional CD4+ T cells rather than thymically derived. Thus, R161 mice provide a new and valuable model of spontaneous autoimmune disease that circumvents the limitations of active immunization and adjuvants, and allows to study basic mechanisms involved in maintenance and breakdown of immune homeostasis affecting immunologically privileged sites such as the eye.  相似文献   

6.
Tolerogenic dendritic cells (tDCs) have the potential to control the outcome of autoimmunity by modulating the immune response. The aim of this study was to uncover the tolerance efficacy attributed to beta-2-glycoprotein-I (β2GPI) tDCs or β2GPI domain-I (D-I) and domain-V (D-V)-tDCs in mice with antiphospholipid syndrome (APS). tDCs were pulsed with β2GPI or D-I or D-V derivatives. Our results revealed that β2GPI related tDCs phenotype includes CD80high, CD86high CD40high MHC class IIhigh. The miRNA profiling encompass miRNA 23bhigh, miRNA 142-3plow and miRNA 221low. In addition the β2GPI related tDCs showed reduced secretion of IL-1β, IL-12 and IL-23. D-I tDCs treatment was more efficient than β2GPI tDCs in inducing of tolerance in APS mice, manifested by lowered titers of anti- β2GPI antibodies (Abs) and reduced percentage of fetal loss. Tolerance induction was accompanied by poor T cell response to β2GPI, high numbers of CD4 + CD25 + FOXP3 + T-regulatory cells (Treg), reduced levels of IFNγ, IL-17 and increased expression of IL-10 and TGFβ. Tolerance was successfully transferred by Treg cells from the tolerized mice to β2GPI immunized mice. We conclude that predominantly D-I-tDCs and β2GPI tDCs have the potential to attenuate experimental APS by induction of Treg cells, reduction of anti- β2GPI Abs titers and increased expression of anti-inflammatory cytokines. We suggest that β2-GPI-D-I-tDCs may offer a novel approach for developing therapy for APS patients.  相似文献   

7.
Annexin-A1 (Anx-A1) is an endogenous anti-inflammatory molecule and while described as a repressor of innate immune responses, the role of Anx-A1 in adaptive immunity, and in particular in T helper (Th) cell responses, remains controversial. We have used a T-cell mediated mouse model of retinal autoimmune disease to unravel the role of Anx-A1 in the development of autoreactive Th cell responses and pathology. RBP1–20-immunized C57BL/6 Anx-A1−/− mice exhibit significantly enhanced retinal inflammation and pathology as a result of an uncontrolled proliferation and activation of Th17 cells. This is associated with a limited capacity to induce SOCS3, resulting in un-restricted phosphorylation of STAT3. RBP1–20-specific CD4+ cells from immunized Anx-A1−/− animals generated high levels of Th17 cells-associated cytokines. Following disease induction, daily systemic administration of human recombinant Anx-A1 (hrAnx-A1), during the afferent phase of disease, restrained autoreactive CD4+ cell proliferation, reduced expression of pro-inflammatory cytokines IL-17, IFN-γ and IL-6 and attenuated autoimmune retinal inflammatory disease. Furthermore, in man, Anx-A1 serum levels when measured in active uveitis patient sera were low and associated with the detection of IgM and IgG anti-Anx-A1 antibodies when compared to healthy individuals. This data supports Anx-A1 as an early and critical regulator of Th17 cell driven autoimmune diseases such as uveitis.  相似文献   

8.
Unlike genetic alterations, epigenetic modifications are reversible and amenable to pharmacological interventions, which make them appealing targets for clinical therapy. However, little is known about epigenetic regulation in experimental autoimmune encephalomyelitis (EAE). Here we demonstrated that methyl-CpG-binding domain protein 2 (MBD2), an epigenetic regulator, controls autoimmunity and EAE through T-bet/Hlx. Tbx21 and Hlx underwent a DNA methylation turnover upon polarizations and a unique methylation pattern was essential for TH17 development. Loss of Mbd2 resulted in a defect for reading the information encoded by this methylation turnover, which disrupted the homeostasis of T-bet/Hlx axis and suppressed TH17 differentiation. DNA demethylation induced similar effect on helper T cell differentiation. Therefore, Mbd2−/− mice were completely protected from EAE. Pathogenic splenocytes isolated from wild-type mice challenged with MOG35-55 could adoptively transfer disease to Mbd2−/− mice. In addition, Mbd2−/− mice reconstituted with unstimulated wild-type splenocytes developed EAE as wild-type mice did. These data would provide novel insights into epigenetic regulation of EAE.  相似文献   

9.
Mycoplasma bovis causes pneumonia, otitis media, and arthritis in young calves, resulting in economic losses to the cattle industry worldwide. M. bovis pathogenesis results in part from excessive immune responses. Lipid-associated membrane proteins (LAMPs) can potently induce host innate immunity. However, interactions between M. bovis-derived LAMPs and Toll-like receptors (TLRs), or signaling pathways eliciting active inflammation and NF-κB activation, are incompletely understood. Here, we found that IL-1β expression was induced in embryonic bovine lung (EBL) cells stimulated with M. bovis-derived LAMPs. Subcellular-localization analysis revealed nuclear p65 translocation following EBL cell stimulation with M. bovis-derived LAMPs. An NF-κB inhibitor reversed M. bovis-derived LAMP-induced IL-1β expression. TLR2 and myeloid differentiation primary response gene 88 (MyD88) overexpression increased LAMP-dependent IL-1β induction. TLR2-neutralizing antibodies reduced IL-1β expression during LAMP stimulation. LAMPs also inhibited IL-1β expression following overexpression of a dominant-negative MyD88 protein. These results suggested that M. bovis-derived LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88.  相似文献   

10.
The IL-12 family modulates T cell mediated autoimmune diseases and GWAS in PBC have suggested a critical role of IL-12 and its subunits in modulating portal inflammation. We have taken advantage of an aggressive model of portal inflammation and colitis in IL-2Rα−/− mice to study the specific role of IL-12 and, in particular, the immunobiology of p40−/−IL-2Rα−/− mice. Colonies of IL-2Rα+/−, IL-2Rα−/− and p40−/−IL-2Rα−/− mice were studied for the natural history of immunopathology in liver and colon using histology and immunohistochemistry. Further, to focus on mechanisms, liver, spleen and mesenteric lymph node flow cytometry was employed to identify specific phenotypes; cytokine analysis on inflammatory cell populations was compared between groups. Finally, Real-Time PCR was used to focus on the genes involved in hepatic fibrosis. Surprisingly, p40−/−IL-2Rα−/− mice manifest more severe portal inflammation and bile duct damage, including signs of portal hypertension and liver fibrosis, but a significant reduction in colitis. Indeed, p40−/−IL-2Rα−/− mice reveal a profound hepatic CD8+ T cell infiltrate, whose major component are effector memory cells as well as enhanced hepatic Th1 but reduced Th17 responses. These observations were confirmed by Real-Time PCR analysis of fibrosis-related genes in the liver. Distinct from its canonical effects, IL-12p40 plays a critical role in autoimmune cholangitis, including hepatic fibrosis. These data take on striking significance for any proposed human trials that modulate the IL-12p40 pathway in human PBC.  相似文献   

11.
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.  相似文献   

12.
13.
There remain significant obstacles in developing biologics to treat primary biliary cholangitis (PBC). Although a number of agents have been studied both in murine models and human patients, the results have been relatively disappointing. IL-22 is a member of the IL-10 family and has multiple theoretical reasons for predicting successful usage in PBC. We have taken advantage of an IL-22 expressing adeno-associated virus (AAV-IL-22) to address the potential role of IL-22 in not only protecting mice from autoimmune cholangitis, but also in treating animals with established portal inflammation. Using our established mouse model of 2-OA-OVA immunization, including α-galactosylceramide (α-GalCer) stimulation, we treated mice both before and after the onset of clinical disease with AAV-IL-22. Firstly, AAV-IL-22 treatment given prior to 2-OA-OVA and α-GalCer exposure, i.e. before the onset of disease, significantly reduces the portal inflammatory response, production of Th1 cytokines and appearance of liver fibrosis. It also reduced the liver lymphotropic chemokines CCL5, CCL19, CXCL9, and CXCL10. Secondly, and more importantly, therapeutic use of AAV-IL-22, administered after the onset of disease, achieved a greater hurdle and significantly improved portal pathology. Further the improvements in inflammation were negatively correlated with levels of CCL5 and CXCL10 and positively correlated with levels of IL-22. In conclusion, we submit that the clinical use of IL-22 has a potential role in modulating the inflammatory portal process in patients with PBC.  相似文献   

14.
To date, intraperitoneal (i.p.) injection seems to be the most effective vaccination route in aquaculture, as many i.p. administered fish vaccines are capable of conferring strong and long-lasting immune responses. Despite this, how peritoneal leukocytes are regulated upon antigen encounter has only been scarcely studied in fish. Although, in the past, myeloid cells were thought to be the main responders to peritoneal inflammation, a recent study revealed that IgM+ B cells are one of the main cell types in the teleost peritoneal cavity in response to pathogenic bacteria. Thus, in the current work, we have focused on establishing how IgM+ B cells are recruited into the peritoneum in rainbow trout (Oncorhynchus mykiss) comparing different antigens: Escherichia coli as a bacterial model, E. coli-derived lipopolysaccharide (LPS) or viral hemorrhagic septicemia virus (VHSV). In addition to studying their capacity to dominate the peritoneal cavity, we have established how these IgM+ B cells are regulated in response to the different antigens, determining their levels of IgM secretion, surface MHC II expression, cell size and phagocytic abilities. Our results reveal that IgM+ B cells are one of the main cell types amplified in the peritoneum in response to either bacterial or viral antigens and that these immunogenic stimulations provoke a differentiation of some of these cells towards plasmablasts/plasma cells whereas others seem to be implicated in antigen presentation. These findings contribute to a better understanding of the immune processes that regulate peritoneal inflammation in teleost fish.  相似文献   

15.
16.
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFβRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1+) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFβRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFβRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1+ CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1+ CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.  相似文献   

17.
《Seminars in immunology》2015,27(5):334-342
The bidirectional communication between innate immune cells and energy metabolism is now widely appreciated to regulate homeostasis as well as chronic diseases that emerge from dysregulated inflammation. Macronutrients-derived from diet or endogenous pathways that generate and divert metabolites into energetic or biosynthetic pathways – regulate the initiation, duration and cessation of the inflammatory response. The NLRP3 inflammasome is an important innate sensor of structurally diverse metabolic damage-associated molecular patterns (DAMPs) that has been implicated in a wide range of inflammatory disorders associated with caloric excess, adiposity and aging. Understanding the regulators of immune-metabolic interactions and their contribution towards chronic disease mechanisms, therefore, has the potential to reduce disease pathology, improve quality of life in elderly and promote the extension of healthspan. Just as specialized subsets of immune cells dampen inflammation through the production of negative regulatory cytokines; specific immunoregulatory metabolites can deactivate inflammasome-mediated immune activation. Here, we highlight the role of energy substrates, alternative fuels and metabolic DAMPs in the regulation of the NLRP3 inflammasome and discuss potential dietary interventions that may impact sterile inflammatory disease.  相似文献   

18.
Group B Streptococcus (GBS) capsular type III is an important agent of life-threatening invasive infections. It has been previously shown that encapsulated GBS is easily internalized by dendritic cells (DCs) and this internalization has an impact on cytokine production. The intracellular receptors or pathways underlying this response are not well understood. In this work, we investigated the role of NOD2 in the pathogenesis of GBS using a mouse model of infection. NOD2−/− mice showed similar levels of survival and bacteremia than control mice. Interestingly, ex vivo analysis of total spleen cells from infected animals showed that the absence of NOD2 results in reduced production of inflammatory cytokines. However this abridged inflammatory response does not seem to improve mouse survival. In conclusion, we demonstrated that NOD2 is not a crucial receptor to fight GBS infection and only partially contributes to the inflammatory response.  相似文献   

19.
Thymic epithelial cells (TEC) and dendritic cells (DC) play a role in T cell development by controlling the selection of the T cell receptor repertoire. DC have been described to take up antigens in the periphery and migrate into the thymus where they mediate tolerance via deletion of autoreactive T cells, or by induction of natural regulatory T cells. Migration of DC to thymus is driven by chemokine receptors. CCL2, a major ligand for the chemokine receptor CCR2, is an inflammation-associated chemokine that induces the recruitment of immune cells in tissues. CCL2 and CCR2 are implicated in promoting experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. We here show that CCL2 is constitutively expressed by endothelial cells and TEC in the thymus. Transgenic mice overexpressing CCL2 in the thymus showed an increased number of thymic plasmacytoid DC and pronounced impairment of T cell development. Consequently, CCL2 transgenic mice were resistant to EAE. These findings demonstrate that expression of CCL2 in thymus regulates DC homeostasis and controls development of autoreactive T cells, thus preventing development of autoimmune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号