首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Sudden cardiac death (SCD) is a common cause of death in young adults. In up to 80% of cases a genetic cause is suspected. Next-generation sequencing of candidate genes can reveal the cause of SCD, provide prognostic management, and facilitate pre-symptomatic testing and prevention in relatives. Here we present a proband who experienced SCD in his sleep for which molecular autopsy was performed.We performed a post-mortem genetic analysis of a 49-year-old male who died during sleep after competitive kayaking, using a Cardiomyopathy and Primary Arrhythmia next-generation sequencing panel, each containing 51 candidate genes. Autopsy was not performed.Genetic testing of the proband resulted in missense variants in KCNQ1 (c.1449C > A; p.(Asn483Lys)) and DSG2 (c.2979G > T; p.(Gln993His)), both absent from the gnomAD database. Familial segregation analysis showed de novo occurrence of the DSG2 variant and presence of the KCNQ1 variant in the proband's mother and daughter. KCNQ1 p.(Asn483Lys) was predicted to be pathogenic by MutationTaster. However, none of the KCNQ1 variant carrying family members showed long QTc on ECG or Holter. We further functionally analysed this variant using patch-clamp in a heterologous expression system (Chinese Hamster Ovary (CHO) cells) expressing the KCNQ1 mutant in combination with KCNE1 wild type protein and showed no significant changes in electrophysiological function of Kv7.1.Based on the above evidence, we concluded that the DSG2 p.(Gln993His) variant is the most likely cause of SCD in the presented case, and that there is insufficient evidence that the identified KCNQ1 p.(Asn483Lys) variant would confer risk for SCD in his mother and daughter. Fortunately, the DSG2 variant was not inherited by the proband's two children. This case report indicates the added value of molecular autopsy and the importance of subsequent functional study of variants to inform patients and family members about the risk of variants they might carry.  相似文献   

2.
Breast cancer is the most frequent malignancy among women in both developed and developing countries. Although several genes have been identified to harbor germline variants contributing to breast cancer risk, much of the heritability for breast cancer is yet undefined. In the present study, we have performed exome sequencing to detect susceptibility genes in an Iranian family with five first-degree family members affected with breast cancer. We identified novel candidate variants with predicted pathogenicity in RASSF1, KLK3 and FAM81B. The RASSF1 and KLK3 variants, but not the FAM81B variant, partially co-segregated with disease in the investigated pedigree and were not found in additional screenings outside the specific family. RASSF1 p.S135F is a missense substitution abolishing the ATM phosphorylation site, and KLK3 variant p.M1? is a deletion at the initiation codon that is predicted to abolish translation to the functional kallikrein protease, PSA. Our study suggests germline variation in RASSF1 and KLK3 as potential candidate contributors to familial breast cancer predisposition and illustrates the difficulties to determine the causal genetic risk factor among novel variants restricted to a single family.  相似文献   

3.
《Genetics in medicine》2019,21(3):650-662
PurposeWe evaluated genome sequencing (GS) as an alternative to multigene panel sequencing (PS) for genetic testing in dilated cardiomyopathy (DCM).MethodsForty-two patients with familial DCM underwent PS and GS, and detection rates of rare single-nucleotide variants and small insertions/deletions in panel genes were compared. Loss-of-function variants in 406 cardiac-enriched genes were evaluated, and an assessment of structural variation was performed.ResultsGS provided broader and more uniform coverage than PS, with high concordance for rare variant detection in panel genes. GS identified all PS-identified pathogenic or likely pathogenic variants as well as two additional likely pathogenic variants: one was missed by PS due to low coverage, the other was a known disease-causing variant in a gene not included on the panel. No loss-of-function variants in the extended gene set met clinical criteria for pathogenicity. One BAG3 structural variant was classified as pathogenic.ConclusionOur data support the use of GS for genetic testing in DCM, with high variant detection accuracy and a capacity to identify structural variants. GS provides an opportunity to go beyond suites of established disease genes, but the incremental yield of clinically actionable variants is limited by a paucity of genetic and functional evidence for DCM association.  相似文献   

4.
Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.  相似文献   

5.
6.
7.
8.
9.
《Genetics in medicine》2015,17(8):630-638
PurposeClinical testing for germ-line variation in multiple cancer susceptibility genes is available using massively parallel sequencing. Limited information is available for pretest genetic counseling regarding the spectrum of mutations and variants of uncertain significance in defined patient populations.MethodsWe performed massively parallel sequencing using targeted capture of 22 cancer susceptibility genes in 278 BRCA1/2-negative patients with early-onset breast cancer (diagnosed at younger than 40 years of age).ResultsThirty-one patients (11%) were found to have at least one deleterious or likely deleterious variant. Seven patients (2.5% overall) were found to have deleterious or likely deleterious variants in genes for which clinical guidelines exist for management, namely TP53 (4), CDKN2A (1), MSH2 (1), and MUTYH (double heterozygote). Twenty-four patients (8.6%) had deleterious or likely deleterious variants in a cancer susceptibility gene for which clinical guidelines are lacking, such as CHEK2 and ATM. Fifty-four patients (19%) had at least one variant of uncertain significance, and six patients were heterozygous for a variant in MUTYH.ConclusionThese data demonstrate that massively parallel sequencing identifies reportable variants in known cancer susceptibility genes in more than 30% of patients with early-onset breast cancer. However, only few patients (2.5%) have definitively actionable mutations given current clinical management guidelines.Genet Med17 8, 630–638.  相似文献   

10.
Childhood dilated cardiomyopathy (DCM) is a leading cause of heart failure requiring cardiac transplantation and approximately 5% of cases result in sudden death. Knowledge of the underlying genetic cause can aid prognostication and clinical management and enables accurate recurrence risk counselling for the family. Here we used genomic sequencing to identify the causative genetic variant(s) in families with children affected by severe DCM. In an international collaborative effort facilitated by GeneMatcher, biallelic variants in PPP1R13L were identified in seven children with severe DCM from five unrelated families following exome or genome sequencing and inheritance-based variant filtering. PPP1R13L encodes inhibitor of apoptosis-stimulating protein of p53 protein (iASPP). In addition to roles in apoptosis, iASPP acts as a regulator of desmosomes and has been implicated in inflammatory pathways. DCM presented early (mean: 2 years 10 months; range: 3 months-9 years) and was progressive, resulting in death (n = 3) or transplant (n = 3), with one child currently awaiting transplant. Genomic sequencing technologies are valuable for the identification of novel and emerging candidate genes. Biallelic variants in PPP1R13L were previously reported in a single consanguineous family with paediatric DCM. The identification here of a further five families now provides sufficient evidence to support a robust gene-disease association between PPP1R13L and severe paediatric DCM. The PPP1R13L gene should be included in panel-based genetic testing for paediatric DCM.  相似文献   

11.
An increasing number of developmental and epileptic encephalopathies have been correlated with variants of ion channel genes, and in particular of potassium channels genes, such as KCNA1, KCNA2, KCNB1, KCNQ2, KCTD7 and KCNT1.Here we report a child with an early severe developmental and epileptic encephalopathy, spastic tetraplegia, opisthotonos attacks. The whole exome sequencing showed the de novo heterozygous variant c.1411G > C (p.Val471Leu) in the KCNC2 gene.Although this is, to our knowledge, the first case of encephalopathy associated with a KCNC2 gene variant, and further confirmatory studies are needed, previous preclinical and clinical evidence seems to suggest that KCNC2 is a new candidate epilepsy gene.  相似文献   

12.
A 22-year-old woman presented with elevated low-density lipoprotein (LDL) cholesterol and clinically suspected familial hypercholesterolemia. Initial genetic analysis by Sanger sequencing found no causal variants in LDLR or other familial hypercholesterolemia genes. More than a decade later, her 9-year-old daughter was also found to have elevated LDL cholesterol. Re-analysis using current genetic methodology detected a novel whole-gene duplication of APOB in both individuals, which was tentatively assumed to explain their elevated LDL cholesterol based mainly on biological plausibility. However, on further assessment with cascade screening and cosegregation analysis involving multiple family members, the APOB duplication was eventually discounted as being causative. This case illustrates the risk of assuming pathogenicity of a novel genetic variant without undertaking corroborative diagnostic measures. It further highlights the time and skill required for accurate variant analysis and emphasizes the challenges faced by clinicians who are increasingly expected to rapidly interpret such results without sufficient time or resources to pursue supportive or corroborating evidence.  相似文献   

13.
Familial hypercholesterolemia (FH) is the most frequent genetic disease and is characterized by elevation of LDL-cholesterol that accumulates in tissues leading to premature atherosclerosis and sometime tendon xanthomas. Main causes of FH are pathogenic variants in the genes encoding the LDL receptor (LDLR), its ligand - the apolipoprotein B (APOB) - or Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). Rarer causes include variants in genes encoding apolipoprotein E (APOE) and the signal-transducing adaptor family member 1 (STAP1).Genetics of FH is extremely complicated by 1. high heterogeneity, 2. presence of variant clusters and 3. phenotypic variability. In fact, a great variability was observed among patients with the same genetic status: an overlap of LDL-cholesterol levels was observed between heterozygous patients (HeFH) and homozygous FH patients, as well as some HeFH showed a normal lipid profile. A correct pathogenicity evaluation is the first step to correctly define the genetic status helping to identify the variants which really cause the FH.Several phenotypic differences were observed among HeFH patients carrying different variant types (null or defective) or variants in different affected genes. Patients with a null variant in LDLR gene showed higher LDL-cholesterol levels and higher risk for coronary artery disease than patients with a defective variant. Pathogenic variants in several lipid-related genes causing different dyslipidemias were found among FH patients acting as both modifying factors (worsening the phenotype) and confounding factors (needing a differential diagnosis to be discriminated from FH). This review aims at depicting the complex genetic basis of FH.  相似文献   

14.
15.
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1–2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized for many years. Presently, mutations in 25 genes have been associated with AF. However, the complexity of monogenic AF is illustrated by the recent finding that both gain- and loss-of-function mutations in the same gene can cause AF. Genome-wide association studies (GWAS) have indicated that common single-nucleotide polymorphisms (SNPs) have a role in the development of AF. Following the first GWAS discovering the association between PITX2 and AF, several new GWAS reports have identified SNPs associated with susceptibility of AF. To date, nine SNPs have been associated with AF. The exact biological pathways involving these SNPs and the development of AF are now starting to be elucidated. Since the first GWAS, the number of papers concerning the genetic basis of AF has increased drastically and the majority of these papers are for the first time included in a review. In this review, we discuss the genetic basis of AF and the role of both common and rare genetic variants in the susceptibility of developing AF. Furthermore, all rare variants reported to be associated with AF were systematically searched for in the Exome Sequencing Project Exome Variant Server.  相似文献   

16.

Background

The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response.

Results

The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only.

Conclusions

Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmia  相似文献   

17.
Autosomal dominant familial hypercholesterolemia (FH) is characterized by elevated low-density lipoprotein cholesterol levels and an increased risk for atherosclerotic cardiovascular disease. Although rare pathogenic variants in genes encoding the low-density lipoprotein receptor, apolipoprotein B, proprotein convertase subtilisin/kexin 9 are found in more than 80% of molecularly defined patients with FH, a few rare minor causative genes have been proposed, including the gene encoding signal-transducing adaptor family member 1 (STAP1). Here, we describe a patient with hypercholesterolemia and the rare heterozygous missense variant p.D207N in STAP1. However, extending the pedigree showed failure of the variant to cosegregate with hypercholesterolemia, as both his sons were carriers of the variant and both were also normolipidemic. The findings add to the evidence against STAP1 as a genetic locus for FH.  相似文献   

18.
BBS7 and RIN2 variants cause Bardet Biedl syndrome and RIN2 syndrome respectively. We investigated a consanguineous family in which five individuals manifested different phenotypes. Whole-exome sequencing analyses of the individual with multiple phenotypes revealed homozygosity for novel pathogenic variants in his DNA sample; a frameshift variant in RIN2 (c.1938delT) and a splice-site variant in BBS7 (c.1677-1G > A). Other affected individuals were homozygous for a variant in only one of either gene and consequently manifested phenotypes respective to one disorder. Our work shows that exome sequencing of the most severely affected individual can help in the identification of pathogenic variants in more than one involved genes in a particular family.  相似文献   

19.
《Genetics in medicine》2023,25(8):100884
PurposeNeurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze “poison exons” (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease.MethodsWe curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts.ResultsAcross 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features.ConclusionWith a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.  相似文献   

20.
Based on a homozygous missense variant p.Pro311Ala found in three siblings of a consanguineous family, mutations in the STYXL1 gene were suggested to cause moderate intellectual disability, epilepsy and complex behavioural abnormalities. We have detected this variant via whole exome sequencing in a homozygous state in two families. Segregation analyses in our families and thorough validation in international genetic databases provides evidence that this variant is most likely benign. This is important information for genetic counselling. The role of STYXL1 variants in human disease needs to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号