首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rationale Organisms frequently make effort-related decisions based upon assessments of motivational value and response costs. Energy-related dysfunctions such as psychomotor slowing and apathy are critically involved in some clinical syndromes. Dopamine (DA), particularly in the nucleus accumbens, regulates effort-related processes. Dopamine antagonism and accumbens dopamine depletions cause rats performing on choice tasks to reallocate their behavior away from food-reinforced tasks that have high response requirements. Objective There is evidence of a functional interaction between DA and adenosine A2A receptors in the neostriatum and nucleus accumbens. The present experiments were conducted to determine if adenosine A2A receptor antagonism could reverse the effects of dopamine receptor antagonism on instrumental behavior and effort-related choice. Materials and methods The adenosine A2A receptor antagonist MSX-3 was investigated for its ability to reverse the effects of the dopamine receptor antagonist haloperidol (0.1 mg/kg) on fixed ratio 5 instrumental lever-pressing and on response allocation using a concurrent lever-pressing/chow-feeding choice task. Results Haloperidol significantly suppressed fixed ratio 5 responding, and with rats responding on the concurrent choice task, it altered choice behavior, significantly reducing lever-pressing for food and increasing chow intake. Injections of MSX-3 (0.5–2.0 mg/kg) produced a dose-related attenuation of the effects of 0.1 mg/kg haloperidol on both tasks. The high dose of MSX-3, when administered in the absence of haloperidol, did not significantly affect responding on either task. Conclusions Adenosine and dopamine systems interact to regulate instrumental behavior and effort-related processes, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia.  相似文献   

2.
Rationale  Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Research involving choice tasks has shown that rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements and instead select less effortful food-seeking behaviors. Objective  Previous work showed that adenosine A2A antagonism can reverse the effects of the DA antagonist haloperidol in an operant task that assesses effort-related choice. The present work used a T-maze choice procedure to assess the effects of adenosine A2A and A1 antagonism. Materials and methods  With this task, the two arms of the maze have different reinforcement densities (four vs. two food pellets), and a vertical 44 cm barrier is positioned in the arm with the higher density, presenting the animal with an effort-related challenge. Untreated rats strongly prefer the arm with the high density of food reward and climb the barrier in order to obtain the food. Results  Haloperidol produced a dose-related (0.05–0.15 mg/kg i.p.) reduction in the number of trials in which the rats chose the high-barrier arm. Co-administration of the adenosine A2A receptor antagonist MSX-3 (0.75, 1.5, and 3.0 mg/kg i.p.), but not the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.75, 1.5, and 3.0 mg/kg i.p.), reversed the effects of haloperidol on effort-related choice and latency. Conclusions  Adenosine A2A and D2 receptors interact to regulate effort-related decision making, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia that can be observed in depression, parkinsonism, and other disorders.  相似文献   

3.
Adenosine A2A and dopamine D2 receptors interact to regulate diverse aspects of ventral and dorsal striatal functions related to motivational and motor processes, and it has been suggested that adenosine A2A antagonists could be useful for the treatment of depression, parkinsonism and other disorders. The present experiments were performed to characterize the effects of MSX-4, which is an amino acid ester prodrug of the potent and selective adenosine A2A receptor antagonist MSX-2, by assessing its ability to reverse pharmacologically induced motivational and motor impairments. In the first group of studies, MSX-4 reversed the effects of the D2 antagonist eticlopride on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. MSX-4 was less potent after intraperitoneal administration than the comparison compound, MSX-3, though both were equally efficacious. With this task, MSX-4 was orally active in the same dose range as MSX-3. MSX-4 also reversed the locomotor suppression induced by eticlopride in the open field, but did not induce anxiogenic effects as measured by the relative amount of interior activity. Behaviorally active doses of MSX-4 also attenuated the increase in c-Fos and pDARPP-32(Thr34) expression in nucleus accumbens core that was induced by injections of eticlopride. In addition, MSX-4 suppressed the oral tremor induced by the anticholinesterase galantamine, which is consistent with an antiparkinsonian profile. These actions of MSX-4 indicate that this compound could have potential utility as a treatment for parkinsonism, as well as some of the motivational symptoms of depression and other disorders.  相似文献   

4.
RATIONALE: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related processes, emerging evidence also implicates adenosine A(2A) receptors. OBJECTIVE: The present work was undertaken to test the hypothesis that accumbens A(2A) receptor stimulation would produce effects similar to those produced by DA depletion or antagonism. MATERIALS AND METHODS: Three experiments assessed the effects of the adenosine A(2A) agonist CGS 21680 on performance of a concurrent choice task (lever pressing for preferred food vs. intake of less preferred chow) that is known to be sensitive to DA antagonists and accumbens DA depletions. RESULTS: Systemic injections of CGS 21680 reduced lever pressing but did not increase feeding. In contrast, bilateral infusions of the adenosine A(2A) receptor agonist CGS 21680 (6.0-24.0 ng) into the nucleus accumbens decreased lever pressing for the preferred food but substantially increased consumption of the less preferred chow. Injections of CGS 21680 into a control site dorsal to the accumbens were ineffective. CONCLUSIONS: Taken together, these results are consistent with the hypothesis that local stimulation of adenosine A(2A) receptors in nucleus accumbens produces behavioral effects similar to those induced by accumbens DA depletions. Accumbens adenosine A(2A) receptors appear to be a component of the brain circuitry regulating effort-related choice behavior.  相似文献   

5.
Dopamine D2 and adenosine A2A receptors interact to regulate aspects of motor and motivational function, and it has been suggested that adenosine A2A antagonists could be useful for the treatment of parkinsonism and depression. The present experiments were performed to characterize the effects of Lu AA47070, which is a phosphonooxymethylene prodrug of a potent and selective adenosine A2A receptor antagonist, for its ability to reverse the motor and motivational effects of D2 antagonism. In the first group of studies, Lu AA47070 (3.75-30 mg/kg IP) was assessed for its ability to reverse the effects of the D2 receptor antagonist pimozide (1.0 mg/kg IP) using several measures of motor impairment, including catalepsy, locomotion, and tremulous jaw movements, which is a rodent model of parkinsonian tremor. Lu AA47070 produced a significant reversal of the effects of pimozide on all three measures of parkinsonian motor impairment. In addition, Lu AA47070 was able to reverse the effects of a low dose of the D2 antagonist haloperidol on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. The ability of Lu AA47070 to reverse the effects of D2 receptor blockade suggests that this compound could have potential utility as a treatment for parkinsonism, and for some of the motivational symptoms of depression.  相似文献   

6.
Rationale Cannabinoid CB1 antagonists/inverse agonists suppress food-motivated behaviors and are being evaluated as potential appetite suppressants. It has been suggested that the effects of CB1 antagonism on food motivation could be related to actions on mesolimbic dopamine (DA). If this were true, then the effects of interference with cannabinoid CB1 transmission should closely resemble the effects of interference with DA transmission. Objective To directly compare the effects of DA antagonists with those of CB1 antagonists/inverse agonists, the present studies employed a concurrent lever-pressing/chow-intake procedure. With this task, interference with DA transmission shifts choice behavior such that lever pressing for a preferred food is decreased but chow intake is increased. Results Rats treated with IP injections of the DA D1 antagonist SCH39166 (ecopipam; 0.05–0.2 mg/kg) or the D2 antagonist eticlopride (0.025–0.1 mg/kg) showed substantial decreases in lever pressing and concomitant increases in chow consumption. In contrast, IP administration of the CB1 neutral antagonist AM4113 (4.0–16.0 mg/kg) or the CB1 antagonist/inverse agonist AM251 (2.0–8.0 mg/kg) decreased operant responding for pellets, but there was no corresponding increase in chow intake. Conclusions These effects of CB1 antagonists/inverse agonists were similar to those produced by the appetite suppressant fenfluramine and by prefeeding. In contrast, low doses of DA antagonists leave primary food motivation intact, but shift behaviors toward food reinforcers that can be obtained with lower response costs. These results suggest that the effects of interference with CB1 transmission are readily distinguishable from those of reduced DA transmission.  相似文献   

7.

Rationale

Effort-related motivational symptoms such as anergia and fatigue are common in patients with depression and other disorders. Research implicates pro-inflammatory cytokines in depression, and administration of cytokines can induce effort-related motivational symptoms in humans.

Objectives

The present experiments focused on the effects of the pro-inflammatory cytokine interleukin 1-beta (IL-1β) on effort-related choice behavior.

Methods

Rats were tested on a concurrent fixed ratio 5 lever pressing/chow feeding choice procedure, which assesses the tendency of rats to work for a preferred food (high carbohydrate pellets) in the presence of a concurrently available but less preferred substitute (laboratory chow).

Results

IL-1β (1.0–4.0 μg/kg IP) shifted choice behavior, significantly decreasing lever pressing and increasing intake of the freely available chow. The second experiment assessed the ability of the adenosine A2A antagonist (E)-phosphoric acid mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl] propyl] ester disodium salt (MSX-3) to reverse the behavioral effects of IL-1β. MSX-3 attenuated the effort-related impairments produced by IL-1β, increasing lever pressing and also decreasing chow intake. In the same dose range that shifted effort-related choice behavior, IL-1β did not alter food intake or preference in parallel free-feeding choice studies, indicating that these low doses were not generally suppressing appetite or altering preference for the high carbohydrate pellets. In addition, IL-1β did not affect core body temperature.

Conclusions

These results indicate that IL-1β can reduce the tendency to work for food, even at low doses that do not produce a general sickness, malaise, or loss of appetite. This research has implications for the involvement of cytokines in motivational symptoms such as anergia and fatigue.  相似文献   

8.
Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A2A antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A2A antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0 mg/kg dose of pilocarpine, both MSX-3 and the adenosine A2A antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5 mg/kg pilocarpine. Systemic administration of the adenosine A1 antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5 mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A2A receptors, but DPCPX did not. The results of these studies support the use of adenosine A2A antagonists for the treatment of tremor.  相似文献   

9.
Rationale  Caffeine, an antagonist of adenosine A1 and A2A receptor, is the most widely used psychoactive substance in the world. Evidence indicates that caffeine interacts with the neuronal systems involved in drug reinforcing. Although adenosine A1 and/or A2A receptor have been found to play important roles in the locomotor stimulation and probably reinforcing effect of caffeine, the relative contribution of the A1 and/or A2A receptors to the acute and chronic motor activation and reinforcing effects of caffeine has not been completely investigated. Objective  The roles of adenosine A1 and/or A2A receptor and the association of phospho-Thr75-dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) in the motor activation and reinforcing effects of caffeine, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A1 antagonist, and 5-amino-7-(β-phenylethyl)-2-(8-furyl) pyrazolol [4,3-e]-1,2,4-triazolol [1,5-c] pyrimidine (SCH58261), a selective A2A receptor antagonist were examined. Methods  Locomotor stimulation and behavioral sensitization of caffeine, DPCPX, and SCH58261 were studied in C57BL/6 male mice following acute and chronic administration. Conditioned place preference (CPP) paradigm was used to evaluate the drug-seeking potential of these compounds. Furthermore, the expression of phospho-Thr75-DARPP-32 in striatal membrane from behaviorally sensitized mice was analyzed by Western blot. Results  Caffeine and SCH58261 but not DPCPX induced CPP and locomotor sensitization in C57BL/6 mice. The locomotor sensitization after chronic treatment was associated with increased DARPP-32 phosphorylation at Thr75 in the striatum. Conclusion  Caffeine-induced reinforcing effect and behavioral sensitization are mediated by antagonism at adenosine A2A receptor. These effects are associated with phosphorylation of DARPP-32 at Thr75 in the striatum.  相似文献   

10.
Rationale There is no consensus on the contribution of adenosine A1 and A2A receptor blockade to motor-activating effects of caffeine.Objective Our aim was to use a detailed and continuous observational method to compare the motor effects induced by caffeine with those induced by selective A1 and A2A receptor antagonists.Methods The behavioral repertoire induced by systemic administration of caffeine (3, 10, and 30 mg/kg), A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.2, 4.8 and 7.2 mg/kg), and A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3; 1, 3, and 10 mg/kg) was analyzed. The effects of pretreatment with the selective A1 receptor agonist N 6-cyclopentyladenosine (CPA; 0.1 mg/g) and the selective A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxyamidoadenosine (CGS 21680; 0.2 mg/kg) on the pattern of motor activation induced by caffeine, CPT, or MSX-3 were also examined.Results The pattern of behavioral activation induced by caffeine was better mimicked by CPT than by MSX-3. Coadministration of CPT and MSX-3 gave different results depending on the dose and the type of behavioral response. CPA was more effective at decreasing the activating effects of caffeine and CPT than those of CGS 21680. On the other hand, CGS 21680 was more effective at decreasing the activating effects of MSX-3 than those of caffeine or CPT. Factor analysis revealed a complex three-dimensional behavioral profile for caffeine that was similar to the profile for CPT and was different from the profile for MSX-3.Conclusions The results indicate a predominant role for A1 receptors in the motor-activating effects of acutely administered caffeine.  相似文献   

11.
Effects of the dopamine D(1) antagonist SCH 39166 were compared with those of the D(2) antagonist eticlopride in squirrel monkeys responding under a second-order fixed-interval schedule of i.v. self-administration of cocaine. Dose-response curves were determined for a range of doses of self-administered cocaine (0.01-1.7 mg/kg/injection) alone and after pretreatment with SCH 39166 (0.01-0.1 mg/kg) or eticlopride (0.001-0.006 mg/kg). Cocaine maintained self-administration behavior in a dose-related manner; as the dose of cocaine was increased, rates of responding first increased and then either decreased or leveled off. Optimum doses (0.03-0.3 mg/kg) maintained high rates of responding (0.7-1.7 responses per second) among the different monkeys, and patterns of responding that were characteristic for second-order schedules. Pretreatment with either SCH 39166 or eticlopride altered self-administration behavior in all monkeys. In most cases, dose-response curves for cocaine were shifted to the right, indicative of surmountable antagonism, and a 3 to 6-fold increase in dose of cocaine was necessary to restore optimal performances. In some instances, dose-response curves were shifted either downward or downward and to the right, indicating that the antagonistic effects of SCH 39166 and eticlopride were not always fully surmountable. These results show that self-administration of cocaine can be comparably modified by drugs that selectively block dopamine D(1) or D(2) receptors.  相似文献   

12.

Rationale  

Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone.  相似文献   

13.
This experiment was undertaken to provide a pharmacological characterization of performance on a task involving food-related instrumental and consummatory behavior. Rats were tested in an operant chamber in which there was a choice between pressing a lever to receive a preferred food (Bioserve pellets) or approaching and consuming a less-preferred food (Lab Chow). The lever pressing schedule was a fixed ratio 5 (FR5). Rats usually pressed the lever at high rates to obtain the preferred food, and typically ate little of the lab chow even though it was freely available in the chamber concurrently with the lever pressing schedule. Previous work has shown that injection of dopamine (DA) antagonists, or depletion of DA in the nucleus accumbens, caused a substantial shift in behavior such that lever pressing was reduced but chow consumption increased. In the present study it was shown that the DA antagonist haloperidol decreased lever pressing and increased chow consumption at doses of 0.1 and 0.15 mg/kg. The D1 antagonist SCH 23390 (0.05, 0.1 and 0.15 mg/kg) and the non-selective DA antagonistcis-flupenthixol (0.3 and 0.45 mg/kg) decreased lever pressing and produced substantial increases in chow consumption. The D2 antagonist sulpiride decreased lever pressing, but produced only slight increases in chow intake at the highest dose. Pentobarbital reduced lever pressing and increased chow consumption at 10.0 mg/kg. The muscarinic agonist pilocarpine produced dose-related decreases in lever pressing, but failed to increase chow consumption. Amphetamine produced dose-related decreases in both lever pressing and chow consumption. These results indicate that low/moderate doses of the DA antagonists haloperidol,cis-flupenthixol and SCH 23390 can suppress lever pressing in doses that leave the animal directed towards food acquisition and consumption.  相似文献   

14.
Although interference with dopamine (DA) systems can suppress lever pressing for food reinforcement, it is not clear whether this effect occurs because of a general disruption of food motivation. One way of assessing this has been a choice procedure in which a rat responds on an fixed ratio 5 (FR5) schedule for preferred Bioserve pellets while a less preferred lab chow is concurrently available in the operant chamber. Untreated rats consume little of the chow, preferring to respond for the Bioserve pellets. Previous studies have shown that depleting DA in the accumbens substantially decreased lever pressing while increasing chow consumption. In the present study, low doses (0.0625-1.0 microg) of the D1 antagonist SCH 23390 or the D2 antagonist raclopride were injected into the either the core or shell subregions of nucleus accumbens, and rats were tested on the concurrent lever pressing/feeding task. Analysis of the dose response curves showed that injections of SCH 23390 into the core were more potent than injections into the shell for suppressing lever pressing (i.e., the ED(50) was lower in the core). Nevertheless, injections of either drug into either site suppressed lever pressing and increased intake of the concurrently available chow. Across both drugs and at both sites, the amount of chow consumed was negatively correlated with the total number of responses. Neither drug significantly increased response duration, suggesting that accumbens DA antagonism did not produce the type of motor impairment that leads to severe alterations in the form of lever pressing. In summary, the blockade of D1 or D2 receptors in nucleus accumbens core or shell decreased lever pressing for food reinforcers, but rats remained directed toward the acquisition and consumption of food. These results indicate that accumbens D1 antagonism does not decrease lever pressing because of a general reduction in food motivation. Nevertheless, interference with accumbens DA does appear to set constraints upon which responses are selected for obtaining food, and may impair the ability of animals to overcome work-related response costs in order to obtain food.  相似文献   

15.

Rationale  

Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens.  相似文献   

16.
Brain dopamine (DA) and adenosine interact in the regulation of behavioral activation and effort-related processes. In the present studies, a T-maze task was developed in mice for the assessment of effort-related decision making. With this task, the two arms of the maze have different reinforcement densities, and a vertical barrier is positioned in the arm with the higher density (HD), presenting the animal with an effort-related challenge. Under control conditions mice prefer the HD arm, and climb the barrier to obtain the larger amount of food. The DA D(2) receptor antagonist haloperidol decreased selection of the HD arm and increased selection of the arm with the low density of reinforcement. However, the HD arm was still the preferred choice in haloperidol-treated mice trained with barriers in both arms. Pre-feeding the mice to reduce food motivation dramatically increased omissions, an effect that was distinct from the actions of haloperidol. Co-administration of theophylline, a nonselective adenosine receptor antagonist, partially reversed the effects of haloperidol. This effect seems to be mediated by the A(2A) receptor but not the A(1) receptor, since the A(2A) antagonist MSX-3, but not the A(1) antagonist CPT, dose dependently reversed the effects of haloperidol on effort-related choice and on c-Fos expression in the dorsal striatum and nucleus accumbens. In addition, adenosine A(2A) receptor knockout mice were resistant to the effects of haloperidol on effort-related choice in the maze. These results indicate that DA D(2) and adenosine A(2A) receptors interact to regulate effort-related decision making and effort expenditure in mice.  相似文献   

17.
Some behavioral changes produced by chronic postweaning lead (Pb) exposure have been linked to mesolimbic dopamine (DA) system alterations. This study sought to determine the role of DA systems in Pb-induced changes in a fixed ratio (FR) waiting-for-reward paradigm. Rats exposed chronically from weaning to 0, 50, or 150 ppm Pb acetate drinking solutions earned free reinforcers for waiting after completion of an FR, with increasing time between successive free reinforcers. Responses during the waiting period reset the FR requirement. Once performance stabilized, the effects of acute IP administration of the D1 agonist SKF82958, the D2 agonist quinpirole, the D1 antagonist SCH23390, and the D2 antagonist eticlopride were determined. Pb itself increased FR response rates and decreased mean waiting time, a pattern of behavior that increased the number of earned reinforcers, but doubled the number of responses/reinforcer. None of the DA compounds mimicked Pb effects when administered to controls. Only DA agonists altered waiting behavior and responses per reinforcer. Quinpirole, in particular, appeared to reverse Pb effects on the FR wait baseline by increasing waiting time and decreasing FR resets to control levels. These findings point to a particular role for D2 DA function in Pb's detrimental effects on waiting.  相似文献   

18.
Rationale  Reinforcement in the medial septal division (MSDB) might involve local GABAergic mechanisms. Objectives  We used intracranial self-administration to determine whether the GABAA agonist muscimol or antagonist bicuculline might have rewarding effects when infused into the MSDB. We assessed the anatomical specificity of muscimol intra-MSDB self-administration by injecting this molecule into the nucleus accumbens (NAc). Finally, we evaluated the involvement of dopaminergic mechanisms in muscimol self-administration. Materials and methods  BALB/c mice were implanted with a guide cannula targeting the MSDB or the NAc. They were trained to discriminate between the two arms of a Y-maze, one arm being reinforced by muscimol or bicuculline injections. Another group of MSDB implanted mice was pre-treated intraperitoneally before muscimol self-administration with a D1 (SCH23390) or D2/D3 (sulpiride) receptor antagonist or vehicle. A last group of MSDB mice received additional bilateral guide cannulae targeting the ventral tegmental area (VTA) or a more dorsal region to assess the effects of intra-VTA injection of SCH23390 on intra-MSDB muscimol self-administration. Results  Mice self-administered intra-MSDB muscimol (0.6, 1.2, or 12 ng/50 nl), but not bicuculline (1.5 or 3 ng/50 nl). Systemic pre-treatment with SCH23390 (25 μg/kg) or sulpiride (50 mg/kg) or bilateral injection of SCH23390 (0.25 μg/0.1 μl) into the VTA prevented acquisition of intra-MSDB muscimol self-administration. Conclusion  The activation of GABAA receptors in the MSDB supports self-administration, and dopamine release from the VTA may be involved in the acquisition of this behaviour. The MSDB could represent a common brain substrate for the rewarding properties of drugs facilitating GABAA tone. This investigation was supported by grants from the CNRS (UMR 5228).  相似文献   

19.
Fludarabine, clofarabine, and cladribine are anticancer agents which are analogues of the purine nucleoside adenosine. These agents have been associated with cardiac and neurological toxicities. Because these agents are analogues of adenosine, they may act through adenosine receptors to elicit their toxic effects. The objective of this study was to evaluate the ability of cytotoxic nucleoside analogues to bind and activate adenosine receptor subtypes (A1, A2A, A2B, and A3). Radioligand binding studies utilizing Chinese hamster ovary cells, stably transfected with adenosine A1, A2A, or A3 receptor subtype, were used to assess the binding affinities of these compounds, whereas adenylyl cyclase activity was used to assess the binding to A2B receptors. Clofarabine and cladribine both bound to the A2A receptor with a K i of 17 and 15 μM, respectively. Clofarabine was the only adenosine analogue to bind to the A3 receptor with a K i of 10 μM, and none of these compounds bound to the A2B receptor. Results show that clofarabine, cladribine, and fludarabine bind to the A1 receptor. In addition, clofarabine, cladribine, and fludarabine were A1 agonists (IC50 3.1, 30, and 30 μM, respectively). Neither pyrimidine nucleoside analogues gemcitabine nor cytarabine associated with any of the adenosine receptor subtypes (K i > 100μM). This is the first report of an interaction between all adenosine receptor subtypes and chemotherapeutic nucleoside analogues commonly used in the treatment of cancer. Therefore, activation of these receptors may be at least one mechanism through which fludarabine-associated toxicity occurs.  相似文献   

20.
Rationale Dopamine D1-like antagonists block several effects of cocaine, including its locomotor-stimulant and discriminative-stimulus effects. Because these compounds generally lack selectivity among the dopamine D1 and D5 receptors, the specific roles of the subtypes have not been determined. Objectives Dopamine D5 receptor knockout (DA D5R KO), heterozygous (HET) and wild-type (WT) mice were used to study the role of D5 dopamine receptors in the effects of cocaine. In addition, effects of the D1-like antagonist, SCH 39166 were also studied to further clarify the roles of D1 and D5 dopamine receptors in the discriminative-stimulus effects of cocaine. Methods DA D5R KO, HET and WT mice were treated with cocaine (3–30 mg/kg) or vehicle and their horizontal locomotor activity was assessed. The mice were also trained to discriminate IP injections of saline from cocaine (10 mg/kg) using a two-lever food-reinforcement (FR10) procedure. Doses of cocaine (1.0–10 mg/kg) were administered 5 min before 15-min test-sessions. Results Cocaine dose-dependently stimulated activity in each genotype, with the highest level of activity induced in the DA D5R WT mice. Both DA D5R KO and HET mice showed reduced levels of horizontal activity compared to WT mice. All three genotypes acquired the discrimination of 10 mg/kg cocaine; doses of 1.0–10.0 mg/kg produced dose-related increases in the number of cocaine-appropriate responses. SCH 39166, at inactive to fully active doses (0.01–0.1 mg/kg) produced predominately saline-appropriate responding. SCH 39166 produced a dose-dependent rightward shift in the cocaine dose-effect curve in all genotypes, with similar apparent affinities. Conclusions The present data suggest an involvement of DA D5R in the locomotor stimulant effects of cocaine. In addition, the data indicate that there is little involvement of the DA D5R in the discriminative-stimulus effects of cocaine. In addition, the antagonism data suggest a role of the D1 receptor in the behavioral effects of cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号