首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tolerance of monocytes/macrophages to endotoxin (lipopolysaccharide [LPS]) can be induced both in vivo and in vitro by LPS itself. Exposure to LPS, even at a very low dose, induces a downregulation of cytokine response to a second high dose LPS challenge. To learn more about the unknown mechanisms of this phenomenon, we studied the role of antiinflammatory cytokines in this process. Preculture of human peripheral blood monocytes for 24 hours with low concentrations of LPS induced hyporesponsiveness to high-dose LPS rechallenge with respect to tumor necrosis factor (TNF) alpha and interleukin (IL) 10 but not IL- 1RA production. These results suggest that LPS tolerance reflects a functional switch of monocytes rather than a general LPS hyporesponsiveness. IL-10 and transforming growth factor (TGF) beta 1 showed additive effects in replacing LPS for induction of LPS hyporesponsiveness in vitro. Additionally, neutralizing anti-IL-10 and anti-TGF-beta monoclonal antibodies prevented induction of LPS tolerance. In vitro induced LPS tolerance looks like the ex vivo LPS hyporesponsiveness of monocytes from septic patients with fatal outcome: downregulation of LPS-induced TNF-alpha and IL-10 production but not of IL-1RA secretion. LPS hyporesponsiveness in septic patients was preceded by expression of IL-10 at both the mRNA and protein level. In summary, our data suggests that IL-10 and TGF-beta mediate the phenomenon of LPS tolerance in vitro and perhaps in vivo (septic patients), too.  相似文献   

3.
Natural killer cell stimulatory factor or interleukin 12 (NKSF/IL-12) is a heterodimeric cytokine produced by monocytes/macrophages, B cells, and possibly other accessory cell types primarily in response to bacteria or bacterial products. NKSF/IL-12 mediates pleiomorphic biological activity on T and NK cells and, alone or in synergy with other inducers, is a powerful stimulator of interferon gamma (IFN- gamma) production. IL-10 is a potent inhibitor of monocyte-macrophage activation, that inhibits production of tumor necrosis factor alpha (TNF-alpha), IL-1 and also IFN-gamma from lymphocytes acting at the level of accessory cells. Because TNF-alpha and IL-1 are not efficient inducers of IFN-gamma, the mechanism by which IL-10 inhibits IFN-gamma production is not clear. In this paper, we show that IL-10 is a potent inhibitor of NKSF/IL-12 production from human peripheral blood mononuclear cells activated with Staphylococcus aureus or lipopolysaccharide (LPS). Both the production of the free NKSF/IL-12 p40 chain and the biologically active p70 heterodimer are blocked by IL- 10. NKSF/IL-12 p40 chain mRNA accumulation is strongly induced by S. aureus or LPS and downregulated by IL-10, whereas the p35 mRNA is constitutively expressed and only minimally regulated by S. aureus, LPS, or IL-10. Although IL-10 is able to block the production of NKSF/IL-12, a powerful inducer of IFN-gamma both in vitro and in vivo, the mechanism of inhibition of IFN-gamma by IL-10 cannot be explained only on the basis of inhibition of NKSF/IL-12 because IL-10 can partially inhibit IFN-gamma production induced by NKSF/IL-12, and also, the IFN-gamma production in response to various stimuli in the presence of neutralizing antibodies to NKSF/IL-12. Our findings that antibodies against NKSF/IL-12, TNF-alpha, or IL-1 beta can significantly inhibit IFN-gamma production in response to various stimuli and that NKSF/IL-12 and IL-1 beta can overcome the IL-10-mediated inhibition of IFN-gamma, suggest that IL-10 inhibition of IFN-gamma production is primarily due to its blocking production from accessory cells of the IFN-gamma- inducer NKSF/IL-12, as well as the costimulating molecule IL-1 beta.  相似文献   

4.
Interferon gamma inhibits interleukin 10 production by monocytes   总被引:15,自引:3,他引:15       下载免费PDF全文
Interleukin 10 (IL-10) was first described for its ability to inhibit interferon gamma (IFN-gamma) production. Herein, we studied the balance between IFN-gamma and IL-10 production by human peripheral blood mononuclear cells (PBMC) in response to Staphylococcus aureus Cowan (SAC) or lipopolysaccharide (LPS). Monocyte depletion reduced IL-10 production by 90% and resulted in an increased IFN-gamma production. Addition of anti-IL-10 antibody to PBMC cultures also strongly increased IFN-gamma production. In contrast, among various cytokines, only IFN-gamma strongly reduced IL-10 synthesis by SAC- or LPS- activated PBMC and monocytes. Thus, IFN-gamma has proinflammatory effects through the combination of two mechanisms: (a) induction of early tumor necrosis factor alpha (TNF-alpha) and IL-1 beta synthesis; and (b) inhibition of the delayed production of IL-10, an inhibitor of TNF-alpha and IL-1 beta synthesis. Taken together, the present data indicate that IFN-gamma and IL-10 antagonize each other's production and function.  相似文献   

5.
Cytokines produced by mononuclear cells are important regulatory and effector molecules and evidence has been presented to support a role at least for tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) in host defense against Leishmania. In the present study, we examined the production of TNF-alpha and interleukin 1 (IL-1) by resting and IFN-gamma-primed peripheral blood monocytes infected in vitro with Leishmania donovani. Monocytes produced neither IL-1 nor TNF-alpha during challenge with Leishmania. Cells preinfected with Leishmania synthesized normal amounts of TNF-alpha, but had diminished production of IL-1 in response to stimulation with either S. aureus or lipopolysaccharide (LPS). The induction by S. aureus or LPS of IL-1 beta mRNA accumulation in infected cells was normal despite diminished intracellular or supernatant IL-1 protein and bioactivity. Thus, inhibition of IL-1 production by Leishmania most probably reflected diminished translation of IL-1 beta mRNA. Pretreatment of cells with IFN-gamma abrogated infection-induced inhibition of IL-1 production and primed cells for the production of both IL-1 and TNF-alpha upon subsequent exposure to Leishmania. These results indicate that L. donovani has evolved the capacity to infect mononuclear phagocytes, without stimulating the production of two potentially host-protective monokines. The ability of IFN-gamma to prime monocytes to produce TNF-alpha and IL-1 in response to infection with Leishmania and to prevent inhibition of IL-1 production may have implications for immunotherapy with this lymphokine.  相似文献   

6.
7.
8.
9.
10.
11.
Interleukin 12 (IL-12) produced by macrophages immediately after infection is considered essential for activation of a protective immune response against intracellular pathogens. In the murine Mycobacterium bovis Bacillus Calmette-Guerin (BCG) model we assessed whether early IL- 12 production by macrophages depends on other cytokines. In vitro, murine bone marrow-derived macrophages produced IL-12 after infection with viable M. bovis BCG or stimulation with LPS, however, priming with recombinant interferon gamma (rIFN-gamma) was necessary. In addition, IL-12 production by these macrophages was blocked by specific anti- tumor necrosis factor alpha (TNF-alpha) antiserum. Macrophages from gene deletion mutant mice lacking either the IFN-gamma receptor or the TNF receptor 1 (p55) failed to produce IL-12 in vitro after stimulation with rIFN-gamma and mycobacterial infection. In vivo, IL-12 production was induced in spleens of immunocompetent mice early during M. bovis BCG infection but not in those of mutant mice lacking the receptors for IFN-gamma or TNF. Our results show that IL-12 production by macrophages in response to mycobacterial infection depends on IFN-gamma and TNF. Hence, IL-12 is not the first cytokine produced in mycobacterial infections.  相似文献   

12.
The expression of inducible nitric oxide synthase (iNOS) expression and release of nitric oxide (NO) from macrophages are markedly increased in granulomatous infections. Activation of macrophages 1alpha-hydroxylase results in an increase of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. However, the significance of this increased production is not completely understood. In this study, we analyzed 1,25(OH)(2)D(3) and NO production in patients with tuberculosis infection and hypercalcemia and used lipopolysaccharide (LPS) to stimulate RAW 264.7 cells in an attempt to assess iNOS expression and gaseous NO production regulated by 1,25(OH)(2)D(3). Peroxynitrite (OONO(-)) production and lactate dehydrogenase activity were also examined. Without additional stimulation, peripheral-blood mononuclear cells (PBMCs) from patients with tuberculosis converted more 25-hydroxyvitamin D(3) to 1,25(OH)(2)D(3) than did those from normal controls. These PBMCs released less NO than did those from control subjects, at baseline and in the stimulated state. We found that 1,25(OH)(2)D(3) dose-dependently inhibited iNOS messenger RNA expression of the LPS-stimulated RAW 264.7 cells and also significantly reduced the gaseous NO release and OONO(-) production. Paralleling the 1,25(OH)(2)D(3)-induced inhibition of NO release were reductions in OONO(-) and LDH production. In conclusion, 1,25(OH)(2)D(3) inhibited iNOS expression and reduced NO production by LPS-stimulated macrophages in the range of physiological doses. Inhibition of the NO surge was coupled with a reduction in OONO(-) and LDH production. Increased 1,25(OH)(2)D(3) production and decreased release of NO from the PBMCs of patients with tuberculosis and hypercalcemia were also noted. We propose that 1,25(OH)(2)D(3) production by macrophages may protect themselves against oxidative injuries caused by the NO burst. In the case of tuberculosis infection, increased 1,25(OH)(2)D(3) synthesis may further contribute to the development of an unwanted phenomenon-hypercalcemia.  相似文献   

13.
Nitric oxide (NO) has been suggested to be involved in the regulation of osteoclast activity. Since osteoblasts, through the release of various factors, are the main regulators of osteoclastic resorption, first we have investigated whether osteoblast-like cells and fetal mouse long bone explants are able to produce NO. Second, we have assessed the effect of NO on osteoclastic resorption in whole bone cultures. In this study we show that primary rat osteoblast-like cells as well as the clonal rat osteoblast-like cell line UMR-106, stimulated with IFN-gamma together with TNF-alpha and LPS, produce NO, measured as nitrite production. IL-1 alpha enhanced while TGF-beta 2 inhibited TNF-alpha + IFN-gamma + LPS-stimulated NO production in UMR-106 cells dose dependently. Both the cytokines, however, had no effect when given alone. The competitive inhibitor of NO production, NG-monomethyl-arginine (L-NMMA), and cycloheximide abolished the increase in nitrite production induced by TNF-alpha + IFN-gamma + LPS, while hydrocortisone had no effect, as previously reported for chondrocytes. Calciotropic hormones had either no effect [1,25(OH)2D3] or had a small inhibitory effect (parathyroid hormone) on stimulated NO production. Furthermore, we found that in cultured fetal mouse long bone explants the combination of TNF-alpha + IFN-gamma + LPS as well as the NO donor sodium nitroprusside could inhibit osteoclastic resorption, measured as 45Ca release. The inhibition of resorption was prevented by concurrent administration of L-NMMA. Histological evaluation revealed that the TNF-alpha + IFN-gamma + LPS-induced inhibition of 45Ca release was associated with a decrease in the number of tartrate-resistant acid phosphatase-positive osteoclasts. We propose that the NO production by osteogenic cells (osteoblasts and chondrocytes) may represent an important regulatory mechanism of osteoclastic activity especially under pathological conditions characterized by release of bone-resorbing inflammatory cytokines.  相似文献   

14.
Peripheral blood monocytes can be induced by stimuli such as bacterial lipopolysaccharide (LPS) to secrete an array of cytokines. We have studied the effects of interleukin 7 (IL-7) on human peripheral blood mononuclear cells (PBMC) and found that IL-7 is a relatively potent inducer of IL-6 secretion IL-6 protein levels were determined either by the B9 hybridoma growth factor assay or by enzyme-linked immunosorbent assay, and mRNA for IL-6 was analyzed by Northern hybridization. Detailed examination revealed that, among PBMC, monocytes, rather than lymphocytes, were secreting IL-6 in response to IL-7. In contrast to the low concentrations of IL-7 required to stimulate T cell growth and differentiation (as low as 0.1 ng/ml), relatively high concentrations of IL-7 were necessary to induce IL-6 secretion by monocytes (at least 10 ng/ml). An optimal concentration of IL-7 (100 ng/ml) induced monocytes to secrete 10-fold more IL-6 than an optimal concentration of IL-1 beta (10 ng/ml), and almost as much as LPS. However, significantly more IL-7 than IL-1 beta was required to induce detectable levels of IL-6. The kinetics of IL-6 secretion by monocytes were identical in response to IL-7, IL-1 beta, or LPS, with IL-6 protein detectable in culture supernatants as early as 2 h after the initiation of culture. IL-4 was found to markedly inhibit the ability of IL-7 or LPS to induce IL-6 mRNA and IL-6 secretion. In addition to promoting IL-6 production, IL-7 induced the secretion of immunoreactive IL-1 alpha, IL-1 beta, and tumor necrosis factor alpha (TNF-alpha) by monocytes. IL-7 also induced monocyte/macrophage tumoricidal activity against a human melanoma cell target, an activity that may be related to the secretion of IL-1 alpha, IL-1 beta, and TNF-alpha. Finally, we used a whole blood culture system as a bridge to in vivo analysis to demonstrate that IL-7 induces cytokine secretion in the absence of culture medium, fetal calf serum, and adherence to plastic. Our data suggest that IL-7, in addition to regulating lymphocyte growth and differentiation, has potent effects on cells of the monocytic lineage. Thus, IL-7 may be an important mediator in inflammation and in the macrophage immune response to tumors.  相似文献   

15.
16.
17.
Susceptibility to autoimmune disease is associated with null alleles at one of the two genetic loci encoding complement protein C4. These two genetic loci, C4A and C4B, are highly homologous in primary structure but encode proteins with different functional activities. Expression of C4A and C4B genes is regulated by IFN-gamma in human hepatoma cells and in murine fibroblasts transformed with the respective genes. In these cell lines, IFN-gamma has a significantly greater and longer-lasting effect on expression of C4A than that of C4B. In this study we examined synthesis and regulation of C4A and C4B in peripheral blood monocytes from normal, C4A-null, and C4B-null individuals. Synthesis of C4 in human peripheral blood monocytes decreases during time in culture. IFN-gamma mediates a concentration- and time-dependent increase in steady-state levels of C4 mRNA and a corresponding increase in synthesis of C4 in normal human monocytes. LPS decreases monocyte C4 expression and completely abrogates the effect of IFN-gamma on the expression of this gene. In contrast, LPS and IFN-gamma have a synergistic effect in upregulating expression of another class III MHC gene product, complement protein factor B. The effect of LPS on constitutive and IFN-gamma-regulated C4 synthesis is probably not mediated via release of endogenous monokines IL-1 beta, TNF-alpha, or IL-6. Synthesis of C4, and regulation of its synthesis by IFN-gamma and LPS, are similar in normal, C4A-, and C4B-null individuals. These results demonstrate the synthesis of C4 at extrahepatic sites and tissue-specific regulation of C4 gene expression.  相似文献   

18.
19.
Soluble CD23 (sCD23) has multiple IgE-independent biological activities. In the present study, we examined the regulatory effect of sCD23 on cytokine production by human peripheral blood mononuclear cells (PBMC). We show that sCD23 enhances by about 80-fold the interleukin 2 (IL-2)-induced interferon gamma (IFN-gamma) production and by about 10-fold the response to IL-12. This potentiating activity is time and dose dependent and is not associated with a significant effect on DNA synthesis. The sCD23 costimulatory activity for IFN-gamma synthesis is drastically reduced in monocyte-depleted PBMC, suggesting that monocytes may be the target for sCD23. This hypothesis was supported by the following observations. First, sCD23 alone is a potent inducer of tumor necrosis factor alpha (TNF-alpha) production by PBMC and this effect disappears after monocyte depletion. The triggering of TNF-alpha release is specifically inhibited by neutralizing anti-CD23 monoclonal antibody (mAb). In addition, IL-2 and IL-12 synergize with sCD23 to induce TNF-alpha production. Second, sCD23 triggers the release of other inflammatory mediators such as IL-1 alpha, IL-1 beta, and IL-6. Finally, TNF-alpha production in response to IL-2 and sCD23 precedes IFN-gamma and IFN-gamma secretion is significantly inhibited by anti-TNF-alpha mAb, indicating that the sCD23 costimulatory signal for IFN-gamma production may be partially mediated by TNF-alpha release. It is proposed that sCD23 is a proinflammatory cytokine that, in addition, may play an important role in the control of the immune response via the enhancement of IFN-gamma production.  相似文献   

20.
The recognition that cells of the vascular wall can secrete cytokines such as IL-1 suggests new mechanisms for initiating or sustaining inflammatory responses in blood vessels. We report that purified human monocyte-derived IL-1 or recombinant human IL-1 (rIL-1 beta and rIL-1 alpha) induce cultured human smooth muscle cells derived from veins or arteries to synthesize IL-1 beta mRNA and produce and release biologically active IL-1. rIL-1 beta also stimulated the production of PGE2 by smooth muscle cells. Exposure to rIL-1 beta (1-100 ng/ml), or rIL-1 alpha (0.01-10 ng/ml) increased IL-1 beta mRNA levels within 30 min. Actinomycin D (1 microgram/ml) prevented the induction of IL-1 beta mRNA by rIL-1. IL-1 alpha mRNA was detected in SMC treated with cycloheximide (1 microgram/ml) and rIL-1 beta, or cycloheximide alone. rIL-1 alpha and rIL-1 beta produced maximal levels of IL-1 beta mRNA after 4 h, and intracellular IL-1 biological activity after 6 h of exposure. Release of IL-1 activity in the extracellular medium began after 1 h of incubation with rIL-1 beta or rIL-1 alpha, and continued for up to 24 h. Anti-TNF antiserum that neutralized the biological activity of rTNF did not affect rIL-1-induced production of IL-1 beta mRNA or IL-1 release, suggesting that the release of TNF does not mediate these processes. Several experimental approaches indicated that the release of IL-1 by smooth muscle cells was not due to endotoxin contamination of the IL-1 preparations. Anti-IL-1 antiserum blocked the induction of smooth muscle cell IL-1 gene expression by rIL-1 beta. Polymyxin B did not prevent IL-1-induced IL-1 expression by these cells, but blocked the effect of endotoxin. Heat treatment destroyed the stimulatory capacity of rIL-1 beta, but did not affect the ability of bacterial endotoxin to induce IL-1 expression. The production of IL-1 by human vascular smooth muscle cells was not due to contamination of the cell cultures with blood monocytes, inasmuch as treatment with an antimonocyte antibody (anti-Mo2) and complement did not alter IL-1 beta mRNA content or the amount of IL-1 released from the cells in response to endotoxin, rIL-1 alpha, or rIL-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号