首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fundamental property of cortical neurons is the capacity to exhibit adaptive changes or plasticity. Whether adaptive changes in cortical responses are accompanied by changes in synchrony between individual neurons and local population activity in sensory cortex is unclear. This issue is important as synchronized neural activity is hypothesized to play an important role in propagating information in neuronal circuits. Here, we show that rapid adaptation (300 ms) to a stimulus of fixed orientation modulates the strength of oscillatory neuronal synchronization in macaque visual cortex (area V4) and influences the ability of neurons to distinguish small changes in stimulus orientation. Specifically, rapid adaptation increases the synchronization of individual neuronal responses with local population activity in the gamma frequency band (30-80 Hz). In contrast to previous reports that gamma synchronization is associated with an increase in firing rates in V4, we found that the postadaptation increase in gamma synchronization is associated with a decrease in neuronal responses. The increase in gamma-band synchronization after adaptation is functionally significant as it is correlated with an improvement in neuronal orientation discrimination performance. Thus, adaptive synchronization between the spiking activity of individual neurons and their local population can enhance temporally insensitive, rate-based-coding schemes for sensory discrimination.  相似文献   

2.
In order to understand how retinal circuits encode visual scenes, the neural activity of defined populations of retinal ganglion cells (RGCs) has to be investigated. Here we report on a method for stimulating, detecting, and subsequently targeting defined populations of RGCs. The possibility to select a distinct population of RGCs for extracellular recording enables the design of experiments that can increase our understanding of how these neurons extract precise spatio-temporal features from the visual scene, and how the brain interprets retinal signals. We used light stimulation to elicit a response from physiologically distinct types of RGCs and then utilized the dynamic-configurability capabilities of a microelectronics-based high-density microelectrode array (MEA) to record their synchronous action potentials. The layout characteristics of the MEA made it possible to stimulate and record from multiple, highly overlapping RGCs simultaneously without light-induced artifacts. The high-density of electrodes and the high signal-to-noise ratio of the MEA circuitry allowed for recording of the activity of each RGC on 14±7 electrodes. The spatial features of the electrical activity of each RGC greatly facilitated spike sorting. We were thus able to localize, identify and record from defined RGCs within a region of mouse retina. In addition, we stimulated and recorded from genetically modified RGCs to demonstrate the applicability of optogenetic methods, which introduces an additional feature to target a defined cell type. The developed methodologies can likewise be applied to other neuronal preparations including brain slices or cultured neurons.  相似文献   

3.
Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye‐opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision‐dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late‐stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell‐by‐cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision‐dependent patterning of RGC dendrites. J. Comp. Neurol. 522:3403–3422, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
In many species, neurons are unevenly distributed across the retina, leading to nonuniform analysis of specific visual features at certain locations in visual space. In recent years, the mouse has emerged as a premiere model for probing visual system function, development, and disease. Thus, achieving a detailed understanding of mouse visual circuit architecture is of paramount importance. The general belief is that mice possess a relatively even topographic distribution of retinal ganglion cells (RGCs)—the output neurons of the eye. However, mouse RGCs include ∼30 subtypes; each responds best to a specific feature in the visual scene and conveys that information to central targets. Given the crucial role of RGCs and the prominence of the mouse as a model, we asked how different RGC subtypes are distributed across the retina. We targeted and filled individual fluorescently tagged RGC subtypes from across the retinal surface and evaluated the dendritic arbor extent and soma size of each cell according to its specific retinotopic position. Three prominent RGC subtypes: On-Off direction selective RGCs, object-motion-sensitive RGCs, and a specialized subclass of nonimage-forming RGCs each had marked topographic variations in their dendritic arbor sizes. Moreover, the pattern of variation was distinct for each RGC subtype. Thus, there is increasing evidence that the mouse retina encodes visual space in a region-specific manner. As a consequence, some visual features are sampled far more densely at certain retinal locations than others. These findings have implications for central visual processing, perception, and behavior in this prominent model species.  相似文献   

5.
After measuring metacontrast masking psychophysically in two monkeys, recordings from parafoveal striate cortex of the monkeys were made while they performed a simultaneous brightness discrimination and while they judged the apparent brightness of a stimulus masked by metacontrast. The size and orientation of the stimuli were held constant regardless of receptive field parameters. In both tasks, the single-cell activity immediately following the presentation of flashed discrimination stimuli reflected only stimulus parameters, and was independent of the monkey's behavioral choice. Later activity (up to 400 msec post-stimulus) was significantly greater if the monkey was about to press the correct panel in the discrimination, or if he pressed the unmasked side (with greater apparent brightness but identical intensity) in the masking paradigm. One quarter of the cells showed a change in firing rate during the 250 msec preceding the behavioral response, though the difference in overall firing level between correct and incorrect brightness discrimination trials was diminished in this epoch, and the corresponding firing difference in metacontrast trials was not significant. The temporal pattern of firing also differed between correct and incorrect trials in the pre-response interval. The results suggest an iterative or recurrent coding of visual information, where the same cells participate in early, late, and pre-response coding in different ways.  相似文献   

6.
The retinogeniculate synapse transmits information from retinal ganglion cells (RGC) in the eye to thalamocortical relay neurons in the visual thalamus, the dorsal lateral geniculate nucleus (dLGN). Studies in mice have identified genetic markers for distinct classes of RGCs encoding different features of the visual space, facilitating the dissection of RGC subtype‐specific physiology and anatomy. In this study, we examine the morphological properties of axon arbors of the BD‐RGC class of ON‐OFF direction selective cells that, by definition, exhibit a stereotypic dendritic arbor and termination pattern in the retina. We find that axon arbors from the same class of RGCs exhibit variations in their structure based on their target region of the dLGN. Our findings suggest that target regions may influence the morphologic and synaptic properties of their afferent inputs.  相似文献   

7.
Early neural activity, both prenatal spontaneous bursts and early visual experience, is believed to be important for dendritic proliferation and for the maturation of neural circuitry in the developing retina. In this study, we have investigated the possible role of early neural activity in shaping developing turtle retinal ganglion cell (RGC) dendritic arbors. RGCs were back-labelled from the optic nerve with horseradish peroxidase (HRP). Changes in dendritic growth patterns were examined across development and following chronic blockade or modification of spontaneous activity and/or visual experience. Dendrites reach peak proliferation at embryonic stage 25 (S25, one week before hatching), followed by pruning in large field RGCs around the time of hatching. When spontaneous activity is chronically blocked in vivo from early embryonic stages (S22) with curare, a cholinergic nicotinic antagonist, RGC dendritic growth is inhibited. On the other hand, enhancement of spontaneous activity by dark-rearing (Sernagor & Grzywacz (1996)Curr. Biol., 6, 1503-1508) promotes dendritic proliferation in large-field RGCs, an effect that is counteracted by exposure to curare from hatching. We also recorded spontaneous activity from individual RGCs labelled with lucifer yellow (LY). We found a tendency of RGCs with large dendritic fields to be spontaneously more active than small-field cells. From all these observations, we conclude that immature spontaneous activity promotes dendritic growth in developing RGCs.  相似文献   

8.
A previous behavioural study with a single bottlenose dolphin had reported a right eye superiority in visual discrimination tasks, indicating a left hemisphere dominance for visual object processing. The presence of a functional asymmetry demonstrated with one individual shows that this function can be lateralized in this single animal, but cannot reveal if this represents a population asymmetry. Therefore, we conducted a series of visual discrimination experiments with three individuals of Tursiops truncatus under monocular conditions. The tested animals had to distinguish between simultaneously presented stimulus pairs of different patterns, whereby one stimulus was always defined to be correct. Additionally, the animals were observed for their free eye use during training and introduction of new items. The present data set revealed a right eye advantage (left hemisphere dominance) for all tested animals and a predominance of right eye use during daily activities. These results make it possible that bottlenose dolphins are lateralized for visual pattern discrimination at the level of a population asymmetry. Against the background of similar data in other vertebrates, a left hemisphere dominance for pattern discrimination points to the possibility that dolphins exploit local visual details instead of global configurational features to recognize and memorize visual stimuli.  相似文献   

9.
Background: Many current therapeutic strategies for several eye diseases, such as glaucoma, retinal ischemia, and optic neuropathy, are focused on protection of the retinal ganglion cells (RGCs). In fact, loss of visual field, including irreversible blindness, is caused by RGC damage in these diseases. However, recent evidence suggests that the RGC damage extends to visual center in brain: the visual impairment induced by these diseases may result not only from RGC loss, but also from neuronal degeneration within the visual center in brain. Objective: To protect neurons within the visual center in the brain, as well as retinal treatment, for the prevention of visual disorder in these diseases. Methods: Once considered difficult to study the visual center in brain following RGCs loss, because obtaining the human samples that are suitable for the study may be difficult. In addition, the monkey, mainly used as glaucomatous model, is relatively high cost and needs to long experiment‐span. Here, we focused on mice, because of their high degree of availability, relatively low cost, and amenability to experimental and genetic manipulation. Conclusion: In this review, we describe time‐dependent alterations in the visual center in brain following RGCs loss, and whether some drugs prevent the neuronal damage of the visual center in the brain.  相似文献   

10.
The behavioral consequences of age-related alterations in neural function are well documented, but less is known about their cellular bases. To characterize such changes, we analyzed 14 molecularly identified subsets of mouse retinal projection neurons (retinal ganglion cells or RGCs) and interneurons (amacrine, bipolar, and horizontal cells). The retina thinned but expanded with age, maintaining its volume. There was minimal decline in the number of RGCs, interneurons, or photoreceptors, but the diameter of RGC dendritic arbors decreased with age. Together, the increased retinal area and the decreased dendritic area may lead to gaps in RGC coverage of the visual field. Axonal arbors of RGCs in the superior colliculus also atrophied with age, suggesting that the relay of visual information to central targets may decline over time. On the other hand, the laminar restriction of RGC dendrites and the interneuronal processes that synapse on them were not detectably disturbed, and RGC subtypes exhibited distinct electrophysiological responses to complex visual stimuli. Other neuronal types aged in different ways: amacrine cell arbors did not remodel detectably, whereas horizontal cell processes sprouted into the photoreceptor layer. Bipolar cells showed arbor-specific alterations: their dendrites sprouted but their axons remained stable. In summary, retinal neurons exhibited numerous age-related quantitative alterations (decreased areas of dendritic and axonal arbors and decreased density of cells and synapses), whereas their qualitative features (molecular identity, laminar specificity, and feature detection) were largely preserved. Together, these data reveal selective age-related alterations in neural circuitry, some of which could underlie declines in visual acuity.  相似文献   

11.
The morphology of dendrites constrains and reflects the nature of synaptic inputs to neurons. The visual system has served as a useful model to show how visual function is determined by the arborization patterns of neuronal processes. In retina, light ON and light OFF responding ganglion cells selectively elaborate their dendritic arbors in distinct sublamina, where they receive, respectively, inputs from ON and OFF bipolar cells. During neonatal maturation, the bilaminarly distributed dendritic arbors of ON‐OFF retinal ganglion cells (RGCs) are refined to more narrowly localized monolaminar structures characteristic of ON or OFF RGCs. Recently, brain‐derived neurotrophic factor (BDNF) has been shown to regulate this laminar refinement, and to enhance the development of dendritic branches selectively of ON RGCs. Although other related neurotrophins are known to regulate neuronal process formation in the central nervous system, little is known about their action in maturing retina. Here, we report that overexpression of neurotrophin‐3 (NT‐3) in the eye accelerates RGC laminar refinement before eye opening. Furthermore, NT‐3 overexpression increases dendritic branch number but reduces dendritic elongation preferentially in ON‐OFF RGCs, a process that also occurs before eye opening. NT‐3 overexpression does affect dendritic maturation in ON RGCs, but to a much less degree. Taken together, our results suggest that NT‐3 and BDNF exhibit overlapping effects in laminar refinement but distinct RGC‐cell‐type specific effects in shaping dendritic arborization during postnatal development. J. Comp. Neurol. 514:449–458, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
It is well documented that neuronal activity is required for the developmental segregation of retinal ganglion cell (RGC) synaptic connectivity with ON and OFF bipolar cells in mammalian retina. Our recent study showed that light deprivation preferentially blocked the developmental RGC dendritic redistribution from the center to sublamina a of the inner plexiform layer (IPL). To determine whether OFF signals in visual stimulation are required for OFF RGC dendritic development, the light-evoked responses and dendritic stratification patterns of RGCs in Spastic mutant mice, in which the OFF signal transmission in the rod pathway is largely blocked due to a reduction of glycine receptor (GlyR) expression, were quantitatively studied at different ages and rearing conditions. The dendritic distribution in the IPL of these mice was indistinguishable from wildtype controls at the age of postnatal day (P)12. However, the adult Spastic mutants had altered RGC light-evoked synaptic inputs from ON and OFF pathways, which could not be mimicked by pharmacologically blocking of glycinergic synaptic transmission on age-matched wildtype animals. Spastic mutation also blocked the developmental redistribution of RGC dendrites from the center to sublamina a of the IPL, which mimicked the effects induced by light deprivation on wildtype animals. Moreover, light deprivation of the Spastic mutants had no additional impact on the RGC dendritic distribution and light response patterns. We interpret these results as that visual stimulation regulates the maturation of RGC synaptic activity and connectivity primarily through GlyR-mediated synaptic transmission.  相似文献   

13.
Recent studies showed that light stimulation is required for the maturational segregation of retinal ganglion cell (RGC) synaptic connectivity with ON and OFF bipolar cells in mammalian retina. However, it is not clear to what extent light stimulation regulates the maturation of RGC dendritic ramification and synaptic connections. The present work quantitatively analyzed the dendritic ramification patterns of different morphological subtypes of RGCs of developing mouse retinas and demonstrated that RGCs in all four major morphological subtypes underwent profound dendritic redistributions from the center to specific stratum of the IPL after eye opening. Light deprivation preferentially blocked the developmental RGC dendritic redistribution from the center to sublamina a of the IPL. Interestingly, this developmental redistribution of RGC dendrites could not be explained by a simple developmental elimination of "excess" dendrites and, therefore, suggests a possible mechanism that requires both selective dendritic growth and elimination guided by visual activity.  相似文献   

14.
Axons of retinal ganglion cells (RGCs) carry visual information to the brain. In most vertebrates, the major synaptic target of RGCs is the optic tectum. In the chick, RGC axons form synapses in just 4 of 16 histologically recognizable laminae (the retinorecipient laminae [RRLs]), and arbors of individual RGCs are confined to a single RRL. To analyze the development and function of these parallel pathways, markers are required that selectively label them. Here, we have identified molecular markers for individual RRLs and for RGCs that project to them. Some of the markers may mediate or modulate signaling through the separate pathways: neuropeptides (substance P, neuromedin B, somatostatin-I and -II) and their receptors (substance P receptor), neurotransmitter synthetic enzymes (choline acetyltransferase) and the corresponding receptors (acetylcholine receptor beta2) and calcium-binding proteins (parvalbumin and calbindin). Other markers are adhesive proteins that could mediate selective connectivity of RGC subsets within specific RRLs (cadherin-7, cadherin-11, reelin and neuropilin-1). We further show that RGC subsets whose axons project to specific RRLs are heterogeneous with respect to the retinal sublaminae within which their dendrites arborize. Our results define laminar-specified circuits from retina to brain and support a model in which RGCs transmit information from multiple sources to single central laminae, where it can be integrated.  相似文献   

15.
Several studies have shown that the piriform cortex is involved in learning processes and pyramidal cell activity does not only encode the odour quality but is also related to contextual information about past experience and future action. To study how odour-specific patterns in neuronal activity are established we used an odour discrimination go/no go task with water reinforcement for analysing extracellular single cell activity in anterior piriform cortex in freely moving rats. During conditioning single cells responded to different task events. Of the cells 52% participate in odour sampling and 87% were involved in odour discrimination. More than half of the responses to odours were inhibitory responses. Seventeen percent changed their activity for nose-poke only. The activity of 33% was related to reinforcement. Once established the pattern of reaction to the odour was preserved for several days. It is suggested that the anterior part of the piriform cortex is not involved in odour coding only. However, learning-related plasticity was not observed in this area.  相似文献   

16.
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.  相似文献   

17.
These experiments examine the interrelationships between the activity of adjacent neurons during learning. Does learning depend on coherent behavior in a population of neurons or does it depend on particular neurons engaging in a particular activity at specific times? A second purpose was to examine specificity in response modification as a function of reinforcement contingency. Cells from visual association cortex of locally anesthetized, paralyzed cats and rabbits were studied with extracellular micro-electrodes capable of recording single and multiunit activity, as well as local field potentials. Multiunit records were fractionated by amplitude “window” discrimination. Pavlovian discriminative conditioning procedures were used to evaluate selective plasticity. Cells that were activated by at least two different visual stimuli were selected. Only one of the effective stimuli was paired with foot-shock (reinforcement). Of the 180 cells or cell clusters studied, 27% exhibited conditioned modification to the reinforced stimulus (CS+) and 19% changed their response pattern to the unreinforced stimulus (CS?). None of the well isolated cells showed conditioning to both CS+ and CS?. Thus, cellular plasticity was specific to reinforcement contingency. These results provide a first demonstration of reinforcement-dependent functional distinctiveness at the neuronal level. Some cells showed no alteration of response pattern despite a most prolonged conditioning procedure. Neighboring cells, responsive to the same stimuli, revealed increases or decreases in firing rate, selective changes in the latency or amplitude of single response peaks, or the appearance of one or more new peaks as a function of conditioning. Rarely did adjacent cells show the same type of alteration when alteration occurred; there was no general tendency toward coherent firing patterns as conditioning proceeded.  相似文献   

18.
19.
Injections of rhodamine-B into the dorsal raphe nucleus (DRN) and Fluoro-Gold into the lateral geniculate nucleus (LGN) revealed double-labeled retinal ganglion cells (DL RGCs) projecting to both nuclei. The soma-size distribution of DL RGCs was compared with three other distributions: DRN-projecting RGCs, LGN-projecting RGCs, and a large sample of RGCs labeled via the optic nerve with DiI. DL RGC soma diameters fell primarily within the mid-to-upper size range of all three distributions. DL RGCs may provide information to both nuclei concerning comparable aspects of light and visual stimulation via collateralized axons.  相似文献   

20.
The visual system of adult pigeons shows a lateralization of object discrimination with a left hemispheric dominance on the behavioural, physiological and anatomical levels. The crucial trigger for the establishment of this asymmetry is the position of the embryo inside the egg, which exposes the right eye to light falling through the egg shell. As a result, the right‐sided retina is more strongly stimulated with light during embryonic development. However, it is unknown how this embryonic light stimulation is transduced to the brain as rods and cones are not yet functional. A possible solution could be the blue‐light‐sensitive molecule cryptochrome 1 (Cry1), which is expressed in retinal ganglion cells (RGCs) of several mammalian and avian species. RGCs have been shown to be functional during the time of induction of asymmetry and possess projections to primary visual areas. Therefore, Cry1‐containing RGCs could be responsible for induction of asymmetry. The aim of this study was to identify the expression pattern of the Cry1 subtype Cry1b in the retina of embryonic, post‐hatch and adult pigeons by immunohistochemical staining and to show whether Cry1b‐containing RGCs project to the optic tectum. Cry1b‐positive cells were indeed mainly found in the RGC layer and to lesser extent in the inner nuclear layer at all ages, including the embryonic stage. Tracing in adult animals revealed that at least a subset of Cry1b‐containing RGCs project to the optic tectum. Thus, Cry1b‐containing RGCs within the embryonic retina could be involved in the induction of asymmetries in the visual system of pigeons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号