首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Corrigendum     
Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon–bone or muscle–tendon‐bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach.  相似文献   

2.
Bones and muscles support and move the body. Tendons link the two tissues and serve as a mechanism for transfer of forces from muscle to bone. These three tissues interact and respond to periods of activity or inactivity with appropriate alterations in structure and strength. There is substantial evidence that an environment devoid of mechanical stress on the skeleton (such as reduced gravitational forces during spaceflight, a “microgravity envi ronment”) produces direct effects on bone structure and function. There is little agreement concerning the biologic mechanisms for these atrophic changes. Changes in fluid balance and distribution coincident to spaceflight also affect muscles and bones by an unknown mechanism. Tendon-bone junctions are presumed to be spared from the effects of spaceflight. However, recent evidence from rodents suggests that spaceflight profoundly effects both the skeleton and the tendon-bone junctions. These effects include cortical bone resorption, which undermines the Sharpey's fibers that anchor the tendon to the bone matrix. The challenge to biomedical scientists is to devise methods for protecting spaceflight crews from these atrophic changes; such protection would allow for longer and more extensive spaceflights. Anat. Rec. (New Anat.) 253:24–27, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Previous studies of the turnover of alveolar bone collagenous proteins have devoted little attention to the variable patterns in this process caused by bone remodeling. The present study seeks to document changes resulting from physiologic tooth movements in the incorporation and removal of the 3H-proline label within the interdental septum of alveolar bone. One week following 3H-proline injection, three zones could be distinguished: (1) the appositional band, (2) new bone, and (3) old bone. Radioautography demonstrated that formation of new bone on the distal wall of the septum entrapped fibers of the periodontal ligament to create Sharpey's fibers. At the alveolar crest, new bone entrapped transseptal fibers to form transalveolar Sharpey's fibers. Grain counts were made within each area and over the total septum and were compared statistically. The data strongly suggested regional variations in protein remodeling. Counts from old and new bone were significantly different from the total septum or the appositional band (P < .001). Regression lines were drawn to represent incorporation and removal of the isotope; slopes were calculated and compared statistically. The rate of incorporation and removal was significantly greater in the appositional band and in the total septum in comparison to old bone (P < .001). The rates of incorporation and removal in the appositional band, old bone, and total septum were significantly different (P < .001). Half-life of the labeled protein of old bone was 16.78 weeks; in the appositional band, 7.66 weeks; and in the total septum, 7.64 weeks. These data suggest that regional variations in collagen remodeling must be considered in a study of interdental bone and that the total septal grain counts are not indicative of the remodeling in the component zones.  相似文献   

4.
《Journal of anatomy》2017,230(2):203-233
Patterns of bone development in mammals are best known from terrestrial and cursorial groups, but there is a considerable gap in our understanding of how specializations for life underground affect bone growth and development. Likewise, studies of bone microstructure in wild populations are still scarce, and they often include few individuals and tend to be focused on adults. For these reasons, the processes generating bone microstructural variation at intra‐ and interspecific levels are not fully understood. This study comprehensively examines the bone microstructure of an extant population of Cape dune molerats, Bathyergus suillus (Bathyergidae), the largest subterranean mammal endemic to the Western Cape of South Africa. The aim of this study is to investigate the postnatal bone growth of B. suillus using undecalcified histological sections (n = 197) of the femur, humerus, tibia‐fibula, ulna and radius, including males and females belonging to different ontogenetic and reproductive stages (n = 42). Qualitative histological features demonstrate a wide histodiversity with thickening of the cortex mainly resulting from endosteal and periosteal bone depositions, whilst there is scarce endosteal resorption and remodeling throughout ontogeny. This imbalanced bone modeling allows the tissues deposited during ontogeny to remain relatively intact, thus preserving an excellent record of growth. The distribution of the different bone tissues observed in the cortex depends on ontogenetic status, anatomical features (e.g. muscle attachment structures) and location on the bone (e.g. anterior or lateral). The type of bone microstructure and modeling is discussed in relation to digging behavior, reproduction and physiology of this species. This study is the first histological assessment describing the process of cortical thickening in long bones of a fossorial mammal.  相似文献   

5.
Adaptation of osteology and myology lead to the formation of hydrofoil foreflippers in Cheloniidae (all recent sea turtles except Dermochelys coriacea) which are used mainly for underwater flight. Recent research shows the biomechanical advantages of a complex system of agonistic and antagonistic tension chords that reduce bending stress in bones. Finite element structure analysis (FESA) of a cheloniid humerus is used to provide a better understanding of morphology and microanatomy and to link these with the main flipper function, underwater flight. Dissection of a Caretta caretta gave insights into lines of action, that is, the course that a muscle takes between its origin and insertion, of foreflipper musculature. Lines of action were determined by spanning physical threads on a skeleton of Chelonia mydas. The right humerus of this skeleton was micro-CT scanned. Based on the scans, a finite element (FE) model was built and muscle force vectors were entered. Muscle forces were iteratively approximated until a uniform compressive stress distribution was attained. Two load cases, downstroke and upstroke, were computed. We found that muscle wrappings (m. coracobrachialis magnus and brevis, several extensors, humeral head of m. triceps) are crucial in addition to axial loading to obtain homogenous compressive loading in all bone cross-sections. Detailed knowledge on muscle disposition leads to compressive stress distribution in the FE model which corresponds with the bone microstructure. The FE analysis of the cheloniid humerus shows that bone may be loaded mainly by compression if the bending moments are minimized.  相似文献   

6.
7.
Histochemical methods demonstrated that injection of the anabolic steroid phenobolin and exercise did not modify the content of fast and slow muscle fibers in the slow (m. soleus) and fast (m. plantaris andm. semimembranosus) muscles. Energy metabolism changed only in the fast muscles. After exercise the number of oxidative muscle fibers increased in both fast muscles and after injection of anabolic steroids inm. semimem-branosus. Combined exposure produced an additive effect. The content of glycolytic muscle fibers inm. plantaris increased under the effect of anabolic steroids. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 127, No. 4, pp. 406–408, April, 1999  相似文献   

8.
Vibrissae are tactile hairs found mainly on the rostrum of most mammals. The follicle, which is surrounded by a large venous sinus, is called "follicle-sinus complex" (FSC). This complex is highly innervated by somatosensitive fibers and reached by visceromotor fibers that innervate the surrounding vessels. The surrounding striated muscles receive somatomotor fibers from the facial nerve. The bottlenose dolphin (Tursiops truncatus), a frequently described member of the delphinid family, possesses this organ only in the postnatal period. However, information on the function of the vibrissal complex in this latter species is scarce. Recently, psychophysical experiments on the river-living Guiana dolphin (Sotalia guianensis) revealed that the FSC could work as an electroreceptor in murky waters. In the present study, we analyzed the morphology and innervation of the FSC of newborn (n = 8) and adult (n = 3) bottlenose dolphins. We used Masson's trichrome stain and antibodies against neurofilament 200 kDa (NF 200), protein gene product (PGP 9.5), substance P (SP), calcitonin gene-related peptide, and tyrosine hydroxylase (TH) to characterize the FSC of the two age classes. Masson's trichrome staining revealed a structure almost identical to that of terrestrial mammals except for the fact that the FSC was occupied only by a venous sinus and that the vibrissal shaft lied within the follicle. Immunostaining for PGP 9.5 and NF 200 showed somatosensory fibers finishing high along the follicle with Merkel nerve endings and free nerve endings. We also found SP-positive fibers mostly in the surrounding blood vessels and TH both in the vessels and in the mesenchymal sheath. The FSC of the bottlenose dolphin, therefore, possesses a rich somatomotor innervation and a set of peptidergic visceromotor fibers. This anatomical disposition suggests a mechanoreceptor function in the newborns, possibly finalized to search for the opening of the mother's nipples. In the adult, however, this structure could change into a proprioceptive function in which the vibrissal shaft could provide information on the degree of rotation of the head. In the absence of psychophysical experiments in this species, the hypothesis of electroreception cannot be rejected.  相似文献   

9.
To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono‐ and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight‐bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin‐to‐limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203–1223, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The musculoskeletal configuration of the mammalian pectoral limb has been heralded as a key anatomical feature leading to the adaptive radiation of mammals, but limb function in the non‐mammaliaform cynodont outgroup remains unresolved. Conflicting reconstructions of abducted and adducted posture are based on mutually incompatible interpretations of ambiguous osteology. We reconstruct the pectoral limb of the Triassic non‐mammaliaform cynodont Massetognathus pascuali in three dimensions, by combining skeletal morphology from micro‐computed tomography with muscle anatomy from an extended extant phylogenetic bracket. Conservative tests of maximum range of motion suggest a degree of girdle mobility, as well as substantial freedom at the shoulder and the elbow joints. The glenoid fossa supports a neutral pose in which the distal end of the humerus points 45° posterolaterally from the body wall, intermediate between classically ‘sprawling’ and ‘parasagittal’ limb postures. Massetognathus pascuali is reconstructed as having a near‐mammalian complement of shoulder muscles, including an incipient rotator cuff (m. subscapularis, m. infraspinatus, m. supraspinatus, and m. teres minor). Based on close inspection of the morphology of the glenoid fossa, we hypothesize a posture‐driven scenario for the evolution of the therian ball‐and‐socket shoulder joint. The musculoskeletal reconstruction presented here provides the anatomical scaffolding for more detailed examination of locomotor evolution in the precursors to mammals.  相似文献   

11.
12.
Although the human digastric muscle is classified as a suprahyoid muscle, none of the digastric muscles in other mammals are classed as suprahyoid in textbooks of veterinary anatomy. The aim of this study was to describe the anatomical relationship of the digastric muscle in a marsupial, the kangaroo, and to consider factors thought to be important in leading to the different position of the muscle in quadrupeds compared with humans. Eight heads of the common wallaroo (Macropus robustus)were used in this study. They were fixed by injection of 10% formalin solution into the carotid arteries and dissected under a stereomicroscope. The digastric muscle in the common wallaroo arose from the paroccipital process of the temporal bone and inserted into the mandible but had no intermediate tendon or any connection with the hyoid bone. It was supplied by both the mandibular and facial nerves. The hyoglossus muscle attached to the inferior surface of the hyoid bone and its ventral border overlapped the mylohyoid muscle. The hypoglossal nerve passed between these two muscles. Therefore, in contrast to humans, the digastric, hyoglossus, and mylohyoid muscles in the kangaroo were all located inferior to the hyoid bone. Differences in head posture and the position of the larynx between kangaroos and humans may account for the observed difference in the digastric muscle's position relative to the hyoid bone between these species. Anat. Rec. 251:346–350, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Proximal femoral morphology and associated musculature are of special relevance to the understanding of hominoid locomotor systems. Knowledge of bone–muscle correspondence in extant hominoids forms an important comparative basis for inferring structure–function relationships in fossil hominids. However, there is still a lack of consensus on the correspondence between muscle attachment sites and surface morphology of the proximal femoral diaphysis in chimpanzees. Two alternative observations have been proposed regarding the attachment site positions of gluteus maximus (GM) and vastus lateralis (VL) relative to two prominent surface features of the proximal femoral diaphysis, the lateral spiral pilaster and the inferolateral fossa. Here, we use a combination of virtual and physical dissection in an attempt to identify the exact correspondence between muscle attachment sites and osteological features in two specimens of Pan troglodytes verus. The results show that the insertion of the GM tendon is consistently inferolateral to the lateral spiral pilaster, and that a part of the inferolateral fossa consistently forms the attachment site of the VL muscular fibers. While overall musculoskeletal features are similar in the two specimens examined in this study, GM and VL exhibit different degrees of segregation at the level of the inferolateral fossa. One specimen exhibited tendinous GM fibers penetrating the posteromedial part of VL, with both GM and VL inserting at the inferolateral fossa. In the other specimen, GM and VL were separated by a lateral intermuscular septum, which inserted into the inferolateral fossa. Variation of proximal femoral muscle attachments in chimpanzees is thus greater than previously thought. Our results indicate that a conspicuous osteological feature such as the inferolateral fossa does not necessarily correspond to the attachment site of a single muscle, but could serve as a boundary region between two muscles. Caution is thus warranted when interpreting the surface topography of muscle attachment sites and inferring locomotor functions.  相似文献   

14.
15.
Galago senegalensis is a habitual arboreal leaper that engages in rapid spinal extension during push‐off. Large muscle excursions and high contraction velocities are important components of leaping, and experimental studies indicate that during leaping by G. senegalensis, peak power is facilitated by elastic storage of energy. To date, however, little is known about the functional relationship between epaxial muscle fiber architecture and locomotion in leaping primates. Here, fiber architecture of select epaxial muscles is compared between G. senegalensis (n = 4) and the slow arboreal quadruped, Nycticebus coucang (n = 4). The hypothesis is tested that G. senegalensis exhibits architectural features of the epaxial muscles that facilitate rapid and powerful spinal extension during the take‐off phase of leaping. As predicted, G. senegalensis epaxial muscles have relatively longer, less pinnate fibers and higher ratios of tendon length‐to‐fiber length, indicating the capacity for generating relatively larger muscle excursions, higher whole‐muscle contraction velocities, and a greater capacity for elastic energy storage. Thus, the relatively longer fibers and higher tendon length‐to‐fiber length ratios can be functionally linked to leaping performance in G. senegalensis. It is further predicted that G. senegalensis epaxial muscles have relatively smaller physiological cross‐sectional areas (PCSAs) as a consequence of an architectural trade‐off between fiber length (excursion) and PCSA (force). Contrary to this prediction, there are no species differences in relative PCSAs, but the smaller‐bodied G. senegalensis trends towards relatively larger epaxial muscle mass. These findings suggest that relative increase in muscle mass in G. senegalensis is largely attributable to longer fibers. The relative increase in erector spinae muscle mass may facilitate sagittal flexibility during leaping. The similarity between species in relative PCSAs provides empirical support for previous work linking osteological features of the vertebral column in lorisids with axial stability and reduced muscular effort associated with slow, deliberate movements during anti‐pronograde locomotion.  相似文献   

16.
The aim of the present work was to analyze the regenerated muscle types I and II fibers of the soleus and gastrocnemius muscles of mice, 8 months after damage induced by ACL myotoxin (ACLMT). Animals received 5 mg/kg of ACLMT into the subcutaneous lateral region of the right hind limb, near the Achilles tendon; contralateral muscles received saline. Longitudinal and cross sections (10 μm) of frozen muscle tissue were evaluated. Eight months after ACLMT injection, both muscle types I and II fibers of soleus and gastrocnemius muscles still showed centralized nuclei and small regenerated fibers. Compared with the left muscle, the incidence of type I fibers increased in the right muscle (21% ± 03% versus 12% ± 06%, P = 0.009), whereas type II fibers decreased (78% ± 02% versus 88% ± 06%, P = 0.01). The incidence of type IIC fibers was normal. These results confirm that ACLMT induced muscle type fiber transformation from type II to type I, through type IIC. The area analysis of types I and II fibers of the gastrocnemius revealed that injured right muscles have a higher percentage of small fibers in both types I and II fibers (0–1,500 μm2) than left muscles, which have larger normal type I and II fibers (1,500–3,500 μm2). These results indicate that ACLMT can be used as an excellent model to study the rearrangement of motor units and the transformation of muscle fiber types during regeneration. Anat Rec 254:521–533, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Despite the well-established anatomy nomenclature for the marsupial skeleton, there are no names for the epipubic bone structures. Epipubic bones are paired bones articulating with the pubis and projecting cranially in the ventral body wall, present on the pelvic girdle of cynodonts, monotremes and marsupials. These bones were commonly thought to be related to pouch support in marsupials and more recently associated with locomotion. The parts of the epipubic bones have not been named and this has impeded proper morphological analysis. We analyzed the epipubic bones of 302 skeletons comprising American and Australian marsupials, as well as 27 monotreme skeletons, and dissected 10 marsupials for myological attachments analysis. We suggest the following nomenclature for the epipubic bone structures: crest for the cranial end, shaft for the body of the bone, lateral tubercle and the medial articular process. Some markings on the epipubic bone include the oblique line, pertaining to the attachment of external abdominal oblique muscle from the opposite side. The pyramidalis line is the suggested nomenclature for the pyramidalis muscle attachment and the inguinal ligament line for the inguinal ligament attachment. Regarding myology and attachments, based on dissections and review of the literature, the muscles pyramidalis, pectineus, external and internal abdominal oblique, transversus abdominis and rectus abdominis and the structures linea alba, linea semilunaris and the inguinal ligament are connected to the epipubic bone. As has been previously noted, anatomically, epipubic bones are so named due to their position (epi—above, pubic—pubis), and the same applies to structures such as the “epipubic process” or “epipubic cartilage” in amphibians and reptiles. While testing epipubic bone homology in vertebrates is beyond the scope of this work, we believe that using “epipubic bones” or epipubic cartilage/process as standardized terms for the structures found in the most cranial part of the superior ramus of the pubis would facilitate better anatomical communication. This should be valid for other similar terms, such as “epipubes” or “prepubis”, that might occur in the literature in relation to this same physiographic position, and it should also be named as epipubic. We believe that this nomenclature will help in future morphologic studies.  相似文献   

18.
The development of muscle fiber type identity in zebrafish cranial muscles   总被引:1,自引:0,他引:1  
Cranial skeletal muscles underlie breathing, eating, and eye movements. In most animals, at least two types of muscle fibers underlie these critical functions: fast and slow muscle fibers. We describe here the anatomical distribution of slow and fast twitch muscle in the zebrafish (Danio rerio) head in the adult and at an early larval stage just after feeding has commenced. We found that all but one of the cranial muscles examined contain both slow and fast muscle fibers, but the relative proportion of slow muscle in each varies considerably. As in the trunk, slow muscle fibers are found only in an anatomically restricted zone of each muscle, usually on the periphery. The relative proportion of slow and fast muscle in each cranial muscle changes markedly with development, with a pronounced decrease in the proportion of slow muscle with ontogeny. We discuss our results in relation to the functional roles of each muscle in larval and adult life and compare findings among a variety of vertebrates.  相似文献   

19.
The objective of this research was to investigate how the range of flexion and extension of the canine elbow joint is constrained by the mechanical connections and attachments of soft tissue structures. The skin, a section of deep fascia and several muscles from both forelimbs from six adult greyhounds and seven other breeds were sequentially transected or removed, over 13 steps. During each step, repeated measurements of elbow flexion and extension were recorded using a goniometer. Only marginally significant changes to the range of flexion occurred in any of the 13 steps or overall for the greyhounds. Clearly significant changes to extension occurred in several dissection steps. Removing the skin resulted in a significant increase in elbow extension of 1.7° ± 0.3 (P < 0.001) in the greyhounds and 1.6° ± 0.3 (P < 0.001) in the other breeds. Severing the deep fascia from the humerus and its connections across the elbow joint resulted in the largest significant change in elbow extension of 9.9° ± 0.3 (P < 0.001) in the greyhounds and 6.9° ± 0.7 (P < 0.001) in the other breeds. Transecting the biceps brachii m. close to the elbow resulted in an increase of 2.8° ± 0.3 (P < 0.001) in the greyhounds but a non‐significant change in the other breeds. Transecting the extensor carpi radialis m. from its origin resulted in an increase of 5.5° ± 0.4 (P < 0.001) in the greyhounds and 3.9° ± 0.7 (P < 0.001) in the other breeds. These results suggest that the collagenous framework and attachments of the skin, deep fascia, and extensor carpi radialis m., play a significant role in the function of the canine elbow by restricting it from overextension and hence stabilising it during periods of loading, in a variety of different canine breeds, and that these structures are functionally integrated into the way the forelimb supports the bodyweight separately from any involvement of muscle tone or muscle movements. Observations on the anatomical connections of the deep fascia between the cranial distal humerus and the antebrachial fascia highlighted its probable importance in relating movements between the shoulder and the carpus.  相似文献   

20.
The behavioral differences in muscle use are related to the fiber type composition of the muscles among other variables. The aim of this study was to examine the degree of heterogeneity in the fiber type composition in the rat temporalis muscle. The temporalis muscle was taken from 10‐week‐old Wistar strain male rats (n = 5). Fiber types were classified by immunohistochemical staining according to their myosin heavy chain content. The anterior temporalis revealed an obvious regional difference of the fiber type distribution, whereas the posterior temporalis was homogeneous. The deep anterior temporalis showed a predominant proportion of type IIA fibers and was the only muscle portion displaying slow type fibers (< 10%). The other two muscle portions, the superficial anterior and posterior temporalis, did not differ significantly from each other and contained mainly type IIB fibers. Moreover, the deep anterior temporalis was the only muscle portion showing slow type fibers (< 10%). In the deep portion, type IIX fibers revealed the largest cross‐sectional area (1943.1 ± 613.7 µm2), which was significantly (P < 0.01) larger than those of type IIA and I + IIA fibers. The cross‐sectional area of type IIB fibers was the largest in the remaining two muscle portions and was significantly (P < 0.01) larger than that of type IIX fibers. In conclusion, temporalis muscle in rats showed an obvious heterogeneity of fiber type composition and fiber cross‐sectional area, which suggests multiple functions of this muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号