首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was undertaken to determine if an AMPA (LY215490) or an NMDA (MK-801) glutamatergic receptor antagonist can reduce urinary tract dysfunctions related to detrusor hyperreflexia and detrusor-sphincter dyssynergia in awake, spinal cord-injured (SCI) rats. Experiments were performed on female Sprague-Dawley rats in which the spinal cord was completely transected at T(8-10) level, 2-3 weeks prior to performing an intravesical continuous infusion cystometrogram (CMG). Bladder volume threshold (VT) for inducing voiding and voiding efficiency (VE) were determined by measuring voided volumes and residual volumes (RV). After control CMGs were performed, cumulative intravenous doses of LY215490 (0.1, 1, and 10 mg/kg) or MK-801 (0.03, 0.3, and 3 mg/kg) were administered at 120-min intervals. Small doses of LY215490 (0.1 mg/kg) or MK-801 (0. 03 and 0.3 mg/kg) did not affect any parameters. A large dose (10 mg/kg) of LY215490 decreased maximal voiding pressure (MVP) by 27% and increased RV by 119% and VT by 58% but did not decrease VE. The highest cumulative dose (3 mg/kg) of MK-801 significantly increased RV by 134% and VT by 44% and markedly decreased VE by 60% and MVP by 18%. The effects of LY215490 to reduce MVP and increase VT without changing VE suggest that an AMPA receptor antagonist might be useful in treating detrusor-sphincter dyssynergia and bladder hypertrophy after SCI. The effect of MK-801 to markedly reduce VE indicates that NMDA receptor antagonists may exacerbate neurogenic bladder dysfunction in SCI patients.  相似文献   

2.
This study was undertaken to examine the role of N-methyl-d-aspartate (NMDA) and -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamatergic receptors in the regulation of urinary bladder activity in the neonatal rat. Experiments were conducted using an in vitro spinal cord-bladder (SB) preparation from 1- to 5-day-old rats or awake neonatal rats 6 and 7 days old. SB preparations were isolated under hypothermic anesthesia. Isovolumetric bladder contractions occurred spontaneously, were induced by electrical stimulation (ES) of the bladder wall or were evoked reflexly by perineal tactile stimulation (PS). MK-801 (3–30 μM), an NMDA receptor antagonist, enhanced the amplitude of spontaneous, ES- and PS-evoked contractions. Removal of the spinal cord after MK-801 abolished PS-evoked reflex contractions but did not change the amplitude of spontaneous and ES-evoked contractions. Removal of the spinal cord in the absence of MK-801 increased the amplitude of spontaneous and ES-evoked contractions, indicating that the bladder is subject to a tonic inhibitory control originating in the spinal cord. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 3–30 μM), an AMPA receptor antagonist, decreased the amplitude of PS-evoked contractions and the frequency of spontaneous contractions in the SB preparation. Removal of the spinal cord after CNQX enhanced the amplitude of spontaneous and ES-evoked contractions but abolished PS-evoked contractions. The frequency of spontaneous contractions which decreased after CNQX increased to near control levels after removal of the spinal cord. In awake neonatal rats, intraperitoneal injection of MK-801 (3 mg/kg) induced spontaneous micturition. A large dose of CNQX (30 mg/kg) decreased PS-evoked micturition volume. These results suggest that NMDA glutamatergic receptors are involved in a lumbosacral spinal inhibitory mechanism controlling bladder activity; whereas AMPA glutamatergic receptors are involved in the perineal-to-bladder reflex pathway in neonatal rats.  相似文献   

3.
The role of capsaicin-sensitive afferents in neurogenic voiding dysfunction was studied in chronic spinal cord injured rats (SCI). Cystometry and external urethral sphincter (EUS) electromyography were performed on 2 consecutive days after induction of urethane anesthesia in SCI rats 6-8 weeks after spinal cord injury. SCI rats exhibited voiding abnormalities including: non-voiding contractions (NVCs) before micturition, increased volume threshold (VT) for initiating voiding, increased amplitude and duration of voiding contractions, decreased voiding efficiency, increased residual urine, and changes in the pattern of the EUS-EMG. In SCI rats, the EUS electromyogram (EUS-EMG) consisted of more prominent tonic activity, shorter periods of bursting activity, and a reduction in the ratio of silent to active periods during bursting. These changes were more prominent during deeper levels of anesthesia on day 1. Capsaicin (125 mg/kg, s.c., 4 days before urodynamic examination) reduced VT and the number of NVCs, decreased the amplitude and duration of voiding contractions, partially normalized the pattern of EUS-EMG activity, and improved the voiding efficiency on day 1 after induction of anesthesia but not on day 2. Capsaicin treatment increased the percentage of animals (from 55% to 80%) that voided on day 1. The results indicate that capsaicin-sensitive C-fiber bladder afferents are not essential for reflex micturition in SCI rats. However, these afferents do contribute to overactivity of the bladder and detrusor sphincter dyssynergia in deeply anesthetized SCI rats.  相似文献   

4.
Chemical irritation of the lower urinary tract (LUT) of the rat increases the expression of c-fos in neurons in the dorsal horn, dorsal commissure and intermediolateral region of the spinal cord. The role of glutamatergic synapses in this response was examined using two glutamate receptor antagonists, MK-801 (an NMDA antagonist) and CNQX (an AMPA antagonist). In rats with an intact spinal cord, MK-801 (3.5 mg/kg, i.v.) administered 15 min before bladder irritation decreased (50–60%) the number of c-fos-positive cells in all regions of the cord. A smaller dose of MK-801 (0.8 mg/kg, i.v.) was ineffective. In spinal transected rats (4–7 days prior to the experiment) MK-801 (3.5 mg/kg, i.v.) decreased c-fos expression only in the medial dorsal horn. CNQX (1.2 mg/kg, i.v.) was ineffective in both preparations. These results indicate that activation of NMDA receptors at glutamate synapses in the central nervous system may play a role in the processing of nociceptive input from the LUT and may also be involved in reflex pathways mediating micturition.  相似文献   

5.
Urodynamic and pharmacological studies were performed to investigate the effect of crystalluria on the micturition reflex and the involvement of glutamatergic transmission. The rats, which were given LP-805 (100 mg/kg/day) orally for 12 days, voided crystalluria. The pH of these crystalluria (LP-805 urine) was the same as normal urine. The amount of crystals was 70-100/division magnified 400 x. The end of the crystals was sharp. Intravesical administration of LP-805 urine induced hyperreflexia of the micturition reflex in normal rats. When the infusion solution was changed to LP-805 urine from saline, the latency was reduced to 57.6+/-2.1% of control in single cystometrogram (CMG) or was reduced to 51.4+/-0.9% of control in continuous CMG. The voiding volume was reduced to 52.1+/-3.6% of control in single CMG or was reduced to 62.5+/-0.8% of control in continuous CMG. These parameters were recovered after LP-805 urine was removed. Intravesical administration of acetic acid did not induce hyperreflexia of the micturition reflex in LP-805-treated rats. These data suggest that the chronic irritation by aculeate crystals might induce hyperreflexia of the micturition reflex, which increase afferent neuronal activity.Intravenous administration of MK-801 (0.001 to 1 mg/kg) inhibited the micturition reflex in a dose-dependent manner. The ID50 in LP-805-treated rats (0.03 mg/kg i.v.) was lower than that in normal rats (0.56 mg/kg i.v.). After chronic irritation of the bladder epithelium, MK-801 sensitivity was enhanced for the micturition reflex.These data suggested that crystalluria elicit hyperreflexia in the micturition reflex that mediated with NMDA glutamatergic receptors.  相似文献   

6.
This study examined reflex mechanisms that mediate urinary bladder and external urethral sphincter (EUS) coordination in female Sprague-Dawley urethane-anesthetized rats under empty and distended bladder conditions. The bladder was distended either by a small balloon or a saline filled catheter inserted through the body of the bladder. Stimulation of the entire pudendal nerve elicited short latency (8-12 ms) responses in the EUS and short (3-8 ms) and long latency responses (16-20 ms) in contralateral pudendal nerve. The long latency pudendal-pudendal reflex was reduced by 36.7% in area during bladder distension with the balloon catheter. However, there was no significant change in the area of pudendal-EUS reflex during bladder distension. Peak amplitudes of both reflexes were reduced 32% by bladder distension. The effects of glutamatergic receptor antagonists on the reflexes were also examined. MK 801 (0.3-5mg/kg, i.v.), an N-methyl-d-aspartate glutamatergic receptor antagonist, markedly depressed the pudendal-pudendal reflex, but LY 215490 (3mg/kg, i.v.), an alpha-amino-5-methyl isoxazole-4-propionate antagonist, had a minimal inhibitory effect. Both glutamatergic receptor antagonists significantly suppressed the pudendal-EUS reflex. These results indicate that the EUS is innervated by multiple pathways and that glutamatergic excitatory transmission is important in the neural mechanisms underlying bladder-sphincter coordination in the rat.  相似文献   

7.
This study was undertaken to investigate the contribution of the forebrain to bladder overactivity induced by cerebral infarction (CI). CI was induced by left middle cerebral artery (MCA) occlusion in female SD rat. Two and a half hours after CI or a sham operation (SO) decerebration was performed in some animals to eliminate forebrain influences on voiding function. Then bladder activity was monitored during continuous infusion cystometrograms in awake rats for 2.5 h. The effects of cumulative intravenous doses of MK-801 (0.1-1.4 mg/kg), an NMDA (N-methyl-D-aspartate) glutamatergic receptor antagonist, or sulpiride (0.1-41.1 mg/kg), D(2) selective dopaminergic receptor antagonists were studied over a 1.5-h period beginning 5 h after MCA occlusion. Bladder capacity was reduced by 57.5% after CI. In CI rats decerebration increased bladder capacity by 62.5% of predecerebration capacity. In SO rats bladder capacity was reduced by 25% after decerebration. MK-801 (0.4 and 1.4 mg/kg) increased bladder capacity in CI and CI-decerebrate rats, but did not change bladder capacity in SO-decerebrate rats. MK-801 decreased (60.7%) bladder capacity in SO-nondecerebrate rats. Sulpiride (11.1 and 41.1 mg/kg) significantly increased bladder capacity in CI, CI-decerebrate, and SO-decerebrate rats, but had no effect in SO-nondecerebrate rats. These results indicate that CI-induced decrease in bladder capacity is mediated by two mechanisms: (1) upregulation of an excitatory pathway from the forebrain, an effect blocked by decerebration and (2) downregulation of a tonic inhibitory pathway from the forebrain. The latter effect which can be induced by decerebration as well as CI unmasks a D(2) dopaminergic excitatory mechanism. An NMDA excitatory mechanism also contributes to the bladder overactivity after CI, but not after decerebration.  相似文献   

8.
In rodents, noncompetitive and competitive NMDA receptor antagonists have been shown to attenuate and, in some cases, reverse tolerance to the analgesic effects of morphine. However, the ability of these same excitatory amino acid (EAA) receptor antagonists to modulate morphine dependence is controversial, and very little is known about the role of AMPA receptors in morphine dependence. LY293558, a novel, systemically active, competitive AMPA receptor antagonist and the NMDA receptor antagonists, MK-801 and/or LY235959, were evaluated in tolerant or dependent CD-1 mice. In mice rendered tolerant by morphine injection or pellet implantation, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or MK-801 (1 mg/kg per 24 h) attenuated the development of tolerance. Neither LY293558 nor MK-801 produced analgesia or altered the ED50 value of morphine. Continuous s.c. infusion of LY293558 (60 mg/kg per 24 h), MK-801 (1 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) attenuated the development of acute (3 h) morphine dependence (i.e., decreased naloxone-precipitated withdrawal jumping). In contrast, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) did not significantly attenuate the development of chronic dependence produced by morphine pellet implantation. These data indicate that the development of morphine tolerance is more sensitive to modulation by EAA receptor antagonists than is the development of morphine dependence as assessed by naloxone-precipitated withdrawal jumping.  相似文献   

9.
Kolko M  de Turco EB  Diemer NH  Bazan NG 《Neuroreport》2002,13(15):1963-1966
To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]Arachidonic acid release induced by both sPLA and glutamate was partially blocked by MK-801, indicating that the glutamate-NMDA-cPLA pathway contributes to sPLA -induced arachidonic acid release. Systemic administration of MK-801 to rats that had sPLA injected into the right striatum significantly decreased neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death.  相似文献   

10.
The role of capsaicin-sensitive bladder afferents in micturition was studied in unanesthetized chronic spinal rats. Reflex voiding in response to tactile stimulation of the perigenital region appeared 5–9 days after spinal cord injury (SCI) whereas voiding induced by bladder distension occurred 2–3 weeks after SCI. The frequency and amplitude of reflex bladder contractions recorded under isovolumetric conditions were similar in chronic spinal and urethane-anesthetized CNS-intact rats. However, cystometrograms (CMGs) performed 6–8 weeks after SCI revealed that the chronic spinal rats had larger bladder capacities (1.86 ml) than CNS-intact rats (0.48 ml) and also exhibited multiple, small-amplitude, nonvoiding bladder contractions that were not detected in CNS-intact rats. Administration of capsaicin (50 mg/kg s.c.) acutely (onset 14–40 min) suppressed reflex bladder activity induced by bladder distension or by perigenital stimulation in chronic spinal animals. However, pretreatment of chronic spinal rats with capsaicin (125 mg/kg s.c.) 4 days before the experiment did not depress voiding reflexes or change bladder capacity but did eliminate the nonvoiding contractions. Inhibition of reflex bladder contractions by mechanical stimulation of rectoanal canal or the uterine cervix-vagina was not altered by pretreatment with capsaicin. These data indicate that capsaicin-sensitive bladder afferents are not essential for the initiation of reflex micturition in chronic spinal rats. However, these afferents do contribute to hyperactivity of the bladder during the filling phase of the CMG. Thus, capsaicin-sensitive bladder afferents should be evaluated as possible targets for the pharmacological treatment of bladder hyperreflexia in patients with SCI.  相似文献   

11.
Two glutamate antagonists were tested in a rat model of complete, transient cerebral ischemia. Six days after 10 min ischemia the mean loss of hippocampal CA1 pyramidal neurones was 73%. Administration of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) antagonist NBQX (2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline) reduced the pyramidal neurone loss to 1%, 11% and 15%, when given before, immediately after or 1 h after ischemia, respectively. MK-801 (dizocilpine), a competitive NMDA antagonist gave no protection in this model. We suggest that the AMPA receptor transduction mechanisms are sensitized by ischemia and that the postischemic blockade of the main glutamatergic input to the CA1 cells with NBQX impairs the deleterious effect of "normal" postischemic excitatory transmission.  相似文献   

12.
Electrical stimulation (ten pulses of 0.5 ms, 10 V applied over 10 s at 10 Hz, 140 pA) delivered bilaterally to the prefrontal cortex or the parafascicular thalamic nucleus of freely moving rats facilitated acetylcholine release in dorsal striata, assessed by trans-striatal microdialysis. The facilitatory effects were blocked by coperfusion with 5 μM tetrodotoxin, suggesting that the release was of neuronal origin. The response of the striatal cholinergic neurons to prefrontal cortical stimulation was short-lived and required a longer period of stimulation (20 min) than the response to thalamic stimulation (4 min) to reach maximal effect. The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate glutamatergic receptor antagonist 6,7-dinitroquinoxaline-2,3-dione [DNQX; 12 nmol per side, intracerebroventricularly (i.c.v.)] and the AMPA antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (NBQX; 12 nmol per side, i.c.v. or 12.8 μM infused into the striatum), but not the NMDA-type receptor antagonist MK-801 (0.2 mg/kg, i.p.), abolished the facilitatory effect on striatal acetylcholine release evoked by stimulation of the prefrontal cortex. By contrast, DNQX or NBQX did not prevent the increase in striatal acetylcholine release evoked by parafascicular nucleus stimulation, but MK-801, in accordance with previous results, did so. MK-801 by itself lowered striatal acetylcholine output while DNQX and NBQX did not. The results provide in vivo evidence that the cerebral cortex facilitates cholinergic activity in the dorsal striatum apparently through the non-tonic activation of AMPA-type glutamatergic receptors while the parafascicular nucleus does this through tonic activation of NMDA receptors. Both glutamate receptor types are probably located in the striatum. The overall results suggest that the two pathways operate independently to regulate striatal cholinergic activity through distinct mechanisms.  相似文献   

13.
Microinjection of nicotine or glutamate into the dorsal facial area (DFA) of the medulla increases blood flow of common carotid artery (CCA). Whether there is a causal relationship between these two events is not known. Various agonists and antagonists for the nicotinic and glutamatergic receptors were microinjected through a four-barrel tubing into the DFA of anesthetized cats. Microinjections of nicotine [a non-selective nicotinic acetylcholine receptor (nAChR) agonist], choline (a selective α7-nAChR agonist), glutamate or KCl induced a modest increase in CCA blood flow. The nicotine- and choline-induced increases were reduced by α-bungarotoxin (an α7-nAChR antagonist) as well as MK-801 (a non-competitive NMDA receptor antagonist) or glutamate diethylester (a competitive AMPA/kainate receptor antagonist). The glutamate or KCl-induced increases were blocked by MK-801 and glutamate diethylester, but not by α-bungarotoxin. In conclusion, activation of nAChRs primarily via α7-nAChR caused a release of glutamate, which in turn activated NMDA and AMPA receptors, while cholinergic substance was not released into the DFA to activate the nicotinic receptor.  相似文献   

14.
Daily injection of the dopamine D(2) receptor antagonist haloperidol is associated with the development of catalepsy sensitization in rats, which leads to a day to day increase of rigor and akinesia. The process of catalepsy sensitization incorporates different learning stages. Here we investigated the mechanisms underlying the consolidation of catalepsy sensitization. In particular, we asked whether NMDA- and non-NMDA (AMPA- and Kainate) receptors play a role in the consolidation of catalepsy sensitization. Accordingly, rats received post-training injections of the NMDA receptor antagonist MK-801 (single injection of either 0.1mg/kg or 0.25mg/kg; or a double injection of 0.1mg/kg immediately and 30 min after test cessation) or of the AMPA/Kainate receptor antagonist GYKI 52466 (single injection of 5mg/kg). Our results showed that the consolidation of catalepsy sensitization was decelerated by both glutamatergic AMPA/Kainate- and NMDA-receptor antagonists. With the higher MK-801 dosage, the deceleration was stronger, suggesting a dose dependent mechanism. We hence affirmed a role for the ionotropic glutamate receptors in the consolidation process of catalepsy sensitization.  相似文献   

15.
The participation of glutamatergic circuits of the ventral basal ganglia in feeding-related regulatory mechanisms has been extensively indicated in primate and rodent species. In avian species, it has been shown that ICV injections of MK-801 or of CNQX increase food intake and reduce the latency of feeding initiation in free-feeding pigeons. In the present study, the effects of local injections of MK-801 (6 nmol), CNQX (160 nmol) or vehicle (0.2 microl) into a number of ventral striatopallidal nuclei on feeding, drinking and non-ingestive (sleep, preening) spontaneous behaviors were investigated in free-feeding pigeons (Columba livia). Intense feeding responses associated with an increased duration of feeding behavior were consistently recorded after injections of MK-801 or CNQX into the medial two-thirds of the tuberculum olfactorium (TO), the ventral aspect of lobus parolfactorium (LPOv), or the ventral pallidum (VP). In contrast, the latency of feeding initiation was unaffected by these treatments. No changes in drinking, preening or sleep responses were observed after drug injections into the TO/LPOv/VP area. These data indicate that glutamate-mediated circuits in the TO/LPOv/VP area can play an inhibitory role in feeding behavior in this species, contributing to the conclusion of a feeding bout, thus delaying satiation processes, and that these effects may be mediated by AMPA and NMDA receptors. Additionally, our data support the notion that a region functionally and anatomically comparable to the mammalian accumbens shell may be present in the TO/LPOv/VP region of the pigeon, and that the existence of a glutamatergic circuit in the ventral striatum controlling feeding-related phenomena may represent a highly conserved attribute throughout the amniote's evolution.  相似文献   

16.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy. J. Neurosci. Res. 51:583–592, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The electrophysiological effects of the non-competitive (NMDA) antagonist (+)-MK801 (MK-801) on nigrostriatal and mesoaccumbal dopaminergic (DA) neurons were evaluated in chloral hydrate-anesthetized rats. MK-801 (0.05–3.2 mg/kg, i.v.) stimulated the firing rates of 14 (74%) of 19 nigrostriatal DA (NSDA) neurons and all 16 mesoaccumbal DA (MADA) neurons tested. Stimulatory effects of the drug were more prominent on MADA neurons. Interspike interval analysis revealed that MK-801 also regularized DA neuronal firing pattern. Acute brain hemitransection between the midbrain and forebrain attenuated the stimulatory effects of MK-801 on firing rate and blocked the effects on firing pattern. Similar to MK-801, hemitransection itself increased NSDA and MADA cell firing rates and regularized firing pattern. Both i.v. and iontophoretic MK-801 blocked the excitatory effects of iontophoretic NMDA but did not effect excitations caused by the non-NMDA glutamatergic receptor agonists quisqualate and kainate. Iontophoretic MK-801 had no effect alone. These results suggest that the excitatory effects of i.v. MK-801 on DA neuronal activity are not due to direct actions on DA neurons. Glutamatergic projections originating anterior to the hemistransection appear to play a role in the effectrs of MK-801 on DA neuronal activity.  相似文献   

18.
Urinary bladder activity of the neonatal rat is tonically inhibited by neural input from the spinal cord passing through axons in the pelvic nerve. The present study was undertaken to examine the organization of this inhibitory mechanism using in vitro spinal cord-bladder preparations of neonatal rats in which the lumbosacral dorsal roots (DRs) or ventral roots (VRs) were transected. Isovolumetric bladder contractions occurring spontaneously or induced by electrical stimulation of the bladder wall (ES-BW) were measured. In DR transected (DRT) preparations, removal of the spinal cord significantly enhanced (50-59%) the amplitude of spontaneous and ES-BW-evoked bladder contractions; whereas in VR transected (VRT) preparations removal of the spinal cord produced only a small enhancement (6.7-12%). However, in VRT preparations, electrical stimulation of the dorsal roots reduced the amplitude of spontaneous contractions, an effect blocked by a nicotinic ganglionic blocking agent, hexamethonium. In DRT preparations, MK-801 enhanced the amplitude of spontaneous and ES-BW-evoked contractions. These results demonstrate that bladder activity of the neonatal rat is tonically inhibited by input from the lumbosacral spinal cord via parasympathetic pathways in the pelvic nerve. The inhibitory outflow is not dependent upon afferent input to the cord but is facilitated by NMDA glutamatergic transmission in the spinal cord. Antidromic activation of afferent axons also appears to induce inhibition in the bladder via a mechanism involving nicotinic cholinergic receptors. These findings suggest that spinal and peripheral inhibitory mechanisms may play an important role in controlling voiding in the neonatal rat.  相似文献   

19.
Cognitive dysfunction plays an important role in mental disorders like schizophrenia and may involve inadequate glutamatergic signalling in different regions of the brain, mediated by e.g. glutamatergic N-methyl-D-aspartate (NMDA) receptors. In rodents, NMDA receptor antagonists often increase motor activity; in addition they induce a more primitive and undifferentiated behavioural pattern, which we believe may correspond to some of the cognitive defects seen in schizophrenia. In the present study, the movement pattern of mice treated with the uncompetitive NMDA receptor antagonist MK-801 in conjunction with six antipsychotic agents, some with reported clinical effects on cognition, was characterised and quantified. The classical neuroleptic drugs chlorpromazine and trifluoperazine, the atypical antipsychotic agents ziprasidone and olanzapine, the gamma-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor potentiator CX516 and the serotonin (5-HT)2A-antagonist M100907 were tested. In accordance with previous observations, MK-801 was found to induce a primitive and monotonous behavioural pattern dominated by forward locomotion; spatial movements, the number of switches between the states moving and stationary, and rearing frequency were reduced. All test substances counteracted MK-801-induced hyperactivity, but differed in their ability to improve behavioural quality. Chlorpromazine and trifluoperazine were unable to restore behavioural diversity while ziprasidone, olanzapine, CX516 and M100907 restored it to varying degrees. A striking similarity in movement pattern was seen between the hypoglutamatergic mice treated with the AMPA-receptor agonist CX516, and those receiving the 5HT2A-antagonist M100907.  相似文献   

20.
These studies examined changes in the pituitary adenylate cyclase activating polypeptide (PACAP) expression in micturition reflex pathways after spinal cord injury (SCI) of various durations. In spinal-intact animals, PACAP immunoreactivity (IR) was expressed in fibers in the superficial dorsal horn in all segmental levels examined (L1, L2, L4-S1). Bladder-afferent cells (35-45%) in the dorsal root ganglia (DRG; L1, L2, L6, S1) from spinal-intact animals also exhibited PACAP-IR. After SCI (6 weeks), PACAP-IR was dramatically increased in spinal segments and DRG (L1, L2, L6, S1) involved in micturition reflexes. The density of PACAP-IR was increased in the superficial laminae (I-II) of the L1, L2, L6, and S1 spinal segments. No changes in PACAP-IR were observed in the L4-L5 segments. Staining was also dramatically increased in a fiber bundle extending ventrally from Lissauer's tract (LT) in lamina I along the lateral edge of the dorsal horn to the sacral parasympathetic nucleus (SPN) in the L6-S1 spinal segments (lateral collateral pathway of Lissauer, LCP). After SCI (range 48 h to 6 weeks), PACAP-IR in cells in the L1, L2, L6, and S1 DRG significantly (P < or = 0.001) increased and the percentage of bladder-afferent cells expressing PACAP-IR also significantly (P < or = 0.001) increased (70-92%). No changes were observed in the L4-L5 DRG. PACAP-IR was reduced throughout the urothelium and detrusor smooth muscle whole mounts after SCI. These studies demonstrate changes in PACAP expression in micturition reflex pathways after SCI that may contribute to urinary bladder dysfunction or reemergence of primitive voiding reflexes after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号