首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hox genes specify vertebral types in the presomitic mesoderm   总被引:3,自引:0,他引:3       下载免费PDF全文
We show here that expression of Hoxa10 in the presomitic mesoderm is sufficient to confer a Hox group 10 patterning program to the somite, producing vertebrae without ribs, an effect not achieved when Hoxa10 is expressed in the somites. In addition, Hox group 11-dependent vertebral sacralization requires Hoxa11 expression in the presomitic mesoderm, while their caudal differentiation requires that Hoxa11 is expressed in the somites. Therefore, Hox gene patterning activity is different in the somites and presomitic mesoderm, the latter being very prominent for Hox gene-mediated patterning of the axial skeleton. This is further supported by our finding that inactivation of Gbx2, a homeobox-containing gene expressed in the presomitic mesoderm but not in the somites, produced Hox-like phenotypes in the axial skeleton without affecting Hox gene expression.  相似文献   

3.
4.
Early stages of chick somite development   总被引:17,自引:0,他引:17  
We report on the formation and early differentiation of the somites in the avian embryo. The somites are derived from the mesoderm which, in the body (excluding the head), is subdivided into four compartments: the axial, paraxial, intermediate and lateral plate mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental pattern of the body. They are formed in pairs by epithelialization, first at the cranial end of the paraxial mesoderm, proceeding caudally, while new mesenchyme cells enter the paraxial mesoderm as a consequence of gastrulation. After their formation, which depends upon cell-cell and cell-matrix interactions, the somites impose segmental pattern upon peripheral nerves and vascular primordia. The newly formed somite consists of an epithelial ball of columnar cells enveloping mesenchymal cells within a central cavity, the somitocoel. Each somite is surrounded by extracellular matrix material connecting the somite with adjacent structures. The competence to form skeletal muscle is a unique property of the somites and becomes realized during compartmentalization, under control of signals emanating from surrounding tissues. Compartmentalization is accompanied by altered patterns of expression of Pax genes within the somite. These are believed to be involved in the specification of somite cell lineages. Somites are also regionally specified, giving rise to particular skeletal structures at different axial levels. This axial specification appears to be reflected in Hox gene expression. MyoD is first expressed in the dorsomedial quadrant of the still epithelial somite whose cells are not yet definitely committed. During early maturation, the ventral wall of the somite undergoes an epithelio-mesenchymal transition forming the sclerotome. The sclerotome later becomes subdivided into rostral and caudal halves which are separated laterally by von Ebner's fissure. The lateral part of the caudal half of the sclerotome mainly forms the ribs, neural arches and pedicles of vertebrae, whereas within the lateral part of the rostral half the spinal nerve develops. The medially migrating sclerotomal cells form the peri-notochordal sheath, and later give rise to the vertebral bodies and intervertebral discs. The somitocoel cells also contribute to the sclerotome. The dorsal half of the somite remains epithelial and is referred to as the dermomyotome because it gives rise to the dermis of the back and the skeletal musculature. The cells located within the lateral half of the dermomyotome are the precursors of the muscles of the hypaxial domain of the body, whereas those in the medial half are precursors of the epaxial (back) muscles. Single epithelial cells at the cranio-medial edge of the dermomyotome elongate in a caudal direction, beneath the dermomyotome, and become anchored at its caudal margin. These post-mitotic and muscle protein-expressing cells form the myotome. At limb levels, the precursors of hypaxial muscles undergo an epithelio-mesenchymal transition and migrate into the somatic mesoderm, where they replicate and later differentiate. These cells express the Pax-3 gene prior to, during and after this migration. All compartments of the somite contribute endothelial cells to the formation of vascular primordia. These cells, unlike all other cells of the somite, occasionally cross the midline of the developing embryo. We also suggest a method for staging somites according to their developmental age.  相似文献   

5.
6.
The metameric pattern of the axial skeleton is established during embryogenesis by somite formation from the unsegmented paraxial mesoderm (presomitic mesoderm). Here, we have investigated the morphology of the anterior presomitic mesoderm of chick embryos using scanning electron microscopy. We found periodically arranged transverse clefts in the anterior region of the presomitic mesoderm. These gaps can be regarded as physical boundaries between prospective somites in the determined zone of the presomitic mesoderm. This study provides additional evidence suggesting that prospective somite boundaries are not only marked by defined zones of gene expression, but are also accompanied by changes in cellular morphology that give rise to identifiable morphological segments.  相似文献   

7.
From somites to vertebral column.   总被引:7,自引:0,他引:7  
We report on the development and differentiation of the somites with respect to vertebral column formation in avian and human embryos. The somites, which are made up of different compartments, establish a segmental pattern which becomes transferred to adjacent structures such as the peripheral nervous system and the vascular system. Each vertebra arises from three sclerotomic areas. The paired lateral ones give rise to the neural arches, the ribs and the pedicles of vertebrae, whereas the vertebral body and the intervening disc develop from the axially-located mesenchyme. The neural arches originate from the caudal half of one somite, whereas the vertebral body is made up of the adjacent parts of two somites. Interactions between notochord and axial mesenchyme are a prerequisite for the normal development of vertebral bodies and intervening discs. The neural arches form a frame for the neural tube and spinal ganglia. The boundary between head and vertebral column is located between the 5th and 6th somites. In the human embryo, proatlas, body of the atlas segment, and body of the axis fuse to form the axis.  相似文献   

8.
Development of somite cells is orchestrated by two regulatory processes. Differentiation of cells from the various somitic compartments into different anlagen and tissues is regulated by extrinsic signals from neighboring structures such as the notochord, neural tube, and surface ectoderm. Morphogenesis of these anlagen to form specific structures according to the segmental identity of each somite is specified by segment-specific positional information, based on the Hox-code. It has been shown that following experimental rotation of presomitic mesoderm or newly formed somites, paraxial mesodermal cells adapt to the altered signaling environment and differentiate according to their new orientation. In contrast, presomitic mesoderm or newly formed somites transplanted to different segmental levels keep their primordial segmental identity and form ectopic structures according to their original position. To determine whether all cells of a segment, including the dorsal and ventral compartment, share the same segmental identity, presomitic mesoderm or newly formed somites were rotated and transplanted from thoracic to cervical level. These experiments show that cells from all compartments of a segment are able to interpret extrinsic local signals correctly, but form structures according to their original positional information and maintain their original Hox expression in the new environment.  相似文献   

9.
10.
11.
Specification and segmentation of the paraxial mesoderm   总被引:4,自引:0,他引:4  
  相似文献   

12.
Primary segmentation in vertebrates is considered to be an intrinsic property of the presomitic paraxial mesoderm controlled by a number of interconnected oscillating signals. Re-segmentation, in contrast, has been shown to depend on signals from the axial structures. Here we report the requirement of the neural tube for maintenance but not formation of primary segmentation in chick embryos. Unilateral removal of the neural tube, next to the anterior presomitic mesoderm, caused disturbed development of the neural arches and the spinous processes. But already 24 h postsurgery, the sclerotome showed loss of primary segmentation in the craniocaudal axis. Cells strongly expressing twist and not showing any segmentation were located dorsomedially between the remaining left half of the neural tube and the right side dermomyotome, which frequently was truncated medially.  相似文献   

13.
Somitogenesis involves the segmentation of the paraxial mesoderm into units along the anteroposterior axis. Here we show a role for Eph and ephrin signaling in the patterning of presomitic mesoderm and formation of the somites. Ephrin-A-L1 and ephrin-B2 are expressed in an iterative manner in the developing somites and presomitic mesoderm, as is the Eph receptor EphA4. We have examined the role of these proteins by injection of RNA, encoding dominant negative forms of Eph receptors and ephrins. Interruption of Eph signaling leads to abnormal somite boundary formation and reduced or disturbed myoD expression in the myotome. Disruption of Eph family signaling delays the normal down-regulation of her1 and Delta D expression in the anterior presomitic mesoderm and disrupts myogenic differentiation. We suggest that Eph signaling has a key role in the translation of the patterning of presomitic mesoderm into somites.  相似文献   

14.
The development of the avian vertebral column   总被引:5,自引:0,他引:5  
Segmentation of the paraxial mesoderm leads to somite formation. The underlying molecular mechanisms involve the oscillation of ”clock-genes” like c-hairy-1 and lunatic fringe indicative of an implication of the Notch signaling pathway. The cranio-caudal polarity of each segment is already established in the cranial part of the segmental plate and accompanied by the expression of genes like Delta1, Mesp1, Mesp2, Uncx-1, and EphA4 which are restricted to one half of the prospective somite. Dorsoventral compartmentalization of somites leads to the development of the dermomyotome and the sclerotome, the latter forming as a consequence of an epithelio-to-mesenchymal transition of the ventral part of the somite. The sclerotome cells express Pax-1 and Pax-9, which are induced by notochordal signals mediated by sonic hedgehog (Shh) and noggin. The craniocaudal somite compartmentalization that becomes visible in the sclerotomes is the prerequisite for the segmental pattern of the peripheral nervous system and the formation of the vertebrae and ribs, whose boundaries are shifted half a segment compared to the sclerotome boundaries. Sclerotome development is characterized by the formation of three subcompartments giving rise to different parts of the axial skeleton and ribs. The lateral sclerotome gives rise to the laminae and pedicles of the neural arches and to the ribs. Its development depends on signals from the notochord and the myotome. The ventral sclerotome giving rise to the vertebral bodies and intervertebral discs is made up of Pax-1 expressing cells that have invaded the perinotochordal space. The dorsal sclerotome is formed by cells that migrate from the dorso-medial angle of the sclerotome into the space between the roof plate of the neural tube and the dermis. These cells express the genes Msx1 and Msx2, which are induced by BMP-4 secreted from the roof plate, and they later form the dorsal part of the neural arch and the spinous process. The formation of the ventral and dorsal sclerotome requires directed migration of sclerotome cells. The regionalization of the paraxial mesoderm occurs by a combination of functionally Hox genes, the Hox code, and determines the segment identity. The development of the vertebral column is a consequence of a segment-specific balance between proliferation, apoptosis and differentiation of cells. Accepted: 25 May 2000  相似文献   

15.
To test the significance of cyclic Notch activity for somite formation in mice, we analyzed embryos expressing activated Notch (NICD) throughout the presomitic mesoderm (PSM). Embryos expressing NICD formed up to 18 somites. Expression in the PSM of Hes7, Lfng, and Spry2 was no longer cyclic, whereas Axin2 was expressed dynamically. NICD expression led to caudalization of somites, and loss of Notch activity to their rostralization. Thus, segmentation and anterior-posterior somite patterning can be uncoupled, differential Notch signaling is not required to form segment borders, and Notch is unlikely to be the pacemaker of the segmentation clock.  相似文献   

16.
We have studied the kinetics of somite cells with an antibody against proliferating cell nuclear antigen (PCNA/cyclin) in human and chick embryos, and with the BrdU anti-BrdU method in chick embryos, to investigate whether the metameric pattern of the developing vertebral column can be explained by different proliferation rates. Furthermore we applied antibodies against differentiation markers of chondrogenic and myogenic cells of the somites in order to study the correlation between proliferation and differentiation. There are no principal differences in the proliferation pattern of the vertebral column between human and chick embryos. In all stages examined, the cell density is higher in the caudal sclerotome halves than in the cranial halves. Laterally, the caudal sclerotome halves, which give rise to the neural arches, are characterized by a higher proliferative activity than the cranial halves. Although there is a high variability, the labelling indices show significant differences between the two halves with both proliferation markers. With the onset of chondrogenic differentiation, only the perichondrial cells retain a high proliferation rate. During fetal development, the neural arches and their processes grow appositionally. Even at the earliest stages, there is practically no immunostaining for PCNA or BrdU in the desmin-positive myotome cells of human and chick embryos. Axially, a higher proliferation rate is found in the condensed mesenchyme of the anlagen of the intervertebral discs than in the anlagen of the vertebral bodies. During fetal development, cells at the borders between vertebral bodies and intervertebral discs proliferate, indicating appositional growth. Our results show that local differences in the proliferation rates of the paraxial mesoderm exist, and may be an important mechanism for the establishment of the metameric pattern of the vertebral column in human and chick embryos.  相似文献   

17.
Background : In the vertebrate embryo, skeletal muscle and the axial skeleton arise from the somites. Patterning of the somites into the respective somite compartments, namely dermomyotome, myotome, and sclerotome, depends on molecular signals from neighboring structures, including surface ectoderm, neural tube, notochord, and lateral plate mesoderm. A potential role of the intermediate mesoderm, notably the Wolffian or nephric duct, in somite development is poorly understood. Results : We studied somite compartmentalization as well as muscular and skeletal development after surgical ablation of the early Wolffian duct anlage, which lead to loss of the Wolffian duct and absence of the mesonephros, whereas Pax2 expression in the nephrogenic mesenchyme was temporarily maintained. We show that somite compartments, as well as the somite derivatives, skeletal muscle and the cartilaginous skeleton, develop normally in the absence of the Wolffian duct. Conclusions : Our results indicate that development of the musculoskeletal system is independent of the Wolffian duct as a signaling center. Developmental Dynamics 242:941–948, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The growth and maintenance of the blood and lymphatic vascular systems is to a large extent controlled by members of the vascular endothelial growth factor (VEGF) family via the tyrosine kinase receptors (VEGFRs) expressed in angioblastic cells. Here, we analyzed the Quek1 (VEGFR-2) expression pattern by whole mount in situ hybridization during quail development. During early embryogenesis, Quek1 expression was detected at the caudal end of the blastoderm and primitive streak and in the head paraxial mesoderm. In somites, expression was observed from HH-stage 9 onwards in the dorsolateral region of both the forming and recently formed somites. During somite maturation, expression persists in the lateral portion of the somitic compartments, the dermomyotome and the sclerotome. Additionally, a second expression domain in the maturing somite was observed in the medial part of the sclerotome adjacent to the neural tube. This expression domain extended medially and dorsally and surrounded the neural tube during later stages. In the notochord, expression was observed from HH-stage 23 onwards. In the limb bud, expression was initiated in the mesenchyme at HH-stage 17. During organogenesis, expression was detected in the pharyngeal arches and in the anlagen of the esophagus, trachea, stomach, lungs, liver, heart and gut. Expression was also seen in feather buds from day 7 onwards. Our results confirm the angiogenic potential of the mesoderm and suggest that VEGFR-2 expressing cells represent multiple pools of mesodermal precursors of the hematopoietic and angiopoietic lineages.  相似文献   

19.
20.
The recessive mouse mutant rib-vertebrae (rv) affects the morphogenesis of the axial skeleton. The phenotype is characterized by vertebral defects such as fusion of adjacent segments, hemivertebrae, or open neural arches and rib defects including fusions, forked ribs, and additional ribs. We have analyzed this mutant in detail and are able to show that defective somite patterning underlies the vertebral malformations. The rv mutation leads to an elongation of the presomitic mesoderm and a disruption of the anterior-posterior polarization of somites, as indicated by the abnormal expression of Pax1 and Mox1. Somites are irregular in size but the overall formation of somites appears unaffected. These changes are reminiscent of somite defects obtained in loss of function alleles of the Delta-Notch pathway. Expression of the Notch pathway components Delta-like-1 (Dll1) and lunatic fringe (Lfng) are altered in rv mutants. To investigate possible interactions of rv with components of the Notch pathway, we crossed rv into Dll1(lacZ). Double heterozygous (rv/+; Dll1(lacZ)/+) mice show vertebral defects and homozygous animals with one inactive Dll1 allele (rv/rv; Dll1(lacZ)/+) exhibit a dramatic increase in phenotypic severity, indicating that rv and Dll1 genetically interact. We have mapped rv to a region on chromosome 7 that is syntenic to human chromosomes 11p, 10q, and 11p. rv is phenotypically similar to human vertebral malformations syndromes and can serve as a model for these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号