首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Considerable variation exists between people in the muscle response to resistance training, but there are numerous ways muscle might adapt to overload that might explain this variable response. Therefore, the aim of this study was to quantify the range of responses concerning the training-induced change in maximum voluntary contraction (MVC) knee joint torque, quadriceps femoris (QF) maximum muscle force (F), physiological cross-sectional area (PCSA) and specific tension (F/PCSA). It was hypothesized that the variable change in QF specific tension between individuals would be less than that of MVC. Fifty-three untrained young men performed progressive leg-extension training three times a week for 9 weeks. F was determined from MVC torque, voluntary muscle activation level, antagonist muscle co-activation and patellar tendon moment arm. QF specific tension was established by dividing F by QF PCSA, which was calculated from the ratio of QF muscle volume to muscle fascicle length. MVC torque increased by 26 ± 11% (P < 0.0001; range −1 to 52%), while F increased by 22 ± 11% (P < 0.0001; range −1 to 44%). PCSA increased by 6 ± 4% (P < 0.001; range −3 to 18%) and specific tension increased by 17 ± 11% (P < 0.0001; range −5 to 39%). In conclusion, training-induced changes in F and PCSA varied substantially between individuals, giving rise to greater inter-individual variability in the specific tension response compared to that of MVC. Furthermore, it appears that the change in specific tension is responsible for the variable change in MVC.  相似文献   

2.
Aim: The present study investigated whether in vivo human quadriceps femoris (QF) muscle specific tension changed following strength training by systematically determining QF maximal force and physiological cross-sectional area (PCSA). Methods: Seventeen untrained men (20 ± 2 years) performed high-intensity leg-extension training three times a week for 9 weeks. Maximum tendon force (Ft) was calculated from maximum voluntary contraction (MVC) torque, corrected for agonist and antagonist muscle activation, and moment arm length (dPT) before and after training. QF PCSA was calculated as the sum of the four component muscle volumes, each divided by its fascicle length. Dividing Ft by the sum of the component muscle PCSAs, each multiplied by the cosine of the respective fascicle pennation angle, provided QF specific tension. Results: MVC torque and QF activation increased by 31% (P < 0.01) and 3% (P < 0.05), respectively, but there was no change in antagonist co-activation or dPT. Subsequently, Ft increased by 27% (P < 0.01). QF volume increased by 6% but fascicle length did not change in any of the component muscles, leading to a 6% increase in QF PCSA (P < 0.05). Fascicle pennation angle increased by 5% (P < 0.01) but only in the vastus lateralis muscle. Consequently, QF specific tension increased by 20% (P < 0.01). Conclusion: An increase in human muscle specific tension appears to be a real consequence of resistance training rather than being an artefact of measuring errors but the underlying cause of this phenomenon remains to be determined.  相似文献   

3.
The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P < 0.05) after 0 and 24 h, respectively, compared with control. The rate of SR Ca2+ uptake at 800 nM [Ca2+]free was lower (P < 0.05) after 0 h (2.5 μmol Ca2+ g prot−1 min−1) than for all other time points (24 h: 5.1 μmol Ca2+ g prot−1 min−1). However, SR Ca2+ release rate was not affected. Plasma myoglobin was sixfold higher (P < 0.05) immediately after the game, but normalised 24 h after the game. Quadriceps muscle soreness (0–10 VAS-scale) was higher (P < 0.05) after 0 h (3.6), 24 h (1.8), 48 h (1.1) and 72 h (1.4) compared with control (0.1). Muscle glycogen was 57 and 27% lower (P < 0.001) 0 and 24 h after the game compared with control (193 and 328 vs. 449 mmol kg d w−1). In conclusion, maximal voluntary contraction force and SR Ca2+ uptake were impaired and muscle soreness was elevated after a high-level soccer game, with faster recovery of SR function in comparison with MVC force, soreness and muscle glycogen.  相似文献   

4.
Summary The effects of 21 days voluntary leg (plaster) immobilization on the mechanical properties of the triceps surae have been studied in 11 young female subjects, mean age 19.4 years. The results show that during the period of immobilization the mean time to peak tension (TPT) and half relaxation time (1/2RT) and tension (Pt) of the maximal twitch increased significantly (p<0.001) but the effects were short lived. Maximal tension and contraction times of the twitch recovered within 2–14 days following the removal of the plaster cast. The electrically evoked tetanic tensions at 10 Hz and 20 Hz did not change significantly (p>0.1) during immobilization, but the 50 Hz tetanic tension (P°50) and maximal voluntary contraction (MVC) were reduced (p<0.05). The fall in P°50 and MVC was associated with 10% decrease in the estimated muscle (plus bone) cross-sectional area. The relative (%) change in P°50 and MVC following immobilization was related to the initial physiological status (as indicated by the response of the triceps surae to a standard fatigue test prior to immobilization) of the muscle. The rate of rise and recovery fall of the tetanus were slightly but significantly (p<0.01) reduced on day 7 of immobilization, but thereafter remained constant. The isokinetic properties of the triceps surae as reflected in the measured torque/velocity relation of the muscle in 4 subjects did not change significantly if account was taken of the slight degree of atrophy present following immobilization. It was concluded that short term voluntary leg immobilization produces atrophy and some loss of isometric twitch and tetanic function, but has little effect on the isokinetic properties of the triceps surae. The changes in the twitch characteristics during and immediately following immobilization may be indicative of a prolongation of the active state of the muscle.  相似文献   

5.
This study compared between maximal voluntary (VOL) and electrically stimulated (ES) isometric contractions of the elbow flexors for changes in indirect markers of muscle damage to investigate whether ES would induce greater muscle damage than VOL. Twelve non-resistance-trained men (23–39 years) performed VOL with one arm and ES with the contralateral arm separated by 2 weeks in a randomised, counterbalanced order. Both VOL and ES (frequency 75 Hz, pulse duration 250 μs, maximally tolerated intensity) exercises consisted of 50 maximal isometric contractions (4-s on, 15-s off) of the elbow flexors at a long muscle length (160°). Changes in maximal voluntary isometric contraction torque (MVC), range of motion, muscle soreness, pressure pain threshold and serum creatine kinase (CK) activity were measured before, immediately after and 1, 24, 48, 72 and 96 h following exercise. The average peak torque over the 50 isometric contractions was greater (P < 0.05) for VOL (32.9 ± 9.8 N m) than ES (16.9 ± 6.3 N m). MVC decreased greater and recovered slower (P < 0.05) after ES (15% lower than baseline at 96 h) than VOL (full recovery). Serum CK activity increased (P < 0.05) only after ES, and the muscles became more sore and tender after ES than VOL (P < 0.05). These results showed that ES induced greater muscle damage than VOL despite the lower torque output during ES. It seems likely that higher mechanical stress imposed on the activated muscle fibres, due to the specificity of motor unit recruitment in ES, resulted in greater muscle damage.  相似文献   

6.
Purpose

This study investigated whether laser displacement mechanomyography (MMG) could detect acute injury of low back muscles following strenuous eccentric exercise.

Methods

Sixteen healthy adults (10 females, 6 males, mean ± standard deviation, age 21 ± 2.90 years, BMI 21.63 ± 1.99 kg/m2), without low back pain or low back resistance training, were recruited. Strength [maximum voluntary isometric contraction force (MVC)], pain intensity [visual analogue scale (VAS)], biological markers of muscle injury (serum myoglobin and creatine kinase levels), and MMG-derived muscle contractile properties were measured at seven different time points. Pre-exercise ‘control’ measures were taken prior to a strenuous eccentric exercise task, followed by an immediate post-exercise measurement and further four consecutive daily measurements. A final post-exercise measurement was completed on day 12 post-exercise.

Results

Compared to pre-exercise control, MVC was lower immediately post-exercise (day 1) and on days 2–3. VAS scores were higher post-exercise (day 1) and from days 2–5. Myoglobin was significantly higher on day 4, whilst creatine kinase was significantly higher on days 4–5. MMG-derived maximum muscle displacement (Dmax) was significantly diminished post-exercise (day 1) at all vertebral segments (L1-MT), while contraction velocity (Vc) was significantly slower at all segments except sacral multifidus. Vc recovered rapidly (by day 2), while mid-lumbar Dmax resolved on day 12. Dmax had moderate correlations with MVC (R = 0.61) and VAS (R = − 0.50), and low correlations with myoglobin (R = − 0.36).

Conclusion

MMG appears capable of detecting changes in muscle contractile properties associated with an acute bout of low back pain.

  相似文献   

7.
This study was conducted to test the hypothesis that inhibitory reflexes from respiratory centres in the brain or respiratory muscles limit the central motor drive to limb muscles during exhaustive exercise in chronic hypoxia. Experiments were performed on five members of an expedition to the Himalayas, following 56–81 days at altitudes of 5200–7500 m. During the last minute of exhaustive maximal two-legged cycling with and without 4% CO2 inhalation performed on different days, repeated maximal voluntary handgrip contractions (MVC) over 60 s (5 s contraction, 5 s rest; ×6) were performed at rest and exhaustive exercise. MVC or rate of decay of MVC was unaffected by simultaneous engagement of a major fraction of the muscle mass (leg muscles) and a very high pulmonary ventilation. With 4% CO2, peak pulmonary ventilation during the exhaustive exercise increased further by 41 L min-1 (140–181 L min-1; P<0.05) without affecting the handgrip strength. These findings suggest that during exhaustive exercise of large muscle groups in chronic hypoxia, both maximal voluntary contraction force and dynamic muscle contractile force are not limited by extreme activation of respiratory centres or muscles.  相似文献   

8.
The aim of this study was to compare the possible changes in muscle activation level between a first and second bout of damaging eccentric exercise performed at 2 weeks interval (i.e. repeated bout effect). To that purpose, ten physically active males took part in this study. The eccentric exercise consisted of 10 sets of 12 maximal voluntary contractions (MVC) produced by the knee extensors during movements performed at a constant speed of 160°s−1. Changes in voluntary and electrically evoked torque in concentric and/or isometric conditions were assessed at the following time points: pre-exercise, and 2 min, 1 and 24 h after each eccentric exercise. At the same time points, voluntary activation was quantified by the superimposed electrical stimulation technique. Muscle soreness and plasma CK activity were measured within 48 h after the eccentric exercise. The results showed that the decrease in eccentric peak torque was linear throughout the exercise protocol. At the end of bouts 1 and 2, torque was significantly reduced by 27.7 ± 9.1 and 23.4 ± 11.2, respectively, with no difference between bouts (P > 0.05). At 24 h post-exercise, a lower reduction (P < 0.05) in MVC (17.8 ± 5.4%) and electrically evoked (16.7 ± 4.6%) isometric torque was observed for bout 2. In contrast, no statistical difference was found in the deficit in voluntary activation between the two bouts. In conclusion, our results indicate that the repeated bout effect of eccentric exercise appears to reduce muscle damage, but does not influence the level of voluntary activation.  相似文献   

9.
The fatigue-related reduction in joint range of motion (ROM) during dynamic contraction tasks may be related to muscle length-dependent alterations in torque and contractile kinetics, but this has not been systematically explored previously. Twelve young men performed a repetitive voluntary muscle shortening contraction task of the dorsiflexors at a contraction load of 30% of maximum voluntary isometric contraction (MVC) torque, until total 40° ROM had decreased by 50% at task failure (POST) to 20° ROM. At both a short (5° dorsiflexion) and long muscle length (35° plantar flexion joint angle relative to a 0° neutral ankle joint position), voluntary activation, MVC torque, and evoked tibialis anterior contractile properties of a 52.8 Hz high-frequency isometric tetanus [peak evoked torque, maximum rate of torque development (MRTD), maximum rate of relaxation (MRR)] were evaluated at baseline (PRE), at POST, and up to 10 min of recovery. At POST, we measured similar fatigue-related reductions in torque (voluntary and evoked) and slowing of contractile kinetics (MRTD and MRR) at both the short and long muscle lengths. Thus, the fatigue-related reduction in ROM could not be explained by length-dependent fatigue. Although torque (voluntary and evoked) at both muscle lengths was depressed and remained blunted throughout the recovery period, this was not related to the rapid recovery of ROM at 0.5 min after task failure. The reduction in ROM, however, was strongly related to the reduction in joint angular velocity (R 2  = 0.80) during the fatiguing task, although additional factors cannot yet be overlooked.  相似文献   

10.
The purpose of this study was to investigate whether acute passive stretching (APS) reduced maximal isometric voluntary contraction (MVC) of the plantar flexors (PF) and if so, by what mechanisms. The PF in 15 female volunteers were stretched for 10 min (5×120 s) by a torque motor to within 2° of maximum dorsiflexion (D) range of motion (ROM). MVC with twitch interpolation, maximal Hoffmann reflex (Hmax) and compound action potentials (Mmax) were recorded at 20° D. Stretch reflexes (SR) were mechanically induced at 200° s–1 between 0° and 10° D and SR torque and EMG amplitude were determined. All tests were assessed pre- (pre) and post-APS (post-test1). MVC, SR, and Mmax were again assessed after additional stretch was applied [mean 26 (1)° D; post-test2] to test if the optimal angle had been altered. EMG was recorded from soleus (SOL), medial gastrocnemius (MG) and tibialis anterior (TA) using bipolar surface electrodes. APS resulted in a 27% decrease in mean peak passive torque (P<0.05). MVC and SR torque were 7% (P<0.05) and 13% lower at post-test1 (P<0.05), respectively. SR EMG amplitude of SOL and MG was reduced by 27% (P<0.05) and 22% (P<0.05), respectively. The Hmax/Mmax EMG and Hmax/Mmax torque ratios were unchanged at post-test1. At post-test2, MVC and SR EMG recovered to pre-APS values, while the SR and Mmax torque increased by 19% and 13%, respectively (P<0.05). The decrease in MVC during post-test1 was attributed to changes in the mechanical properties of PF and not to reduced muscle activation.  相似文献   

11.
The effect of exercise modalities on determinants of sarcopenia, specifically, lean tissue mass, maximal voluntary isometric contraction (MVIC), muscle quality (MQ), and cardiorespiratory fitness (VO2peak) over 12 weeks were studied in 42 (45–55 years, 60 days of amenorrhea, with ≤1 h/week physical activity) perimenopausal females. Subjects were assigned to strength training (super-slow, 20 s tension, STss = 7; hypertrophy, 2–4 s tension, STht = 8), endurance training (intermittent, ≥48 h rest, ETi = 7; consecutive, 24 h, ETc = 9) and autogenic training group (AT = 11). ST and ET met 60 min day−1, 3 days week−1 and AT 1 day week−1. Leg extension, incremental cycling with gas exchange, dual-energy X-ray absorptiometry, and blood analysis were tested. The MANOVA revealed that STss improved MVIC (< 0.01) and MQ (P ≤ 0.01). The VO2peak also increased significantly in ET group by 28% (ETi: = 0.02, ETc: = 0.01). A modality-specific effect on strength, MQ, and VO2peak in perimenopausal females was duly noted.  相似文献   

12.
In elderly males muscle plantar flexor maximal voluntary contraction (MVC) torque normalised to muscle volume (MVC/VOL) is reduced compared to young males as a result of incomplete muscle activation in the elderly. The aim of the present study was to determine the influence of a 12-month resistance training programme on muscle volume, strength, MVC/VOL, agonist activation and antagonist coactivation of the plantarfexors in elderly males. Thirteen elderly males aged 70 years and over (range 70–82 years), completed a 12-month whole body resistance-training programme (TRN), training three times a week. Another eight males (range 18–30 years), who maintained their habitual physical activity for the same 12-month period as the TRN group acted as controls (CTRL). Isometric plantarflexor maximal voluntary contraction (MVC) torque increased in the TRN group by 20% (P<0.01), from 113.1±22.0 Nm to 141.5±19.2 Nm. Triceps surae volume (TS VOL) assessed using MRI, increased by 12%, from 796.3±78.9 cm3 to 916.8±144.4 cm3 . PF activation, measured using supramaximal double twitch interpolation, increased from 83.6±11.0% pre training, to 92.1±7.6% post training (P<0.05). Dorsiflexion MVC and antagonist coactivation (assessed using surface electromyography) did not change with training. Plantarflexor MVC torque normalized for triceps surae muscle volume (MVC/VOL) was 142.6±32.4 kN m–2 before training and 157.0± 27.9 kN m–2 after training (a non-significant increase of 8%). No significant change in any measurement was observed in the CTRL group. This study has shown that the gain in muscle strength in response to long-term (12-month) training in older men is mostly accounted for by an increased muscle volume and activation.  相似文献   

13.
Summary The effect of altering muscle glycogen on the ability of skeletal muscle to generate voluntary and electrically evoked isometric force following prolonged exercise has been investigated in five healthy male subjects. Measurements from the triceps surae were made at rest, and before and after prolonged exercise (uphill walking) at approximately 75% in low muscle glycogen (low CHO) and high muscle glycogen (high CHO) conditions.The results showed that before exercise there was no change in maximal twitch tension ( ), maximal tetanic tension at frequencies of 10 (Po10), 20 (Po20) and 50 Hz (Po50), and maximal voluntary contraction (MVC) in low and high CHO compared with normal. The loss of force during a 2 min electrically evoked fatigue test at rest was found to be higher (p<0.05) in low CHO and lower (p<0.05) in high CHO than normal.Following the prolonged exercise, muscle weakness was produced in both low and high CHO conditions, but was found to be significantly greater in the low CHO condition for the measurements of Po10 (p<0.01), Po20 (p<0.05) and MVC (p<0.05).It is concluded that changes in muscle glycogen alone do not alter the isometric force generating capacity of human muscle, but when combined with prolonged exercise low muscle glycogen enhances exercise-induced muscle weakness.  相似文献   

14.
The purpose of this study was to determine if discrepancies exist between upright and inverted seated positions in isometric maximal voluntary contraction (MVC) elbow flexor force, MVC force produced in the first 100 ms (F100), MVC rate of force development, electromyographic (EMG) activity of the biceps and triceps as well as heart rate and blood pressure. The results showed significantly (p < 0.01) higher MVC force (543.6 ± 29.6 vs. 486.5 ± 23.0 N), F100 (328.3 ± 94.5 vs. 274.6 ± 101.8 N), rate of force development (p = 0.003) (1,851.9 ± 742.2 vs. 1,591.0 ± 719.6 N s−1) and biceps brachii EMG activity (48%, p < 0.01) in the upright versus inverted condition. There were relatively greater co-contractions with the inverted position (p < 0.01) due to the lack of change in triceps’ EMG and the substantial decrease in biceps’ EMG. There were no significant changes in trunk EMG activity. With inversion, there were significant decreases in heart rate (16.8%), systolic (11.6%) and diastolic (12.1%) blood pressures (p < 0.0001). These results illustrate decrements in neuromuscular performance with an inverted seated posture which may be related to an altered sympathetic response.  相似文献   

15.
A group of 14-healthy men performed anisotonic isometric contractions (AIC), for 60 s, at an intensity of 100% maximal voluntary contraction force (MVC) during handgrip (HG) and leg extension (LE). Heart rate (f c), stroke volume index (SVI) and cardiac output index (QcI) were measured during the last 10 s of both AIC by an impedance reography method. Force (F) exerted by the subjects was recorded continuously and reported as a relative force (F r) (% MVC). The F generated during MVC was greater for LE than for HG (502.I N compared to 374.6 N, P < 0.001). The rate of decrease in F r was significantly slower for LE than HG for the first 25 s of the exercise (phase 1 of AIC). The F r developed by the subjects at the end of AIC was 40% MVC for both LE and HG. The increase in f c was greater for LE (63 beats · min–1) than for HG (52 beats · min–1), P < 0.01. The SVI decreased significantly from the resting level by 17.0 ml · m–2 and by 18.2 ml · m–2 for LE and HG, respectively. The QcI increased insignificantly for HG by 0.091 · min–1 · m–2 andsignificantly forLE by 0.561 · min–1 · m–2 (P < 0.001). It was concluded that although both AIC caused a significant decrease in SVI, greater increases in f c and Qc were observed for LE than for HG. The greater f c and Qc reported during LE was probably related to the greater relative force exerted by LE during phase 1 of AIC. It seems, therefore that central command might have dominated for phase 1 of AIC but that the muscle reflex also contributed significantly to the control of the cardiac response to the high intensity AIC.  相似文献   

16.
The purpose of this study was to investigate the effects of 20 days bed-rest on the elastic properties of tendon structures of the human knee extensor muscles in vivo. Six healthy men carried out a 6° head-down bed-rest for 20 days. Muscle volume and maximal voluntary contraction (MVC) torque of the quadriceps femoris muscle significantly decreased by an average of 7.8 (SD 2.7)% and 14.9 (SD 6.9)%, respectively. Before and after bed-rest, the elongation (l) of the tendon and aponeurosis of vastus lateralis muscle was measured directly by ultrasonography, while the subjects performed ramp isometric knee extension up to MVC. The extent of l tended to be greater after bed-rest. The l above 110 N was significantly greater after bed-rest. Furthermore, the mean stiffness after bed-rest [35.5 (SD 7.8) N · mm−1] was significantly lower than that before bed-rest [52.6 (SD 19.2) N · mm−1]. The rate of torque development significantly reduced after bed-rest by an average of 47%, and the bed-rest induced a lengthening in the electromechanical delay (mean 21%). These results suggest that bed-rest results in a decrease in the stiffness of tendon structures with a reduction of muscle strength and volume. These adaptations of the tendon structures to bed-rest would bring about the changes in electromechanical delay and rate of torque development. Accepted: 28 July 2000  相似文献   

17.
We measured changes in maximal voluntary and electrically evoked torque and rate of torque development because of limb unloading. We investigated whether these changes during single joint isometric muscle contractions were related to changes in jump performance involving dynamic muscle contractions and several joints. Six healthy male subjects (21 ± 1 years) underwent 3 weeks of unilateral lower limb suspension (ULLS) of the right limb. Plantar flexor and knee extensor maximal voluntary contraction (MVC) torque and maximal rate of torque development (MRTD), voluntary activation, and maximal triplet torque (thigh; 3 pulses at 300 Hz) were measured next to squat jump height before and after ULLS. MVC of plantar flexors and knee extensors (MVCke) and triplet torque decreased by 12% (P = 0.012), 21% (P = 0.001) and 11% (P = 0.016), respectively. Voluntary activation did not change (P = 0.192). Absolute MRTD during voluntary contractions decreased for plantar flexors (by 17%, P = 0.027) but not for knee extensors (P = 0.154). Absolute triplet MRTD decreased by 17% (P = 0.048). The reduction in MRTD disappeared following normalization to MVC. Jump height with the previously unloaded leg decreased significantly by 28%. No significant relationships were found between any muscle variable and jump height (r < 0.48), but decreases in torque were (triplet, r = 0.83, P = 0.04) or tended to be (MVCke r = 0.71, P = 0.11) related to decreases in jump height. Thus, reductions in isometric muscle torque following 3 weeks of limb unloading were significantly related to decreases in the more complex jump task, although torque in itself (without intervention) was not related to jump performance.  相似文献   

18.
Summary Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle.Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0±7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0±10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension.In contrast the heart rate rose to a higher level (P<0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups.It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sjöholm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

19.
Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P < 0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P < 0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.  相似文献   

20.
Changes in muscle activation and performance were studied in healthy men in response to 5 weeks of resistance training with or without “eccentric overload”. Subjects, assigned to either weight stack (grp WS; n = 8) or iso-inertial “eccentric overload” flywheel (grp FW; n = 9) knee extensor resistance training, completed 12 sessions of four sets of seven concentric–eccentric actions. Pre- and post-measurements comprised maximal voluntary contraction (MVC), rate of force development (RFD) and training mode-specific force. Root mean square electromyographic (EMGRMS) activity of mm. vastus lateralis and medialis was assessed during MVC and used to normalize EMGRMS for training mode-specific concentric (EMGCON) and eccentric (EMGECC) actions at 90°, 120° and 150° knee joint angles. Grp FW showed greater (p < 0.05) overall normalized angle-specific EMGECC of vastii muscles compared with grp WS. Grp FW showed near maximal normalized EMGCON both pre- and post-training. EMGCON for Grp WS was near maximal only post-training. While RFD was unchanged following training (p > 0.05), MVC and training-specific strength increased (p < 0.05) in both groups. We believe the higher EMGECC activity noted with FW exercise compared to standard weight lifting could be attributed to its unique iso-inertial loading features. Hence, the resulting greater mechanical stress may explain the robust muscle hypertrophy reported earlier in response to flywheel resistance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号