首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Na+-activated K+ current was studied in inside-out patches and in whole cells isolated from the guinea-pig cardiac ventricle. The single channel conductance showed inward rectification for K+ i+ e, but outward rectification for K+ i>K+ e The open probability was dependent on Na+ i and Na+,K+-pump activity. In the presence of pump blockade the channel remained active at low Na+ i Similar results were obtained in whole cells. These results suggest the existence of Na+ gradients depending on Na+,K+-pump activity and passive inward leak of Na+. The channel and whole cell current were blocked by R56865. The drug did not change the single channel conductance but markedly reduced open probability by shortening burst duration. The current may play an important role in action potential shortening during pump blockade.This work was supported by a grant of the National Fund for Scientific Research Belgium.3.0016.87.  相似文献   

2.
The block of large-conductance calcium-activated potassium (BK) channels by internal and external alkali metal ions was studied in adult rat melanotrophs. Internal but not external 20 mM Na+ produced a strongly voltage-dependent, flickery block that was well-fitted to the Woodhull model by using a value of 140 mM for the dissociation rate constant at 0 mV [K d(0)] and an equivalent valence (zδ) of 0.9. At a concentration of 20 mM external K+, Cs+ and Rb+, but not Li+, caused a rightward shift of the voltage dependence of the intracellular Na+ (Na+ i ) block. This effect of K+, Cs+ and Rb+ was modelled by an equilibrium knock-out mechanism in which the block-relieving ion binds to a site located within the voltage field and consequently increases the off-rate of Na+. Internal Li+ caused little or no block whereas internal Cs+ caused a voltage-dependent block [K d(0) ≈150 mM]. Flickery channel block observed in cell-attached patches was consistent with a cytoplasmic Na+ activity between 1 and 10 mM. Received: 22 January 1996 /Accepted: 26 March 1996  相似文献   

3.
The luminal membrane of principal cells of rat cortical collecting duct (CCD) is dominated by a K+ conductance. Two different K+ channels are described for this membrane. K+ secretion probably occurs via a small-conductance Ca2+-independent channel. The function of the second, large-conductance Ca2+-dependent channel is unclear. This study examines properties of this channel to allow a comparison of this K+ channel with the macroscopic K+ conductance of the CCD and with similar K+ channels from other preparations. The channel is poorly active on the cell. It has a conductance of 263±11 pS (n=36, symmetrical K+ concentrations) and of 139±3 pS (n=91) with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. Its open probability is high after excision (0.71±0.03, n=85). The channel flickers rapidly between open and closed states. Its permeability in the cell-free configuration was 7.0±0.2×10–13 cm3/s (n=85). It is inhibited by several typical blockers of K+ channels such as Ba2+, tetraethylammonium, quinine, and quinidine and high concentrations of Mg2+. The Ca2+ antagonists verapamil and diltiazem also inhibit this K+ channel. As is typical for the maxi K+ channel, it is inhibited by charybdotoxin but not by apamin. The selectivity of this large-conductance K+ channel demonstrates significant differences between the permeability sequence (P K > P Rb > P NH4 > P Cs=P Li=P Na=P choline=0) and the conductance sequence (g K > g NH4 > g Rb > g Li=g choline > g Cs=g Na=0). The only other cations that are significantly conducted by this channel besides K+ (g K at V c = is 279±8 pS, n=88) are NH 4 + (g NH4=127±22 pS, n=10) and Rb+ (g Rb=36±5 pS, n=6). The K+ currents through this channel are reduced by high concentrations of choline+, Cs+, Rb+, and NH 4 + . These properties and the dependence of this channel on Ca2+ and voltage classify it as a maxi K+ channel. A possible physiological function of this channel is discussed in the accompanying paper.Supported by DFG Gr 480/10, by Schl 277/2-3 and by GIF 88/II  相似文献   

4.
In studies on the apical membranes of cultured MCF-7 human breast carcinoma cells, we found two conspicuous K+ channel types with conductances of 23 and 70 pS, respectively. Of these, the 23-pS K+ channel was most conspicuous. In cell-attached patches with KCl in the pipette, it had a linear current/voltage (I/V) relation and was activated by depolarisation and in excised insideout patches it was highly selective for K+ over Na+ (permeability ratio of Na+ to K+, P Na/P K=0.02). Rubidium (Rb+) had a similar permeability to K+, although it was only conducted at 20% of the rate of K+, and cesium (Cs+) had a permeability less than 30% that of K+ and was not conducted at all. Both Cs+ and Rb+ acted as partial blockers when applied internally but the channel was not blocked by external tetraethylammonium (TEA, 10 mmol/l), quinidine (200 mol/l) or apamin (50 nmol/l). It was activated by Ca2 + in the range 10–7–10–6 mol/l. In cell-attached patches at a pipette potential of 0 mV, the open-time histogram was described by a single exponential (time constant 1.6 ms) and the closed-time histogram by two exponentials (time constants 0.5 and 1.5 ms). The incidence of the 23-pS but not the 70-pS channel depended on the rate of cell proliferation. Thus, in studies on cell-attached patches from cells in the exponential growth phase, the 23-pS channel was observed in 78% of patches. However, when the proliferation rate was decreased, whether as a result of allowing the monolayer to reach confluence, or of cell treatment with an anti-oestrogen (tamoxifen, 10 mol/l), or a phorbol ester [phorbol 12-myristate 13-acetate (TPA), 2.6 nmol/l], the channel incidence was reduced to 42%, 60% and 42%, respectively. The activity of the 23-pS channel is not obligatory for cell division, however, since the rate of cell proliferation remained the same in MCF-7 cultures in which the channel was not expressed.  相似文献   

5.
1. In voltage-clamped motor-giant neurones of the crayfishOrconectes limosus a depolarizing voltage step clicits a transient inward current carried by Na+ which is followed by an early and a delayed outward current. 2. The early outward current is reduced if the Na+ current is suppressed by tetrodotoxin or the removal of external Na+. It is also abolished if the K+ channel blocking agents tetraethylammonium and 3,4-diaminopyridine are applied to the neurone. 3. The outward current was not depressed if Li+ was substituted for Na+ in the external solution or if the Na–K pump was inhibited by ouabain or the removal of external K+. 4. Ionophoretic injections of EGTA did not depress the early outward current. 5. Short ionophoretic injections of Na+ into the neurone increased the outward current elicited by a depolarization but did not affect the leakage current. 6. It is suggested that the influx of Na+ leads to a transient increment of the Na+ concentration near K+ channels and that internal Na+ ions exert an activating or modulating effect on K+ channels.  相似文献   

6.
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na+ concentration ([Na+]i) and vice versa. In addition, extracellular Na+ depletion decreased [Na+]i. In voltage-clamped cells, BKCa currents were markedly increased by extracellular Na+ depletion. In inside-out patches, increasing [Na+]i from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BKCa channels and decreasing intracellular K+ concentration ([K+]i) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na+]i gradually from 0 to 70 mM, by replacing K+, markedly reduced single channel conductance and NPo. The Na+–Ca2+ exchange blocker Ni2+ or KB-R7943 decreased [Na+]i and increased BKCa currents simultaneously, and the Na+ ionophore monensin completely inhibited BKCa currents. BKCa currents were significantly augmented by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM and significantly reduced by decreasing [K+]o from 12 or 6 to 0 mM or applying the Na+–K+ pump inhibitor ouabain. These results suggest that intracellular Na+ inhibit single channel conductance of BKCa channels and that intracellular K+ increases single channel conductance and NPo. GH Liang and MY Kim contributed equally to this publication and therefore share the first authorship.  相似文献   

7.
We have used whole-cell patch-clamp techniques to study the conductances in the plasma membranes of human parathyroid cells. With a KCl-rich pipette solution containing Ca2+ buffered to a concentration of 0.1 mol/l, the zero current potential was –71.1±0.5 mV (n=19) and the whole-cell current/ voltage (I/V) relation had an inwardly rectifying and an outwardly rectifying component. The inwardly rectifying current activated instantaneously on hyperpolarization of the plasma membrane to potentials more negative than –80 mV, and a semi-logarithmic plot of the reversal potential of the inward current (estimated by extrapolation from the range in which it was linear) as a function of extracellular K+ concentration ([K+]o) revealed a linear relation with a slope of 64 mV per decade change in [K+]o, which is not significantly different from the Nernstian slope, demonstrating that the current was carried by K+ ions. The conductance exhibited a square root dependence on [K+]o as has been observed for inward rectifiers in other tissues. The current was blocked by the presence of Ba2+ (1 mmol/l) or Cs+ (1.5 mmol/l) in the bath. The outwardly rectifying current was activated by depolarization of the membrane potential to potentials more positive than –20 mV. It was inhibited by replacement of pipette K+ with Cs+, indicating that it also was a K+ current: it was partially (42%) blocked when tetraethylammonium (TEA+, 10 mmol/l) was added to the bath. The outwardly rectifying, but not the inwardly rectifying K+ current, was regulated by intracellular free Ca2+ concentration ([Ca2+]i) such that increasing [Ca2+]i above 10 nmol/l inhibited the outwardly rectifying current, the half-maximum effect being seen at 1 mol/l. Since it is known that increases in [Ca2+]o produce increases in [Ca2+]i, and that they depolarize parathyroid cells by reducing the membrane K+ conductance, we suggest that it is the reduction of the outwardly rectifying K+ conductance by increases in [Ca2+]i which is responsible for the reduction in K+ conductance seen when [Ca2+]o is increased.  相似文献   

8.
Single-channel current recordings were carried out on excised inside-out patches of baso-lateral plasma membrane from exocrine acinar cells. The mouse pancreas and submandibular gland as well as the pig pancreas were investigated.In the mouse pancreas the voltage-insensitive Ca2+-activated cation channel was studied. Single-channel current-voltage (i/v) relationships were studied in symmetrical Rb+-rich solutions and in asymmetrical Rb+/Na+ and Na+/Rb+ solutions. In all cases the i/v relations were linear and had the same slope representing a single-channel conductance of about 33 pS which is identical to that previously obtained with symmetrical Na+ solutions or asymmetrical Na+/K+ solutions.In the mouse submandibular gland and the pig pancreas the voltage and Ca2+-activated K+ channel was studied. The outward currents observed after depolarization in the presence of quasi-physiological Na+/K+ gradients were immediately abolished when all the K+ in the bath fluid was replaced by Rb+ (bath fluid in contact with inside of plasma membrane). This effect was immediately and fully reversible upon return to the high K+ solution.The voltage and Ca2+-activated K+ channel was also studied in asymmetrical K+/Rb+ and Rb+/K+ solutions. In the first case inward (K+) currents could be observed but not outward (Rb+) currents, while in the other case inward (Rb+) currents could not be seen whereas outward (K+) currents were measured. The current-voltage relationships were approximately linear and the null potential was close to 0 mV in both situations. In contrast the null potential for current through the K+ channel in the presence of asymmetrical Na+/K+ or Li+/K+ solutions was about –70 mV and with reversed gradients about +60 mV.Outward K+ currents of reduced size (through the voltage and Ca2+-activated K+ channel) could be observed when the bath fluid contained 75 mM K+ and 75 mM Rb+, but not (in the same membrane patches) when 150 mM Rb+ and no K+ was present.It is concluded that the large voltage- and Ca2+-activated K+ channel has an extremely low Rb+ conductance. It is possible, however, that the permeability for Rb+ may be about the same as for K+. The voltage-insensitive Ca2+-activated cation channel does not discriminate between K+ and Rb+.  相似文献   

9.
The voltage-dependence of the inhibitory effect of mucosal Cs+ on the inward K+ current through the apical membrane of frog skin (Rana temporaria) was studied by recording transepithelial current-voltage relations. Experiments were performed with skins exposed to NaCl and KCl Ringer solutions on the serosal and mucosal side respectively (contron skins), as well as with tissues incubated with K2SO4 Ringer solutions on both sides (depolarized skins). Studies of the dose-depedence of the Cs+ block showed that under both experimental conditions the apparent affinity of Cs+ increased as the transepithelial potential was clamped at higher mucosal positive voltages. Under control conditions, the concentration of Cs+ required to block 50% of the K+ current (KCs) recorded while the transepithelial voltage was clamped at zero mV was 16 mmol/1. KCs decreased exponentially with muscosal positive voltages. The dependence of KCs on the membrane potential was analyzed with Eyring rate theory in which Cs+ was assumed to block the K+ transport by binding to a site within the channel. The analysis showed that this site is located at a relative electrical distance =0.32 of the voltage drop across the apical membrane, measured from the cytosolic side. The Hill coefficient obtained from this analysis wasn=3.1. Experiments with K+-depolarized tissues showed that only inward K+ currents recorded with positive transepithelial voltages were depressed by external Cs+. Also under these conditions KCs showed an exponential dependence on the transepithelial potential. The analysis of these data with the rate theory revealed =0.09 andn=1.7. The difference in found in control and depolarized tissues can be explained by the influence of the basolateral membrane resistance on theI–V relations.  相似文献   

10.
The effects of monovalent internal cations Cs+, Li+ and Na+ on potassium channel conductance in the frog node of Ranvier were studied by means of the voltage clamp. As previously reported, when 10–80% of the internal K+ was replaced by one of the above cations, the steady-state current-voltage relationship was significantly modified. The main effect was a voltage-dependent attenuation of the currents. We demonstrate that the current attenuation is associated with a change in the channel gating kinetics. For small depolarizations the kinetics can be described by the usual potassium conductance activation time constant, τ n . However, under certain experimental conditions (e.g. substitution of the intracellular K+ with 10% Cs+), during larger depolarizations, stepping the membrane potential to values above 40–60 mV, the conductance develops with two time constants: τ n and a new, slower time constant that, in contrast to τ n , grows with membrane potential. These results can be explained by assuming that the catins may occupy two different sites in the channel; when the first site is occupied the channel is blocked, while occupation of the second site results in slowing of the gating kinetics in the affected channels.  相似文献   

11.
In vitro perfused rat thick ascending limbs of Henle's loop (TAL) were used (n=260) to analyse the conductance properties of the luminal membrane applying the patch-clamp technique. Medullary (mTAL) and cortical (cTAL) tubule segments were dissected and perfused in vitro. The free end of the tubule was held and immobilized at one edge by a holding pipette kept under continuous suction. A micropositioner was used to insert a patch pipette into the lumen, and a gigaohm seal with the luminal membrane was achieved in 455 instances out of considerably more trials. In approximately 20% of all gigaohm seals recordings of single ionic channels were obtained. We have identified only one single type of K+ channel in these cell-attached and cell-excised recordings. In the cell-attached configuration with KCl or NaCl in the pipette, the channel had a conductance of 60±6 pS (n=24) and 31±7 pS (n=4) respectively. In cell-free patches with KCl either in the patch pipette or in the bath and with a Ringer-type solution (NaCl) on the opposite side the conductance was 72±4 pS (n=37) at a clamp voltage of 0 mV. The permeability was 0.33±0.02 · 10±12 cm3/s. The selectivity sequence für this channel was: K+=Rb+=NH 4 + =Cs+>Li+Na+=0; the conductance sequence was K+Li+Rb+=Cs+= NH 4 + =Na+=0. In excised patches Rb+, Cs+ and NH 4 + when present in the bath at 145 mmol/l all inhibited K+ currents out of the pipette. The channel kinetics were described by one open (9.5±1.5 ms, n=18) and by two closed (1.4±0.1 and 14±2 ms) time constants. The open probability of this channel was increased by depolarization. The channel open probability was reduced voltage dependently by Ba2+ (half maximal inhibition at 0 mV: 0.07 mmol/l) from the cytosolic side. Verapamil, diltiazem, quinine and quinidine inhibited at approximately 1 mol/l ±0.1 mmol/l from either side. Similarly, the amino cations lidocaine, tetraethylammonium and choline inhibited at 10–100 mmol/l. The channel was downregulated in its open probability by cytosolic Ca2+ activities > 10±7 mol/l and by adenosine triphosphate 10±4 mol/l. The open probability was downregulated by decreasing cytosolic pH (2-fold by a decrease in pH by 0.2 units). The described channel differs in several properties from the K+ channels of other epithelia and of renal cells and TAL cells in culture. It appears to be responsible for K+ recycling in the TAL segment.Preliminary reports of the present study have been given at the following conferences: Tagung der Deutschen Physiologischen Gesellschaft, Würzburg, October 1988; Membranforum, Frankfurt, April 1989; 3rd Int. Conf. Diur., Mexico City, April 1989; 3rd Nephrology Forefront Symposium, Arrola, July, 1989; IUPS meeting, Helsinki, July 1989. This study has been supported by Deutsche Forschungsgemeinschaft Grant No. Gr 480/9  相似文献   

12.
The present study examined whether a basolateral potassium ion (K+) channel is activated by membrane-stretching in the cell-attached patch. A K+ channel of conductance of 27.5 pS was most commonly observed in the basolateral membrane ofXenopus kidney proximal tubule cells. Channel activity increased with hyperpolarizing membrane potentials [at more positive pipette potentials (V p)]. Open probability (P o) was 0.03, 0.13, and 0.21 atV p values of 0, 40, and 80 mV, respectively. Barium (0.1 mM) in the pipette reducedP o by 79% at aV p of 40 mV. Application of negative hydraulic pressure (−16 to −32 cm H2O) to the pipette markedly activated outward currents (fromP o=0.01 to 0.75) at aV p of −80 mV, but not inward currents at aV p of 80 mV. The size of the activated outward currents (from cell to pipette) did not change by replacing chloride with gluconate in the pipette. These results indicate that a stretch-activated K+ channel exists in the basolateral membrane of proximal tubule cells. It may play an important role as a K+ exit pathway when the cell membrane is stretched (for example, by cell swelling).  相似文献   

13.
Tracheal smooth muscle cells were enzymatically isolated from guinea-pig trachea. These cells contracted in response to acetylcholine (0.01–10 M) in a concentration-dependent fashion. Under current-clamp conditions with 140 mM K+ in the pipette solution, the membrane potential oscillated spontaneously at around –30 mV. Under voltage-clamp conditions, there appeared spontaneous but steady oscillations of outward current (I o). On depolarization from a holding potential at –40 mV, three components of outward current were elicited: transient outward current (I T), steady-state outward current (I s) and I o. These three components of outward current reversed around the K+ equilibrium potential and were abolished by Cs+ in the pipette, indicating that K+ was the major charge carrier of these outward currents. All these three components were completely suppressed by extracellular tetraethylammonium (10 mM). Both I T and I o were depressed by quinidine (1 mM), 4-aminopyridine (10 mM) and nifedipine (100 nM), but I s was not affected. I T and I o were suppressed by a Ca2+-free perfusate with less than 1 nM Ca2+ in the pipette, while with 10 nM Ca2+ in the pipette, only I o was suppressed. In both conditions, I s was not affected by the Ca2+-free perfusate. Therefore, it is suggested that I o, I T and I s are separate types of K+ current. With Cs+ in the pipette, K+ currents were almost completely suppressed and a transient inward current was observed during depolarizing pulses. The inward current was not affected by tetrodotoxin and increased when the concentration of extracellular Ca2+ was raised, indicating that the current is a Ca2+ channel current. Even with a holding potential of –80 mV, the low-threshold inward current could not be observed. The high-threshold Ca2+ current was abolished by nifedipine (100 nM) and was enhanced by Bay K 8644 (100 nM). The order of permeation of divalent cations through the Ca2+ channel was Ba2+ >Sr2+ Ca2+. Cd2+ blocked the Ca2+ current more effectively than Ni2+. These results may indicate that the Ca2+ current of tracheal smooth muscle cells is mainly composed of the current through an L-type Ca2+ channel.  相似文献   

14.
Kinetic properties of the Na+-H+ antiport in the acinar cells of the isolated, superfused mouse lacrimal gland were studied by measuring intracellular pH (pHi) and Na+ activity (aNai) with the aid of double-barreled H+- and Na+-selective microelectrodes, respectively. Bicarbonate-free solutions were used throughout. Under untreated control conditions, pHi was 7.12±0.01 and aNai was 6.7±0.6 mmol/l. The cells were acid-loaded by exposure to an NH 4 + solution followed by an Na+-free N-methyl-d-glucamine (NMDG+) solution. Intracellular Na+ and H+ concentrations were manipulated by changing the duration of exposure to the above solutions. Subsequent addition of the standard Na+ solution rapidly increased pHi. This Na+-induced increase in pHi was almost completely inhibited by 0.5 mmol/l amiloride and was associated with a rapid, amiloride-sensitive increase in aNai. The rate of pHi recovery induced by the standard Na+ solution increased in a saturable manner as pHi decreased, and was negligible at pHi 7.2–7.3, indicating an inactivation of the Na+-H+ antiport. The apparent K m for intracellular H+ concentration was 105 nmol/l (pH 6.98). The rate of acid extrusion from the acid-loaded cells increased proportionally to the increase in extracellular pH. Depletion of aNai to less than 1 mmol/l by prolonged exposure to NMDG+ solution significantly increased the rate of Na+-dependent acid extrusion. The rate of acid extrusion increased as the extracellular Na+ concentration increased following Michaelis-Menten kinetics (V max was 0.55 pH/min and the apparent K m was 75 mmol/l at pHi 6.88). The results clearly showed that the Na+-H+ antiport activity is dependent on the chemical potential gradient of both Na+ and H+ ions across the basolateral membrane, and that the antiporter is asymmetric with respect to the substrate affinity of the transport site. The data agree with the current model of activation and inactivation of the antiporter by an intracellular site through changes in the intracellular Na+ and H+ concentrations.  相似文献   

15.
The basolateral membrane of rabbit straight proximal tubules, which were cannulated and perfused on one side, was investigated with the patch clamp technique. Properties of inward and outward directed single K+ channel currents were studied in cell-attached and insideout oriented cell-excised membrane patches. In cell-attached patches with NaCl Ringer solution both in pipette and bath, outward K+ currents could be detected after depolarization of the membrane patch by about 20–30 mV. The current-voltage (i/V) relationship could be fitted by the Goldman-Hodgkin-Katz (GHK) current equation, with the assumption that these channels were mainly permeable for K+ ions. A permeability coefficientP K of (0.17±0.04) · 10–12 cm3/s was obtained, the single channel slope conductance at infinite positive potentialg(V ) was 50±12 pS and the single channel conductance at the membrane resting potentialg(V bl) was 12±3 pS (n=4). In cell-excised patches, with NaCl in the pipette and KCl in the bath, the data could also be fitted to the GHK equation and yieldedP K = (0.1 ±0.01) ·10–12 cm3/s,g(V ) = 40 ± 4 pS andg(V bl) = 7 ± 1 pS (n=8). In cell-attached patches with KCl in the pipette and NaCl in the bath, inward K+ channels occurred at clamp potentials 60 mV, whereas outward K+ channel current was detected at more positive voltages. The current-voltage curves showed slight inward rectification. The single channel conductance, obtained from the linear part of the i/V curve by linear regression, was 46±3 pS and the reversal potential was 59±6 mV (n=9). In cell-excised patches with KCl in the pipette and NaCl in the bath, inward directed K+ channel currents could again be described by the GHK equation. The single channel parameters were similar to those recorded for outward K+ currents (see above). In inside-out oriented cell-excised patches with NaCl in the pipette and KCl in the bath, reducing bath (i.e. cytosolic) Ca2+ concentration from 10–6 mol/l to less than 10–9 mol/l did not affect the open state probability of single channel currents. These results demonstrate that the observed channels are permeable for K+ ions in both directions and that these basolateral K+ channels in rabbit proximal straight tubule are not directly dependent on Ca2+ ions.  相似文献   

16.
The whole-cell configuration of the patch-clamp technique was used to examine K+ currents in HeLa cells. Under quasi-physiological ionic gradients, using an intracellular solution containing 10–7 mol/l free Ca2+, mainly outward currents were observed. Large inwardly rectifying currents were elicited in symmetrical 145 mmol/l KCl. Replacement of all extracellular K+ by isomolar Na+, greatly decreased inward currents and shifted the reversal potential as expected for K+ selectivity. The inwardly rectifying K+ currents exhibited little or no apparent voltage dependence within the range of from –120 mV to 120 mV. A square-root relationship between chord conductance and [K+]0 at negative potentials could be established. The inwardly rectifying nature of the currents was unaltered after removal of intracellular Mg2+ and chelation with ATP and ethylenediaminetetraacetic acid (EDTA). Permeability ratios for other monovalent cations relative to K+ were: K+ (1.0)>Rb+ (0.86)>Cs+ (0.12)>Li+ (0.08)>Na+ (0.03). Slope conductance ratios measured at –100 mV were: Rb+ (1.66)>K+ (1.0)>Na+ (0.09)>Li+ (0.08)>Cs+ (0.06). K+ conductance was highly sensitive to intracellular free Ca2+ concentration. The relationship between conductance at 0 mV and Ca2+ concentration was well described by a Hill expression with a dissociation constant, K D, of 70 nmol/l and a Hill coefficient, n, of 1.81. Extracellular Ba2+ blocked the currents in a concentration- and voltage-dependent manner. The dependence of the K D for the blockade was analysed using a Woodhull-type treatment, locating the ion interaction site at 19 % of the distance across the electrical field of the membrane and a K D (0 mV) of 7 mmol/l. Tetraethylammonium and 4-aminopyridine were without effect whilst quinine and quinidine blocked the currents with concentrations for half-maximum effects equal to 7 mol/l and 3.5 mol/l, respectively. The unfractionated venom of the scorpion Leiurus quinquestriatus (LQV) blocked the K+ currents of HeLa cells. The toxins apamin and scyllatoxin had no detectable effect whilst charybdotoxin, a component of LQV, blocked in a voltage-dependent manner with half-maximal concentrations of 40 nmol/l at –120 mV and 189 nmol/l at 60 mV; blockade by charybdotoxin accounts for the effect of LQV. Application of ionomycin (5–10 mol/l), histamine (1 mmol/l) or bradykinin (1–10 mol/l) to cells dialysed with low-buffered intracellular solutions induced K+ currents showing inward rectification and a lack of voltage dependence.  相似文献   

17.
Na+/K+ pump currents were measured in endothelial cells from human umbilical cord vein using the whole-cell or nystatin-perforated-patch-clamp technique combined with intracellular calcium concentration ([Ca2+]i) measurements with Fura-2/AM. Loading endothelial cells through the patch pipette with 40 mmol/l [Na+] did not induce significant changes of [Ca2+]i. Superfusing the cells with K+-free solutions also did not significantly affect [Ca2+]i. Reapplication of K+ after superfusion of the cells with K+-free solution induced an outward current at a holding potential of 0 mV. This current was nearly completely blocked by 100 mol/l dihydroouabain (DHO) and was therefore identified as a Na+/K+ pump current. During block and reactivation of the Na+/K+ pump no changes in [Ca2+]i could be observed. Pump currents were blocked concentration dependently by DHO. The concentration for half-maximal inhibition was 21 mol/l. This value is larger than that reported for other tissues and the block was practically irreversible. Insulin (10–1000 U/l) did not affect the pump currents. An increase of the intracellular Na+ concentration ([Na+]i) enhanced the amplitude of the pump current. Half-maximal activation of the pump current by [Na+]i occurred at about 60 mmol/l. The concentration for half-maximal activation by extracellular K+ was 2.4±1.2 mmol/l, and 0.4±0.1 and 8.7±0.7 mmol/l for Tl+ and NH4 + respectively. The voltage dependence of the DHO-sensitive current was obtained by applying linear voltage ramps. Its reversal potential was more negative than –150 mV. Pump currents measured with the conventional whole-cell technique were about four times smaller than pump currents recorded with the nystatin-perforated-patch method. If however 100 mol/l guanosine 5-O-(3-thiotriphosphate) (GTPS) were added to the pipette solution, the currents measured in the ruptured-whole-cell-mode were not significantly different from the currents measured with the perforated-patch technique. We suppose that the use of the perforated-patch technique prevents wash out of a guanine nucleotide-binding protein (G-protein)-connected intracellular regulator that is necessary for pump activation.  相似文献   

18.
We have investigated the effect of change in external Na+ concentration on the hyperpolarization-activated inward current (I f) in the presence of different internal cations. Rabbit single isolated sinoatrial node cells were studied using the whole-cell patch-clamp technique. With 140 mM K+ pipettes, lowering [Na+]0 causes the fully activated I/V curve for I f to shift in a negative direction without a significant decrease of the slope conductance. The P Na/P K ratio, as defined by the Goldman-Hodgkin-Katz equation, is concentration-dependent: the lower the [Na+]o, the higher P Na/P K. The conductance/concentration relationship for I f shows saturation at low [Na+]o or [K+]o, indicating that the channel has a strong affinity for external cations. With 140 mM Cs+ pipettes, the I/V curve shows strong inward rectification and inward I f current decreases almost proportionally to the decrease in [Na+]o; the conductance/ concentration relationship for I f shifts to the right suggesting that the binding affinity of the external binding site is reduced. These results suggest that the I f channel is a multi-ion channel with a high-affinity external binding site, the affinity of which is modulated by internal cations.  相似文献   

19.
A conservative reversion at position 374 in a chimeric K+ pore, CHM, switched the preferred ionic conductance from K+ to Rb+. To understand how selectivity was switched, codons for 18 different amino acids were substituted at position 374 in each of two different K+ channels CHM and Kv2.1, the host channel for CHM. After injection of cRNA into Xenopus oocytes, less than half of the substituted mutants expressed functional channels. In both CHM and Kv2.1, channels with the substituted hydrophobic residues Val or Ile expressed Rb+-preferring pores while channels with the substituted polar residues Thr or Ser expressed K+-preferring pores. Val or Ile stabilized while Thr or Ser destabilized blockade by internal tetraethylammonium (TEA) confirming the importance of hydrophobic interactions for blockade. TEA blockade was dependent upon the charge carrier and was more effective in the presence of the ion having the larger conductance. The results are consistent with a model in which the side chains at position 374 form a filter for K+ and Rb+ ions and a site for blockade by internal TEA.  相似文献   

20.
A high density of nerve fibers containing calcitonin-gene-related peptide (CGRP) is present in the atria. Recently CGRP was reported to open ATP-sensitive K channels in arterial smooth muscle cells. This study examines whether CGRP activates a similar K+ channel in cardiac cells. In voltage-clamped whole cells loaded with GTP and ATP, CGRP reversibly evoked an inwardly rectifying K+ current. To identify the K+ channel that gives rise to this current, three types of K+ channel (resting, ATP-sensitive and acetylcholine-activated) were examined. CGRP failed to activate or inhibit the ATP-sensitive or the resting K+ channel. However, CGRP (0.1–1 M) caused activation of single channels with kinetics similar to that of the muscarinic K+ channel (35–40 pS conductance and approx. 1 ms mean open time in symmetrical 140 mM K+). In excised, inside-out (CGRP in pipette) or in outside-out (GTP in pipette) patches, the K+ current was activated by perfusion with GTP or CGRP, respectively, suggesting that CGRP activated the muscarinic K+ channel via GTP-binding protein. Treatment with pertussis toxin inhibited the activation of the K+ channel, suggesting that CGRP receptor may be coupled to a Gi or a Go type of GTP-binding protein. Together with previous findings, these results suggest that CGRP modulates several types of ion channels to produce its cellular effects.This work was supported in part by HL40586 and American Heart Association grant-in-aid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号