首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4+ effector memory, and postchallenge CD8+ transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.  相似文献   

2.
The conserved, immunogenic CD4 binding site on the viral envelope is an attractive HIV or SIV vaccine candidate. Polymerization of an 18 amino acid segment derived from the C4 domain of SIV gp120 produced a peptide polymer or "peptomer," having an alpha-helical conformation possibly mimicking a proposed structure of the C4 domain in the unbound native protein. The SIV peptomer and native gp120 were compared as subunit boosts following two adenovirus type 5 host range (Ad5hr)-SIVenv recombinant priming immunizations. Both vaccine regimens successfully elicited SIV-specific CTL responses in five of six immunized macaques. Peptomer-boosted macaques exhibited significantly higher envelope-specific T cell proliferative responses than either the gp120-boosted macaques or controls. Peptomer immunization also elicited peptomer and SIV gp120-specific binding antibodies, but only native gp120 boosting elicited SIV neutralizing antibodies. Upon intrarectal challenge with SIVmac32H, all nine macaques became infected. The solely envelope-based vaccine conferred no protection. However, changing the boosting immunogen to the C4 peptomer did not improve protective efficacy in spite of its elicitation of humoral and cellular immune responses, including robust T-helper activity. In spite of the peptomer's strong immunogenicity and potential for induction of broadly protective immune responses, it was not effective as a subunit vaccine.  相似文献   

3.
A nucleic acid vaccine for dengue-2 virus was developed, consisting of a plasmid DNA vector with the pre-membrane (prM) and envelope (E) genes expressed from a cytomegalovirus promoter. The DNA was adsorbed onto gold microspheres for administration by a gene gun. Expression was demonstrated by transfection of mouse cells in culture where the prM and E antigens were detected intracellularly, and the E antigen was detected in the culture supernatant fluid, similar to a natural infection. The vaccine elicited neutralizing antibodies to dengue-2 virus and antigen-specific cytotoxic T lymphocyte responses in mice. Several vaccination regimens were evaluated in rhesus macaques for the ability to elicit neutralizing antibodies and protect against viremia after challenge with live dengue-2 virus. Neutralizing antibodies were measured in three of three animals that received four 2-microg doses of DNA and in two of six animals that received two 1-microg doses. No antibodies were detected in three animals that received a single 1-microg dose. When dengue virus challenge was performed one month after vaccination, the three animals that received four 2-microg doses exhibited 0, 0, and 1 day of viremia compared with unimmunized controls which exhibited 4, 4, and 6 days of viremia. Three animals that received two 1-microg doses also exhibited 0, 0, and 1 day of viremia, whereas three animals that received a single 1-microg dose exhibited 2, 3, and 5 days of viremia compared with unimmunized controls, which exhibited 4 days of viremia each. When challenge was performed 7 months after vaccination, three animals that received two 1-microg doses exhibited 0, 3, and 5 days of viremia compared with unimmunized controls, which exhibited 4, 5, and 9 days of viremia. These results suggest that a regimen consisting of two 1-microg doses of DNA can confer satisfactory protection at one month, but not at seven months, after vaccination. Long-term protection following DNA vaccination may require revaccination, higher doses of DNA, or a vaccine that contains additional epitopes or adjuvants.  相似文献   

4.
In nonhuman primate models of acquired immunodeficiency syndrome, live attenuated lentiviruses provide the most reliable protection from systemic and mucosal challenge with pathogenic simian immunodeficiency virus (SIV). Although live attenuated lentiviruses may never be used in humans because of safety concerns, understanding the nature of the protective immune mechanisms induced by live attenuated vaccines in primate models will be useful for developing other vaccine approaches. Approximately 60% of rhesus macaques immunized with nonpathogenic simian-human immunodeficiency virus (SHIV) strain 89.6 are protected from infection or clinical disease after intravaginal (IVAG) challenge with pathogenic SIVmac239. The goal of the present study was to determine whether administration of Depo-Provera before IVAG challenge with SIV decreases the protective efficacy of infection with SHIV89.6. The rate of protection after IVAG challenge with SIVmac239 was significantly lower (P<.05), and the acute postchallenge plasma viral RNA levels were significantly higher (P<.006), in Depo-Provera-treated, SHIV89.6-immunized macaques than in Depo-Provera-naive, SHIV89.6-immunized macaques. In the primate model of sexual transmission of human immunodeficiency virus, treatment with progesterone before IVAG challenge with a pathogenic virus can decrease the efficacy of a model "vaccine."  相似文献   

5.
Of the various approaches being developed as prophylactic HIV vaccines, those based on a heterologous plasmid DNA prime, live vector boost vaccination regimen appear especially promising in the nonhuman primate/simian-human immunodeficiency virus (SHIV) challenge model. In this study, we sought to determine whether a series of intramuscular priming immunizations with a plasmid DNA vaccine expressing SIVgag p39, in combination with plasmid expressed rhesus IL-12, could effectively enhance the immunogenicity and postchallenge efficacy of two intranasal doses of recombinant vesicular stomatitis virus (rVSV)-based vectors expressing HIV-1 env 89.6P gp160 and SIVmac239 gag p55 in rhesus macaques. In macaques receiving the combination plasmid DNA prime, rVSV boost vaccination regimen we observed significantly increased SIVgag- specific cell-mediated and humoral immune responses and significantly lower viral loads postintravenous SHIV89.6P challenge relative to macaques receiving only the rVSV vectored immunizations. In addition, the plasmid DNA prime, rVSV boost vaccination regimen also tended to increase the preservation of peripheral blood CD4+ cells and reduce the morbidity and mortality associated with SHIV89.6P infection. An analysis of immune correlates of protection after SHIV89.6P challenge revealed that the prechallenge SHIV-specific IFN-gamma ELISpot response elicited by vaccination and the ability of the host to mount a virus-specific neutralizing antibody response postchallenge correlated with postchallenge clinical outcome. The correlation between vaccine-elicited cell-mediated immune responses and an improved clinical outcome after SHIV challenge provides strong justification for the continued development of a cytokine-enhanced plasmid DNA prime, rVSV vector boost immunization regimen for the prevention of HIV infection.  相似文献   

6.
A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.There are formidable difficulties for developing a vaccine against a retrovirus such as HIV because of the integration of its genes into the DNA of the host target cells upon infection. For HIV, this problem is compounded by HIV-induced immune suppression and the development of variants that escape immune control. Consequently, an effective preventive vaccine against HIV must work early to block HIV infection and quickly kill HIV-infected cells, or both. To date, only antibodies to the HIV envelope glycoprotein (Env) fit this requirement. Available evidence suggests that such antibodies must recognize highly conserved domains and could inhibit infection by direct neutralization or by Fc receptor-dependent effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC) (1, 2). The ideal result would be sterilizing immunity or, at a minimum, a major restriction of the infection (3). Another challenge stems from evolutionary pressures that abrogate the immunogenicity of conserved, functional epitopes on the envelope spike that are potential targets for cross-reactive antibodies. Large areas are masked by a “glycan shield” of carbohydrate molecules and extensive conformational flexibility (sometimes termed “conformational masking”) that dampen immunogenicity of the conserved functional domains (4, 5). The remaining immunogenic domains (“variable” or “V” loops) tolerate a high degree of sequence variability and generate “type-specific” neutralizing antibodies that are not cross-reactive and that limit the efficacy of vaccines that use conventional gp120 monomeric protein.An emerging concern for HIV vaccine development centers on the quantitative and qualitative aspects of T-cell activation elicited by various immunization regimens (6). Although HIV-specific T cells might potentially combat infection, certain patterns of T-cell activation (e.g., involving CD4+ CCR5+ T cells) have the potential to promote HIV replication. The latter possibility is emphasized by the HIV vaccine-associated increased risk of infection seen in two large human clinical trials that selectively generated HIV-specific T-cell responses (7). Similar associations between increased risk of infection and T-cell responses of various sorts have been reported in the nonhuman primate model (810). Thus, the ideal HIV vaccine strategy is likely to be one that generates antiviral humoral responses without incurring T-cell activation profiles that promote infection and/or overcome the protective benefits of antibodies. Insights for such an approach can be gained by comparative analyses of nonhuman primate models of HIV infection.The vaccine concept that we have been testing is designed to overcome some of these challenges by stably expressing a highly conserved transition state structure that is exposed on gp120 during a key step in viral entry, exposure of the coreceptor-binding domain consequent to CD4 binding. The prototype immunogen [full-length single chain (FLSC)] is a chimeric protein composed of gp120 from the HIV-1Ba-L isolate fused to the N terminus of the two outer domains of CD4 by a flexible polypeptide linker (11). For studies of rhesus macaques, the construct is modified to contain “self” rhesus macaque CD4 sequences (rhFLSC) to avoid anti-CD4 responses. The rhFLSC elicits antibody responses to highly conserved epitopes, including the coreceptor-binding domain epitopes (CoRBS) and the C1 regions implicated as a potent ADCC target (12). In an earlier study (12), we showed that rhesus macaques vaccinated with rhFLSC formulated with QS21, a saponin adjuvant derived from the soap-bark tree Q. saponaria, exhibited accelerated clearance of plasma viremia and an absence of long-term tissue viral loads compared with unvaccinated controls after a single high-dose rectal challenge with heterologous SHIV162P3. Postinfection control correlated with stronger responses to CD4i epitopes in the rhFLSC-vaccinated animals (CD4i titers > 1:100), compared with macaques that received control immunogens including gp120, soluble CD4, or chemically cross-linked gp120-CD4. Postinfection control did not correlate with anti-CD4 responses, overall anti-gp120–binding titers, or neutralizing activity measured in conventional assays (12), although it did correlate with neutralizing titers in the soluble CD4-triggered assay using HIV-27312A/V434M that selectively detects responses to highly conserved epitopes in the coreceptor-binding site (13). Taken together, this study showed that rhFLSC elicits antibody responses to highly conserved CD4i epitopes that correlate with postinfection control of viremia after a high-dose rectal challenge with SHIV162P3, but it left open the question of whether rhFLSC can elicit antibodies that block acquisition. Acquisition is typically blocked only in high-dose challenge studies when the vaccine and challenge stock are matched (14), which is not the case for rhFLSC and SHIV162P3. For this reason, we performed three independent studies using different rhFLSC immunization schemes and a repeat low-dose rectal challenge model that is thought to be more reflective of sexual HIV transmission (15). These studies were designed in part as a hypothesis-generating exercise with respect to protective immunity. We consistently found (i) inverse correlations between acquisition of infection and certain aspects of humoral immunity and (ii) direct relationships between acquisition of infection and vaccine-elicited T-cell responses. Importantly, in certain test groups the apparent protective benefit of humoral responses is absent when T-cell responses are comparatively high. These results strongly suggest that a successful HIV vaccine will need to elicit protective antibody responses without eliciting attenuating levels of vaccine-elicited T-cell responses.  相似文献   

7.
We analyzed the safety and immunogenicity of attenuated rabies virus vectors expressing simian-human immunodeficiency virus (SHIV)-1(89.6P) Env or simian immunodeficiency virus (SIV)(mac239) Gag in rhesus macaques. Four test macaques were immunized with both vaccine constructs, and 2 control macaques received an empty rabies vector. Seroconversion against rabies virus glycoprotein (G) and SHIV(89.6P) Env was detected after the initial immunization, but no cellular responses against SHIV antigens were observed. HIV/SIV-specific immune responses were not enhanced by boosts with the same vectors. Therefore, we constructed vectors expressing SHIV(89.6P) Env and SIV(mac239) Gag in which the rabies G was replaced with the G protein of vesicular stomatitis virus (VSV). Two years after initial immunization, a boost with the rabies-VSV G vectors resulted in SIV/HIV-specific immune responses. Upon challenge with SHIV(89.6P) test macaques controlled the infection, whereas control macaques had high levels of viremia and a profound loss of CD4(+) T cells, with 1 control macaque dying of an AIDS-like disease.  相似文献   

8.
To elucidate the functions of human immunodeficiency virus type 1 (HIV-1) genes in a nonhuman primate model, we have constructed infectious recombinant viruses (chimeras) between the pathogenic molecular clone of simian immunodeficiency virus (SIV) SIVmac239 and molecular clones of HIV-1 that differ in phenotypic properties controlled by the env gene. HIV-1SF33 is a T-cell-line-tropic virus which induces syncytia, and HIV-1SF162 is a macrophage-tropic virus that does not induce syncytia. A DNA fragment encoding tat, rev, and env (gp160) of SIVmac239 has been replaced with the counterpart genetic region of HIV-1SF33 and HIV-1SF162 to derive chimeric recombinant simian/human immunodeficiency virus (SHIV) strains SHIVSF33 and SHIVSF162, respectively. In the acute infection stage, macaques inoculated with SHIVSF33 had levels of viremia similar to macaques infected with SIVmac239, whereas virus loads were 1/10th to 1/100th those in macaques infected with SHIVSF162. Of note is the relatively small amount of virus detected in lymph nodes of SHIVSF162-infected macaques. In the chronic infection stage, macaques infected with SHIVSF33 also showed higher virus loads than macaques infected with SHIVSF162. Virus persists for over 1 year, as demonstrated by PCR for amplification of viral DNA in all animals and by virus isolation in some animals. Antiviral antibodies, including antibodies to the HIV-1 env glycoprotein (gp160), were detected; titers of antiviral antibodies were higher in macaques infected with SHIVSF33 than in macaques infected with SHIVSF162. Although virus has persisted for over 1 year after inoculation, these animals have remained healthy with no signs of immunodeficiency. These findings demonstrate the utility of the SHIV/macaque model for analyzing HIV-1 env gene functions and for evaluating vaccines based on HIV-1 env antigens.  相似文献   

9.
The global impact of HIV/AIDS intensifies the need for a preventive vaccine and nonhuman primate models can help provide critical insights into effective immunity. Pigtail macaques (Macaca nemestrina) are increasingly studied as a nonhuman primate model for AIDS. We compared the virologic and immunologic characteristics of HIV-1, SIV, and SHIV infection of naive pigtail macaques across a series of preclinical HIV vaccine studies. SIVmac251 and SIVmac239 infection of naive pigtail macaques resulted in a gradual decline in peripheral CD4+ T cells in the setting of high levels of viremia, approximating most closely human infection of HIV-1. In contrast, the CXCR4-utilizing SHIVmn229 virus resulted in rapid depletion of CD4+ T cells and minimal generation of humoral or cellular immune responses, similar to that observed with SHIV89.6P infection of rhesus macaques. Infection with the CCR5-utilizing, rhesus macaque passaged, SHIVSF162P3 resulted in some overall CD4+ T cell decline, however, three of eight macaques naturally control SHIVSF162P3 viremia to very low levels in the setting of robust adaptive immunity. Despite attempts at infecting pigtail macaques with HIV-1 strains passaged in juvenile pigtail macaques in vivo or in PBMC isolated from pigtail macaques in vitro, only lower nonsustained levels of viral replication were observed. Our results provide a series of virologic models with which to evaluate potential AIDS vaccines in pigtail macaques.  相似文献   

10.
A SIV-ISCOM and a SIV-MDP adjuvanted vaccine were tested for their potential to induce protection from intravenous cell-free or cell-associated homologous SIV challenge in rhesus monkeys (Macaca mulatta). Seven monkeys vaccinated four times over a four-month period with either the SIV-ISCOM or the SIV-MDP vaccine were challenged intravenously with approximately 10 MID50 cell-free SIVmac251 (32H). They all were protected from developing viremia during a three-month observation period. Two other groups of four monkeys were vaccinated essentially in the same way with either of these vaccines. They were challenged intravenously with approximately 10 MID50 of infected PBMC of a rhesus monkey that had been infected with SIVmac251 (32H) 11 months earlier (stock prepared by J. Heeney). Two monkeys of each of these two groups proved to be protected from developing viremia during a two-month observation period. For both the cell-free and the cell-associated SIV challenge, monkeys vaccinated with measles virus ISCOMS or MDP adjuvanted measles virus antigen, served as controls. They all became viremic within two weeks after SIV challenge. This is the first demonstration that vaccinated previously unchallenged nonhuman primates can be protected from infection with lentivirus-infected PBMC from another animal. Serological analysis indicated that SIV-specific serum antibody titers were considerably higher in SIV-ISCOM vaccinated animals than in the SIV-MDP vaccinated animals. The serology also confirmed the protection data, by showing the absence of increase in SIV-specific serum antibodies in apparently protected animals after challenge.  相似文献   

11.
A novel, general approach to chemical inactivation of retroviruses was used to produce inactivated simian immunodeficiency virus (SIV) particles with functional envelope glycoproteins. Inactivated virions of three different virus isolates (SIVmne E11S, SIVmac239, and SIVmac239 g4,5), prepared by treatment with 2,2'-dithiodipyridine (aldrithol-2, AT-2), were not detectably infectious, in vitro or in vivo. Immunization of pigtailed macaques with inactivated SIVmne E11S particles, without adjuvant, induced both humoral and cellular immune responses. Four of six animals immunized with the inactivated particles did not show measurable SIV RNA in plasma (<100 copy Eq/ml) following intravenous challenge with pathogenic, homologous virus (SIVmne E11S), compared to peak values of > or =10(6) copy Eq/ml in challenged SIV-naive control animals (p = 0.0001). Despite the absence of measurable viral RNA in plasma in these animals, culturable virus and viral DNA were initially detectable in blood and lymph node specimens; in contrast to control animals, SIV DNA could no longer be detected in PBMC by 10 weeks postchallenge in five of six SIV-immunized animals (p = 0.0001). However, vaccines did not resist a sequential rechallenge with the heterologous pathogenic virus SIVsm E660. AT-2-inactivated virus with functional envelope glycoproteins is a novel class of vaccine immunogen and was noninfectious, under conditions of rigorous in vivo challenge, and induced both binding and neutralizing antibody responses, along with cellular immune responses. Results suggest that immunization facilitated effective containment of pathogenic homologous challenge virus. With further optimization, AT-2-inactivated viral particles may be a useful class of immunogen in the development of a vaccine to prevent AIDS.  相似文献   

12.
Although the correlates of immunological protection from human immunodeficiency virus or simian immunodeficiency virus infection remain incompletely understood, it is generally believed that medium to high titers of serum neutralizing antibodies (nAbs) against the challenge virus will prevent infection. This paradigm is based on a series of studies in which passive transfer of HIV-specific nAbs protected rhesus macaques (RMs) from subsequent mucosal challenge with a chimeric human/simian immunodeficiency virus. However, it is unknown whether nAb titers define protection in the setting of active immunization. Here we determined serum nAb titers against breakthrough transmitted/founder (T/F) SIVsmE660-derived envelope glycoprotein (Env) variants from 14 RMs immunized with SIVmac239-based DNA-prime/modified vaccinia virus Ankara-boost vaccine regimens that included GM-CSF or CD40L adjuvants and conferred significant but incomplete protection against repeated low-dose intrarectal challenge. A single Env variant established infection in all RMs except one, with no identifiable genetic signature associated with vaccination breakthrough compared with T/F Envs from four unvaccinated monkeys. Breakthrough T/F Env pseudoviruses were potently neutralized in vitro by heterologous pooled serum from chronically SIVsmE660-infected monkeys at IC50 titers exceeding 1:1,000,000. Remarkably, the T/F Env pseudoviruses from 13 of 14 monkeys were also susceptible to neutralization by autologous prechallenge serum at in vitro IC50 titers ranging from 1:742–1:10,832. These titers were similar to those observed in vaccinated RMs that remained uninfected. These data suggest that the relationship between serum nAb titers and protection from mucosal SIV challenge in the setting of active immunization is more complex than previously recognized, warranting further studies into the balance between immune activation, target cell availability, and protective antibody responses.With the recovery and characterization of five classes of broadly neutralizing antibodies (nAbs) against HIV-1, as well as detailed information about how they develop (1, 2), and the possibility that a vaccine-elicited antibody contributed to protection in the RV144 HIV vaccine efficacy trial (3), optimism regarding antibody-mediated protection against HIV-1 has been renewed (4). Furthermore, passive administration of neutralizing monoclonal antibodies (nmAbs) to nonhuman primates (NHPs) has repeatedly been shown to provide robust protection against mucosal infection with a chimeric human/simian immunodeficiency virus, even at modest in vitro nAb IC50 titers that are readily achievable by vaccination (514). NHP studies have also demonstrated that protection against heterologous SIV challenge is feasible and likely mediated by antibody responses (1518). We recently reported on the protective efficacy and immune responses elicited by SIVmac239-based DNA-prime/modified vaccinia virus Ankara-boost (DDMM) vaccination of rhesus macaques (RMs), with GM-CSF adjuvant (DgDgMM), CD40-ligand adjuvant (D40LD40LMM), or administering three MVA immunizations without DNA priming (MMM) (Fig. 1A). Each of these vaccine regimens provided statistically significant protection against a low-dose repeated heterologous SIVsmE660 intrarectal challenge, compared with the unimmunized controls (1921). The SIVsmE660 stock (VH2000) and dosage (5,000 TCID50), immunization schedule, and challenge route were held constant during these trials, providing an opportunity to investigate in more detail the immune responses elicited across groups. Neutralizing activity was elicited by all vaccine regimens but was not associated with protection; however, this was measured indirectly using one or a few reference variants of SIVsmE660. The strongest and most consistent immune correlate that was associated with protection against acquisition in the DDMM, DgDgMM, and D40LD40LMM modalities was the presence of higher binding avidity for the SIVsmE660 envelope glycoproteins (Env). In contrast, this immune parameter was not correlated with MMM-mediated protection, perhaps reflecting that immunization with two forms of SIVmac239 Env (gp160 and gp150 by the DNA and MVA vectors, respectively) elicits a different type of antibody than gp160 alone. In outcomes like these, where protection is incomplete, the characterization of breakthrough variants can inform us about correlates of vaccine-mediated protection against acquisition (18, 22, 23). Here, we went one step further by testing the capacity of prechallenge antibodies to neutralize the exact Env variant that broke through to establish each infection. To our knowledge, this study is the first to demonstrate that vaccine-elicited serum antibodies capable of neutralizing the autologous breakthrough Env variant were present before challenge at moderate to high titers but nevertheless failed to protect against SIV infection.Open in a separate windowFig. 1.Timeline of the M11 and M12 NHP vaccine trials. (A) The immunization schedule for the M11 and M12 vaccine trials is plotted along a timeline in weeks. M11 consisted of DDMM, DgDgMM, and MMM vaccine groups, whereas the M12 trial added on the D40LD40LMM group. The agents used for priming and boosting are indicated in colored boxes, highlighting similarities and differences between vaccine groups. The total number of animals in each immunization group and the control group is shown to the left. The number of breakthrough infections and number of animals analyzed for each group is shown to the right. The time point at which the peak levels of antibody binding to SIVsmE660- and SIVmac239-derived gp140 proteins were observed is indicated by an arrow as “Peak Ab.” The time point that was analyzed for nAb activity (shown in Fig. 3B and Fig. S6) is indicated by an arrow and “nAb Analysis.” Weekly intrarectal challenges with SIVsmE660 were initiated at week 48. (B) A survival curve is shown for each of the vaccine groups, which are indicated by color in the key. The circles indicate the challenge that resulted in infection of each monkey that was included in the nAb study. For example, one control monkey (orange circles) was infected at challenge 1, one at challenge 2, and two at challenge 5.  相似文献   

13.
Herpes simplex virus (HSV) prevention is a global health priority but, despite decades of research, there is no effective vaccine. Prior efforts focused on generating glycoprotein D (gD) neutralizing antibodies, but clinical trial outcomes were disappointing. The deletion of gD yields a single-cycle candidate vaccine (∆gD-2) that elicits high titer polyantigenic non-gD antibodies that exhibit little complement-independent neutralization but mediate antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Active or passive immunization with ΔgD-2 completely protects mice from lethal disease and latency following challenge with clinical isolates of either serotype. The current studies evaluated the role of complement in vaccine-elicited protection. The immune serum from the ΔgD-2 vaccinated mice exhibited significantly greater C1q binding compared to the serum from the gD protein vaccinated mice with infected cell lysates from either serotype as capture antigens. The C1q-binding antibodies recognized glycoprotein B. This resulted in significantly greater antibody-mediated complement-dependent cytolysis and neutralization. Notably, complete protection was preserved when the ΔgD-2 immune serum was passively transferred into C1q knockout mice, suggesting that ADCC and ADCP are sufficient in mice. We speculate that the polyfunctional responses elicited by ΔgD-2 may prove more effective in preventing HSV, compared to the more restrictive responses elicited by adjuvanted gD protein vaccines.  相似文献   

14.
We utilized SIV(mne) infection of Macaca fascicularis to assess the efficacy of DNA vaccination alone, and as a priming agent in combination with subunit protein boosts. All SIV(mne) structural and regulatory genes were expressed using the human cytomegalovirus Immediate Early-1 promoter in plasmids that directed the formation of virus-like particles in vitro. Macaques (n = 4) were immunized intradermally and intramuscularly four times over 36 weeks with 3 mg plasmid DNA. A second group (n = 4) received two DNA priming inoculations followed by two intramuscular boosts consisting of 250 microg recombinant Env gp160 and 250 microg recombinant Gag-Pol particles in MF-59 adjuvant. These regimens elicited modest cellular immunity prior to challenge. Humoral immune responses to Env gp160 were elicited and sustained by both vaccine protocols, and as expected antibody titers were higher in the protein subunit-boosted animals. Neutralizing antibodies prior to challenge were measurable in two of four subunit-boosted macaques. The two vaccine regimens elicited comparable helper T cell responses at the time of challenge. Vaccinees and mock-immunized controls (n = 4) were challenged intrarectally at week 38 with uncloned SIV(mne). Following challenge all macaques became infected, but both vaccine regimens resulted in reduced peak virus loads (p = 0.07) and significantly improved maintenance of peripheral CD4(+) T cell counts postchallenge (p = 0.007, DNA alone and p = 0.01, all vaccinees). There was no significant difference between the two vaccine groups in levels of plasma viremia or maintenance of CD4(+) T cell counts postchallenge.  相似文献   

15.
Considerable evidence suggests both HIV-specific T cells and neutralizing antibodies (nAb) can, separately, assist control of viremia. T cell and nAb responses were studied in detail in three pigtail macaques protected from chronic simian/human immunodeficiency virus (SHIV) viremia by DNA prime/fowlpoxvirus boost vaccine regimens. Immunity was studied both after an initial intrarectal SHIV challenge, as well as during CD8 T cell depletion and a subsequent intravenous SHIV rechallenge. Remarkably, SHIV-specific CD4 and CD8 T cells were detectable in the absence of viremia following an initial SHIV challenge in one animal, subsequent to recovery from CD8 T cell depletion in all three animals, and following control of heterologous SHIV rechallenge in two animals. Neutralizing antibodies were also enhanced following CD8 depletion without recrudescence of viremia in all three animals. These observations, although in a small subset of animals, suggest the hypothesis that combinations of primed T cell immunity and neutralizing antibodies can maintain control of chronic primate lentiviral infections.  相似文献   

16.
Malaria is a major global health problem for which an effective vaccine is required urgently. Prime-boost vaccination regimes involving plasmid DNA and recombinant modified vaccinia virus Ankara-encoding liver-stage malaria antigens have been shown to be powerfully immunogenic for T cells and capable of inducing partial protection against experimental malaria challenge in humans, manifested as a delay in time to patent parasitemia. Here, we report that substitution of plasmid DNA as the priming vector with a specific attenuated recombinant fowlpox virus, FP9, vaccine in such prime-boost regimes can elicit complete sterile protection that can last for 20 months. Protection at 20 months was associated with persisting memory but not effector T cell responses. The protective efficacy of various immunization regimes correlated with the magnitude of induced immune responses, supporting the strategy of maximizing durable T cell immunogenicity to develop more effective liver-stage vaccines against Plasmodium falciparum malaria.  相似文献   

17.
The threat of a smallpox-based bioterrorist event or a human monkeypox outbreak has heightened the importance of new, safe vaccine approaches for these pathogens to complement older poxviral vaccine platforms. As poxviruses are large, complex viruses, they present technological challenges for simple recombinant vaccine development where a multicomponent mixtures of vaccine antigens are likely important in protection. We report that a synthetic, multivalent, highly concentrated, DNA vaccine delivered by a minimally invasive, novel skin electroporation microarray can drive polyvalent immunity in macaques, and offers protection from a highly pathogenic monkeypox challenge. Such a diverse, high-titer antibody response produced against 8 different DNA-encoded antigens delivered simultaneously in microvolumes has not been previously described. These studies represent a significant improvement in the efficiency of the DNA vaccine platform, resulting in immune responses that mimic live viral infections, and would likely have relevance for vaccine design against complex human and animal pathogens.  相似文献   

18.
Live attenuated HIV vaccines: pitfalls and prospects   总被引:8,自引:0,他引:8  
PURPOSE OF REVIEW: When simian immunodeficiency virus (SIV) deleted in the nef gene caused no disease in macaques and provided protection against wild-type SIV challenge, hopes were high that the removal of nef would convert a pathogenic immunodeficiency virus into a live attenuated vaccine. We seek to highlight recent studies focused on several major issues regarding live attenuated AIDS viruses as vaccine candidates: (1). safety, (2). efficacy, (3). the correlates of immune protection, and (4) the molecular determinants for lentiviral virulence or attenuation. RECENT FINDINGS: Nef-deletion mutants have retained virulence; compared with wild-type SIV, disease progression was slowed but not abrogated. After long-term observation, all adult macaques given SIVmac239delta3 exhibited immune dysfunction; over 50% had T-cell depletion, and 18% developed AIDS. Vaccine efficacy has been disappointing, with limited or no cross-protection and no protection against homologous virus challenge years after initial vaccination. To date, the correlates of protective immunity have defied precise definition; no dominant mechanism has yet emerged. Data from passive serum transfer and CD8+ T-cell depletion studies have raised the possibility that alternate mechanism of protection may be operative. Due to relentless viral replication and continuous selective pressure, initially benign viruses can generate virulent progeny with unpredictable genotypes. SUMMARY: Neither safety nor efficacy of the current live attenuated primate immunodeficiency virus vaccines has withstood the test of time. However, such viruses are invaluable tools to address two key questions: (1). what are the correlates of protection, and (2). what are the molecular determinants of viral immunopathogenesis?  相似文献   

19.
Retroviral envelope glycoproteins interact with cell receptors and are targets for antiviral immune responses in infected hosts. Macaque simian immunodeficiency virus (SIVmac) is a T-lymphocytopathic lentivirus which causes an AIDS-like disease in rhesus macaques. The envelope gene of SIVmac encodes a precursor glycoprotein (gp160) which is cleaved into an external domain (gp130) and a transmembrane domain (gp32). To investigate the functional and immunological properties of the SIV external envelope glycoprotein, we have used genetically engineered mammalian cells to produce recombinant gp130 (rgp130). The rgp130 has the appropriate molecular weight, is glycosylated, and has native conformation as determined by binding to the cell receptor for SIV, the CD4 antigen. Rhesus macaques immunized with purified rgp130 formulated in muramyl dipeptide adjuvant generated high titers of antienvelope antibodies. Antibodies from these macaques were tested for in vitro virus neutralization; very low or undetectable levels of neutralization were observed. In contrast, neutralizing antibodies were readily detected in sera from goats immunized with rgp130. With respect to cell-mediated immunity, proliferative responses to rgp130 were demonstrated in peripheral blood monocyte cells (PBMC) from macaques immunized with the recombinant glycoprotein as well as in PBMC from SIV-infected animals. These results show that rgp130 is functional and immunogenic; the potential of rgp130 for protective immunization remains to be determined.  相似文献   

20.
Immunization of adult macaques with live attenuated simian immunodeficiency viruses (SIVs) lacking the nef genes has been shown to protect against challenge with full-length pathogenic SIV. To test live attenuated virus vaccines for the first time in a natural host we have constructed a mutant SIV from African green monkeys (SIVagm) with a deletion of 125 bp in the nef gene (SIVagm3Δnef). This mutant showed moderately delayed in vitro replication in the T cell line MOLT-4/8 and in primary peripheral blood mononuclear cells from African green monkeys (Cercopithecus aetiops) and pig-tailed macaques (Macaca nemestrina) compared with cloned wild-type SIVagm3. In contrast, in vivo replication of SIVagm3Δnef in African green monkeys was severely impaired or undetectable and did not induce seroconversion. After challenge with wild-type SIVagm3 the SIVagm3Δnef preinoculated African green monkeys showed a memory antibody response that declined after week 2. In three of four African green monkeys the cell-associated virus load and in two of four African green monkeys the plasma virus load was dramatically decreased after the challenge compared with naive control animals. The remaining animal showed no evidence of productive challenge virus replication. This study demonstrates that a strong vaccine effect or protection in the SIVagm/African green monkey system is possible using a live attenuated vaccine in the absence of a productive infection and corresponding humoral immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号