首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cannabinoid receptors for Δ(9)-THC, and particularly, the CB(1) receptor, as well as its endogenous ligands, the endocannabinoids anandamide and 2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy balance in mammals. While initially it was believed that this endocannabinoid signaling system would only facilitate energy intake, we now know that perhaps even more important functions of endocannabinoids and CB(1) receptors in this context are to enhance energy storage into the adipose tissue and reduce energy expenditure by influencing both lipid and glucose metabolism. Although normally well controlled by hormones and neuropeptides, both central and peripheral aspects of endocannabinoid regulation of energy balance can become dysregulated and contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility that CB(1) antagonists might be used for the treatment of these metabolic disorders. On the other hand, evidence is emerging that some nonpsychotropic plant cannabinoids, such as cannabidiol, can be employed to retard β-cell damage in type 1 diabetes. These novel aspects of endocannabinoid research are reviewed in this chapter, with emphasis on the biological effects of plant cannabinoids and endocannabinoid receptor antagonists in diabetes.  相似文献   

2.
Considerable progress has been made, recently, in understanding the role of the endocannabinoid system in regard to neuroprotection. Endogenous cannabinoids have received increasing attention as potential protective agents in several cases of neuronal injury. The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of post‐synaptic transmission, interacting with other neurotransmitters, including norepinephrine and dopamine. Furthermore, endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti‐excitotoxic, anti‐inflammatory and vasodilatory effects. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. The purpose of this review is to present the available in vivo and in vitro experimental data, up to date, regarding the endocannabinoid system and its role in neuroprotection, as well as its possible therapeutic perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Research into the endocannabinoid signaling system has grown exponentially in recent years following the discovery of cannabinoid receptors (CB) and their endogenous ligands, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Important advances have been made in our understanding of the endocannabinoid signaling system in various aspects of alcoholism, including alcohol-seeking behavior. Alcohol increases the synthesis or impairs the degradation of endocannabinoids, leading to a locally elevated endocannabinoid tone within the brain. Elevated endocannabinoid tone might be expected to result in compensatory down-regulation of CB1 receptors or dampened signal transduction. Following release, endocannabinoids diffuse back to the presynaptic neuron where they act as short-range modulators of synaptic activity by altering neurotransmitter release and synaptic plasticity. Mice treated with the CB1 receptor antagonist SR141716A (rimonabant) or homozygous for a deletion of the CB1 receptor gene exhibit reduced voluntary alcohol intake. CB1 knockout mice also show increased alcohol sensitivity, withdrawal, and reduced conditioned place preference. Conversely, activation of CB1 receptor promotes alcohol intake. Recent studies also suggest that elevated endocannabinoid tone due to impaired degradation contributes to high alcohol preference and self-administration. These effects are reversed by local administration of rimonabant, suggesting the participation of the endocannabinoid signaling system in high alcohol preference and self-administration. These recent advances will be reviewed with an emphasis on the endocannabinoid signaling system for possible therapeutic interventions of alcoholism.  相似文献   

4.
The endocannabinoid system modulates many physiological functions by acting on receptors CB1 and CB2. The endocannabinoids are produced only when and where they are needed. They act locally and are immediately metabolised after their action. Overactivation of the endocannabinoid system is observed in obesity, with stimulation of the appetite in the hypothalamus and fat accumulation in the adipocytes with increase of insulin resistance and decrease of adiponectin. Nicotine use overactivates also the endocannabinoid system. CB1 blockade by a specific inhibitor (rimonabant) decreases food intake and weight in animal studies and increases adiponectin and insulin sensitivity. Moreover, rimonabant decreases tobacco dependence. Clinical studies with rimonabant are encouraging.  相似文献   

5.
Delta(9)-Tetrahydrocannabinol (the active ingredient of marijuana), as well as endogenous and synthetic cannabinoids, exert many biological functions by activating two types of cannabinoid receptors, CB(1) and CB(2) receptors. CB(1) receptors have been detected on enteric nerves, and pharmacological effects of their activation include gastroprotection, reduction of gastric and intestinal motility and reduction of intestinal secretion. The digestive tract also contains endogenous cannabinoids (i.e., the endocannabinoids anandamide and 2-aracidonylglycerol) and mechanisms for endocannabinoid inactivation (i.e., endocannabinoids uptake and enzymatic degradation). Cannabinoid receptors, endocannabinoids and the proteins involved in endocannabinoids inactivation are collectively referred as the 'endogenous cannabinoid system'. A pharmacological modulation of the endogenous cannabinoid system could provide new therapeutics for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, irritable bowel syndrome, Crohn's disease, secretory diarrhoea, paralytic ileus and gastroesophageal reflux disease. Some cannabinoids are already in use clinically, for example, nabilone and delta(9)-tetrahydrocannabinol are used as antiemetics.  相似文献   

6.
Modulation of the endocannabinoid system by lipid rafts   总被引:2,自引:0,他引:2  
Endocannabinoids like anandamide and 2-arachidonoylglycerol bind and activate type-1 (CB1R) and type-2 (CB2R) cannabinoid receptors, two inhibitory G protein-coupled receptors (GPCRs) that are localized in the central nervous system and in peripheral tissues. The biological actions of these lipids are controlled through not yet fully characterized cellular mechanisms that regulate the release of endocannabinoids from membrane precursors, their uptake by cells, and their intracellular disposal. The transport of anandamide through the plasma membrane is saturable and energy-independent, and might occur through a putative anandamide membrane transporter. Altogether anandamide and 2-arachidonoylglycerol, their congeners and the proteins that bind, transport, synthesize and hydrolyze these lipids, form the "endocannabinoid system". Accumulating evidence shows that CB1R (but not CB2R) binding and signaling, as well as anandamide transport, are under the control of lipid rafts (LRs), plasma membrane subdomains which modulate the activity of a number of GPCRs. Here we summarize the main features of the endocannabinoid system and LRs, in order to put the functional and structural effects of LRs on CB receptors, AEA transport and endocannabinoid signaling in a better focus. We outline the structural determinants that might explain the differential sensitivity of cannabic receptors towards raft integrity, and propose a general model to explain the dependence of endocannabinoid system on LRs. Finally, we also discuss the possible exploitation of LRs-targeted drugs as novel therapeutics for the treatment of endocannabinoid system-related pathologies.  相似文献   

7.
1. The endogenous cannabinoid (endocannabinoid) system is emerging as a key modulator of intestinal physiology, influencing motility, secretion, epithelial integrity and immune function in the gut, in addition to influencing satiety and emesis. 2. Accumulating evidence suggests that the endocannabinoid system may play a pivotal role in the pathophysiology of gastrointestinal disease, particularly in the light of recent studies demonstrating an effect of endocannabinoids on the development of experimental inflammation and linkages with functional clinical disorders characterized by altered motility. 3. The predominant endocannabinoids, anandamide and 2-arachidonoylglycerol, not only mediate their effects via two recognized cannabinoid receptor subtypes, namely CB(1) and CB(2), but emerging evidence now shows they are also substrates for cyclo-oxygenase (COX)-2, generating a distinct and novel class of prostaglandin ethanolamides (prostamides) and prostaglandin glycerol esters. These compounds are bioactive and may mediate an array of biological effects distinct to those of conventional prostanoids. 4. The effects of prostamides on gastrointestinal motility, secretion, sensation and immune function have not been characterized extensively. Prostamides may play an important role in gastrointestinal inflammation, particularly given the enhanced expression of both COX-2 and endocannabinoids that occurs in the inflamed gut. 5. Further preclinical studies are needed to determine the therapeutic potential of drugs targeting the endocannabinoid system in functional and inflammatory gut disorders, to assist with the determination of feasibility for clinical translation.  相似文献   

8.
The cannabinoid neurotransmitter system comprises cannabinoid G protein-coupled membrane receptors (CB1 and CB2), endogenous cannabinoids (endocannabinoids), as well as mechanisms for their synthesis, membrane transport and metabolism. Within the brain the marijuana constituent delta9-tetrahydrocannabinol (THC) produces its pharmacological actions by acting on cannabinoid CB1 receptors. THC modulates neuronal excitability by inhibiting synaptic transmission via presynaptic CB1-mediated mechanisms. More recently, it has been established that physiological stimulation of neurons can induce the synthesis of endocannabinoids, which also modulate synaptic transmission via cannabinoid CB1 and other receptor systems. These endogenously synthesised endocannabinoids appear to act as retrograde signalling agents, reducing synaptic inputs onto the stimulated neuron in a highly selective and restricted manner. In this review we describe the cellular mechanisms underlying retrograde endocannabinoid signalling.  相似文献   

9.
Starting from the well-documented effects of marijuana smoking on heart rate and blood pressure, the cardiovascular effects of Δ?-tetrahydrocannabinol (THC, the main psychotropic ingredient of Cannabis) and endocannabinoids [THC endogenous counterparts that activate cannabinoid receptor type 1 (CB?) and 2 (CB?)] have been thoroughly investigated. These studies were mostly aimed at establishing the molecular bases of the hypotensive actions of THC, endocannabinoids and related molecules, but also evaluated their therapeutic potential in cardiac injury protection, metabolic cardiovascular risk factors and atherosclerotic plaque vulnerability. The results of these investigations, reviewed here, also served to highlight some of the most peculiar aspects of endocannabinoid signaling, such as redundancy in endocannabinoid targets and the often dualistic role of CB? and CB? receptors during pathological conditions.  相似文献   

10.
The endocannabinoid system comprises amides, esters and ethers of long chain polyunsaturated fatty acids. Narachidonoylethanolamide (anandamide; ANA) and 2-arachidonoylglycerol (2-AG) are endogenous cannabinoids (endocannabinoids) ligands for the cannabinoid family of G-protein-coupled receptors named CB1 and CB2. Endocannabinoids are released upon demand from lipid precursors in a receptor-dependent manner and behave as retrograde signaling messengers, as well as modulators of postsynaptic transmission, interacting with other neurotransmitters systems. The two principal enzymes that are responsible for the metabolism of ANA and 2-AG are fatty acid amide hydrolase and monoacylglycerol lipase, respectively. Pharmacological experiments have shown that the administration of endocannabinoids induce cannabimimetic effects, including sleep promotion. This review will focus on some of the current evidence of the pharmacological potential of the endocannabinoid system on sleep modulation.  相似文献   

11.
INTRODUCTION: Recent studies have shown that the endocannabinoid system (ECS) could offer an attractive antitumor target. Numerous findings suggest the involvement of this system (constituted mainly by cannabinoid receptors, endogenous compounds and the enzymes for their synthesis and degradation) in cancer cell growth in vitro and in vivo. AREAS COVERED: This review covers literature from the past decade which highlights the potential of targeting the ECS for cancer treatment. In particular, the levels of endocannabinoids and the expression of their receptors in several types of cancer are discussed, along with the signaling pathways involved in the endocannabinoid antitumor effects. Furthermore, the beneficial and adverse effects of old and novel compounds in clinical use are discussed. EXPERT OPINION: One direction that should be pursued in antitumor therapy is to select compounds with reduced psychoactivity. This is known to be connected to the CB1 receptor; thus, targeting the CB2 receptor is a popular objective. CB1 receptors could be maintained as a target to design new compounds, and mixed CB1-CB2 ligands could be effective if they are able to not cross the BBB. Furthermore, targeting the ECS with agents that activate cannabinoid receptors or inhibitors of endogenous degrading systems such as fatty acid amide hydrolase inhibitors may have relevant therapeutic impact on tumor growth. Additional studies into the downstream consequences of endocannabinoid treatment are required and may illuminate other potential therapeutic targets.  相似文献   

12.
Cannabinoids   总被引:4,自引:0,他引:4  
Since the discovery of an endogenous cannabinoid system, research into the pharmacology and therapeutic potential of cannabinoids has steadily increased. Two subtypes of G-protein coupled cannabinoid receptors, CB(1) and CB(1), have been cloned and several putative endogenous ligands (endocannabinoids) have been detected during the past 15 years. The main endocannabinoids are arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG), derivatives of arachidonic acid, that are produced "on demand" by cleavage of membrane lipid precursors. Besides phytocannabinoids of the cannabis plant, modulators of the cannabinoid system comprise synthetic agonists and antagonists at the CB receptors and inhibitors of endocannabinoid degradation. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues, including immune system, reproductive and gastrointestinal tracts, sympathetic ganglia, endocrine glands, arteries, lung and heart. There is evidence for some non-receptor dependent mechanisms of cannabinoids and for endocannabinoid effects mediated by vanilloid receptors. Properties of CB receptor agonists that are of therapeutic interest include analgesia, muscle relaxation, immunosuppression, anti-inflammation, antiallergic effects, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. The current main focus of clinical research is their efficacy in chronic pain and neurological disorders. CB receptor antagonists are under investigation for medical use in obesity and nicotine addiction. Additional potential was proposed for the treatment of alcohol and heroine dependency, schizophrenia, conditions with lowered blood pressure, Parkinson's disease and memory impairment in Alzheimer's disease.  相似文献   

13.
This review highlights some important advances that have taken place in cannabinoid research over the last four years. It focuses on novel ligands that are of interest either as experimental tools or as lead compounds for therapeutic agents and possible clinical applications for some of these ligands. The molecular targets for these compounds are various components of the system of endogenous cannabinoids (endocannabinoids) and receptors that together constitute the 'endocannabinoid system'. These are CB(1) cannabinoid receptors that are present mainly on central and peripheral neurones, CB(2) cannabinoid receptors that are expressed predominantly by immune cells, the biochemical mechanisms responsible for the tissue uptake or metabolism of endocannabinoids and vanilloid receptors. Other cannabinoid receptor types may also exist. Recently developed ligands include potent and selective agonists for CB(1) and CB(2) receptors, a potent CB(2)-selective antagonist/inverse agonist and inhibitors of endocannabinoid uptake or metabolism. Future research should be directed at characterising the endocannabinoid system more completely and at obtaining more conclusive clinical data about the possible beneficial effects of cannabinoids as well as their adverse effects. There is also a need for improved cannabinoid formulations/modes of administration in the clinic and advances in this area should be facilitated by the recent development of a potent water-soluble CB(1)/CB(2) receptor agonist. A growing number of strategies for separating sought-after therapeutic effects of cannabinoid receptor agonists from the unwanted consequences of CB(1) receptor activation are now emerging and these are discussed at the end of this review.  相似文献   

14.
Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies [1]. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate. Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage. Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders. The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.  相似文献   

15.
This review highlights some important advances that have taken place in cannabinoid research over the last four years. It focuses on novel ligands that are of interest either as experimental tools or as lead compounds for therapeutic agents and possible clinical applications for some of these ligands. The molecular targets for these compounds are various components of the system of endogenous cannabinoids (endocannabinoids) and receptors that together constitute the 'endocannabinoid system'. These are CB1 cannabinoid receptors that are present mainly on central and peripheral neurones, CB2 cannabinoid receptors that are expressed predominantly by immune cells, the biochemical mechanisms responsible for the tissue uptake or metabolism of endocannabinoids and vanilloid receptors. Other cannabinoid receptor types may also exist. Recently developed ligands include potent and selective agonists for CB1 and CB2 receptors, a potent CB2-selective antagonist/inverse agonist and inhibitors of endocannabinoid uptake or metabolism. Future research should be directed at characterising the endocannabinoid system more completely and at obtaining more conclusive clinical data about the possible beneficial effects of cannabinoids as well as their adverse effects. There is also a need for improved cannabinoid formulations/modes of administration in the clinic and advances in this area should be facilitated by the recent development of a potent water-soluble CB1/CB2 receptor agonist. A growing number of strategies for separating sought-after therapeutic effects of cannabinoid receptor agonists from the unwanted consequences of CB1 receptor activation are now emerging and these are discussed at the end of this review.  相似文献   

16.
Endocannabinoids are paracrine/autocrine lipid mediators with several biological functions. One of these, i.e. the capability to stimulate food intake via cannabinoid CB(1) receptors, has been particularly studied, thus leading to the development of the first CB(1) receptor blocker, rimonabant, as a therapeutic tool against obesity and related metabolic disorders. Hypothalamic endocannabinoids stimulate appetite by regulating the expression and release of anorexic and orexigenic neuropeptides via CB(1) receptors. In turn, the tone of the latter receptors is regulated by hormones, including leptin, glucocorticoids and possibly ghrelin and neuropeptide Y, by modulating the biosynthesis of the endocannabinoids in various areas of the hypothalamus. CB(1) receptor stimulation is also known to increase blood glucose during an oral glucose tolerance test in rats. Here we investigated in the rat if insulin, which is known to exert fundamental actions at the level of the mediobasal hypothalamus (MBH), and the melanocortin system, namely alpha-melanocyte stimulating hormone (alpha-MSH) and melanocortin receptor-4 (MCR-4), also regulate hypothalamic endocannabinoid levels, measured by isotope-dilution liquid chromatography coupled to mass spectrometry. No effect on anandamide and 2-arachidonoylglycerol levels was observed after 2h infusion of insulin in the MBH, i.e. under conditions in which the hormone reduces blood glucose, nor with intra-cerebroventricular injection of alpha-MSH, under conditions in which the neuropeptide reduces food intake. Conversely, blockade of MCR-4 receptors with HS014 produced a late (6h after systemic administration) stimulatory effect on endocannabinoid levels as opposed to a rapid and prolonged stimulation of food-intake (observable 2 and 6h after administration). These data suggest that inhibition of endocannabinoid levels does not mediate the effect of insulin on hepatic glucose production nor the food intake-inhibitory effect of alpha-MSH, although stimulation of endocannabinoid levels might underlie part of the late stimulatory effects of MCR-4 blockade on food intake.  相似文献   

17.
Pertwee RG 《The AAPS journal》2005,7(3):E625-E654
There are at least 2 types of cannabinoid receptor, CB(1) and CB(2), both G protein coupled. CB(1) receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release, whereas CB(2) receptors are found mainly on immune cells, their roles including the modulation of cytokine release and of immune cell migration. Endogenous agonists for cannabinoid receptors also exist. These "endocannabinoids" are synthesized on demand and removed from their sites of action by cellular uptake and intracellular enzymic hydrolysis. Endocannabinoids and their receptors together constitute the endocannabinoid system. This review summarizes evidence that there are certain central and peripheral disorders in which increases take place in the release of endocannabinoids onto their receptors and/or in the density or coupling efficiency of these receptors and that this upregulation is protective in some disorders but can have undesirable consequences in others. It also considers therapeutic strategies by which this upregulation might be modulated to clinical advantage. These strategies include the administration of (1) a CB(1) and/or CB(2) receptor agonist or antagonist that does or does not readily cross the blood brain barrier; (2) a CB(1) and/or CB(2) receptor agonist intrathecally or directly to some other site outside the brain; (3) a partial CB(1) and/or CB(2) receptor agonist rather than a full agonist; (4) a CB(1) and/or CB(2) receptor agonist together with a noncannabinoid, for example, morphine or codeine; (5) an inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism; (6) an allosteric modulator of the CB(1) receptor; and (7) a CB(2) receptor inverse agonist.  相似文献   

18.
Several components of the endocannabinoid system have been fully characterized. Among them are two types of cannabinoid receptors (termed CB1 and CB2), endogenous ligands for those receptors (referred to as "endocannabinoids"), and specific enzymes responsible for their degradation and inactivation. The study of the distribution and abundance of these elements in the central nervous system has provided the basis for the well-known effects of exogenous (both natural and synthetic) and endogenous cannabinoids. In addition, recent developments also support the idea that the endocannabinoid system plays a critical neuromodulatory role in the central nervous system. For instance, cannabinoid CB1 receptor activation is known to modify the release of several neurotransmitters, such as glutamate and gamma-aminobutyric acid. However, we still lack knowledge on fundamental aspects of the physiological roles of this system. Interestingly, changes in the distribution and activity of some of these components of the endocannabinoid system have been reported under different pathological conditions, suggesting their possible involvement in the pathogenesis of these diseases. As comprehensive excellent reviews have been recently published, the present review will focus only on the most recent advances in the field, considering a new perspective of the endocannabinoid system as composed of both neuronal and glial divisions.  相似文献   

19.
The endocannabinoid system in brain reward processes   总被引:1,自引:0,他引:1  
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.  相似文献   

20.
Mackie K  Stella N 《The AAPS journal》2006,8(2):E298-E306
It is now well established that the psychoactive effects of Cannabis sativa are primarily mediated through neuronal CB1 receptors, while its therapeutic immune properties are primarily mediated through CB2 receptors. Two endocannabinoids, arachidonoylethanolamide and 2-arachidonoylglycerol, have been identified, their action on CB1 and CB2 thoroughly characterized, and their production and inactivation elucidated. However, many significant exceptions to these rules exist. Here we review the evidence suggesting that cannabinoids can modulate synaptic transmission, the cardiovascular system, and the immune system through receptors distinct from CB1 and CB2, and that an additional "independent" endocannabinoid signaling system that involves palmitoylethanolamide may exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号