首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In isolated rat uterine strips, adrenomedullin (AM) inhibited the spontaneous periodic contraction in a concentration-dependent manner (IC(50)=22.3+/-0.7 nM). The inhibitory effect of AM was prevented by either AM(22-52), a putative antagonist for AM receptors, or calcitonin gene-related peptide (CGRP)(8-37), a putative antagonist for CGRP receptors. AM also attenuated bradykinin (BK)-induced periodic uterine contraction, which was blocked by AM(22-52) or CGRP(8-37), whereas AM had no effect on the periodic contraction caused by oxytocin or prostaglandin F(2alpha) (PGF(2alpha)). RT-PCR analysis showed that mRNAs for calcitonin receptor-like receptor (CRLR), receptor-activity-modifying protein (RAMP)1, RAMP2 and RAMP3 were expressed in the rat uterus. These results demonstrate that AM selectively inhibits spontaneous and BK-induced periodic contraction via activating receptors for AM and CGRP.  相似文献   

2.
Adrenomedullin is related to the calcitonin gene-related peptide (CGRP) family and is present in cerebral blood vessels. It may be involved in migraine mechanisms. We measured the change in dural and pial artery diameter, mean arterial blood pressure and local cerebral blood flow flux (LCBF(Flux)) after intravenous (i.v.) infusion of adrenomedullin. The study was performed in the presence or absence of the CGRP1 (calcitonin-receptor-like-receptor (CALCRL)/receptor activity-modifying protein-1 (RAMP1)) receptor antagonists BIBN4096BS, CGRP-(8-37) and the adrenomedullin receptor antagonist adrenomedullin-(22-52). I.v. infusion of 15 mug kg(-1) adrenomedullin (n=8) induced dilatation of dural (32+/-7.5%) and pial (18+/-5.5%) arteries, a reduction in mean arterial blood pressure (19+/-3%) and an increase in LCBF(Flux) (16+/-8.4%). The duration of the responses was 25 min for the dural artery, while the response of the pial artery lasted for 15 min. The CGRP1-receptor antagonists BIBN4096BS and CGRP-(8-37) and the adrenomedullin receptor antagonist adrenomedullin-(22-52) significantly inhibited the effect of adrenomedullin (n=7, P<0.05 for both arteries) on dural and pial artery diameter and mean arterial blood pressure. No significant inhibition of LCBF(Flux) was found. The antagonist alone had no effect on mean arterial blood pressure or LCBF(Flux). In conclusion, we suggest that adrenomedullin in the rat cranial circulation dilates dural and pial arteries, reduces mean arterial blood pressure and increases LCBF(Flux), probably via a CGRP1-receptor.  相似文献   

3.
4.
Adrenomedullin and calcitonin gene-related peptide (CGRP) inhibited the pressor response to transmural electrical stimulation in perfused isolated canine mesenteric arteries. The response was abolished by treatment with either prazosin or tetrodotoxin. Adrenomedullin-(22-52), an adrenomedullin receptor antagonist, reduced the inhibitory effect of adrenomedullin (10(-10) to 10(-8) mol/l), but did not alter the action of CGRP. CGRP-(8-37), a CGRP(1) receptor antagonist, did not affect the inhibition induced by adrenomedullin, but reversed the CGRP-induced inhibition. In helical strips of the arteries, adrenomedullin (up to 10(-8) mol/l) did not influence the contraction induced by noradrenaline, whereas CGRP attenuated the response. Adrenomedullin decreased the release of noradrenaline from adrenergic nerves elicited by transmural electrical stimulation, but CGRP had no effect. Adrenomedullin-(22-52) reversed the decrease in noradrenaline release induced by adrenomedullin. The adrenomedullin-induced relaxation of vascular strips precontracted with prostaglandin F(2alpha) was suppressed by CGRP-(8-37) but was unaffected by adrenomedullin-(22-52). These findings suggest that adrenomedullin impairs noradrenaline release from adrenergic nerves by acting on adrenomedullin receptors located in the nerve terminals, whereas arterial relaxation caused by adrenomedullin and CGRP is due to activation of CGRP(1) receptors in vascular smooth muscle.  相似文献   

5.
6.
Adrenomedullin and ocular inflammation in the rabbit   总被引:8,自引:0,他引:8  
Adrenomedullin administered peripherally in the rabbit (at doses of 1.25, 2.5 and 5 microg/kg ) caused a dose-dependent conjunctival hyperemia accompanied by an increase of inflammatory cell number and prostaglandin E(2) concentration in the aqueous humor, and of uveal vascular response and myeloperoxidase activity. The inflammatory effect of the peptide, injected at the dose of 5 microg/kg, was abolished by pretreatment with the inhibitor of nitric oxide synthase, N(G)-nitro-L-arginine methylester (50 mg/kg, i.v.). Moreover, the i.v. pretreatment with the calcitonin gene-related peptide 8-37 fragment (calcitonin gene-related peptide, CGRP-(8-37), 2.5 microg/kg), receptor antagonist of CGRP, did not inhibit the conjunctival hyperemia. In contrast, the i.v. pretreatment with the adrenomedullin receptor antagonist, adrenomedullin-(22-52) fragment (2.5 microg/kg), abolished adrenomedullin-induced ocular inflammation. These results suggest that adrenomedullin causes conjunctival hyperemia, and this effect involves the nitric oxide system acting through specific adrenomedullin receptors.  相似文献   

7.
1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA(2) of 9.95 although the slope of the Schild plot (1.37 +/- 0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA(2) of 9.25 and a Schild slope of 0.89 +/- 0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP(8-37) had a significantly lower pA(2) than on SK-N-MC cells (7.34 +/- 0.19 (n = 7) compared to 8.35 +/- 0.18, (n = 6)). BIBN4096BS had a pA(2) of 9.98 and a Schild plot slope of 0.86 +/- 0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 microM. CGRP(8-37) had a pA(2) of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competitive' behaviour. At concentrations of up to 10 micro M, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP(8-37).  相似文献   

8.
The purpose of the present study was to characterise receptors mediating calcitonin gene-related peptide (CGRP)-induced relaxation of guinea pig basilar artery. This was done by investigating vasomotor responses in vitro and performing autoradiographic binding studies. We also intended to study the importance of an intact endothelium. Agonist studies showed that peptides of the CGRP family induced relaxation of the guinea pig basilar artery with the following order of potency: human beta-CGRP=human alpha-CGRP>adrenomedullin=[acetamidomethyl-Cys(2,7)]alpha-human CGRP ([Cys(ACM)(2,7)]CGRP)=amylin. These data are in concord with those of the autoradiographic binding studies that showed displacement of [125I] human alpha-CGRP binding with the following order of potency: human alpha-CGRP=human beta-CGRP>adrenomedullin=human alpha-CGRP-(8-37)>Cys(ACM)(2,7)]CGRP. In blockade experiments, the relaxant responses to human alpha- and human beta-CGRP were competitively blocked by the CGRP(1) receptor antagonist human alpha-CGRP-(8-37), while those of adrenomedullin and amylin were blocked non-competitively. In order to examine whether amylin induced relaxation via amylin or CGRP receptors, we studied the antagonistic effect of amylin-(8-37) on the weak relaxant response to amylin and found that it was not blocked by amylin-(8-37). These findings, together with the finding that the CGRP(2) receptor agonist [Cys(ACM)(2,7)]CGRP only induced a weak relaxation in the highest concentrations examined, suggest that the CGRP family of peptides mediate relaxation by CGRP(1)-type receptors. Removal of the endothelium, the addition of N(G)-nitro-L-arginine methyl ester (L-NAME), methylene blue or indomethacin did not affect the concentration-response curves of the CGRP analogues, neither in the presence nor in the absence of human CGRP-(8-37). The study shows the presence of a relaxant CGRP(1) receptor on the smooth muscle cells of guinea pig basilar artery. Various endothelial factors did not influence relaxant responses.  相似文献   

9.
10.
The existence of specific adrenomedullin receptor binding sites was investigated using the agonist peptide fragment [125I]human adrenomedullin-(13-52) in rat brain, lung and vas deferens homogenates. Saturation-binding experiments suggest that [125I]human adrenomedullin-(13-52) binds to an apparent single population of sites with similar affinities (K(D) of 0.3 to 0.6 nM) but with different maximal binding capacity in the rat brain, lung and vas deferens homogenates (B(max) of 73, 1760 and 144 fmol/mg protein, respectively). Competition-binding experiments using various analogues and fragments of calcitonin gene-related peptide (CGRP) and adrenomedullin were also performed using this radioligand. Competition-binding profiles suggest the possible existence of heterogeneous populations of adrenomedullin receptor binding sites. For example, in rat brain, human adrenomedullin-(1-52) and human adrenomedullin-(13-52) competed against specific [125I]human adrenomedullin-(13-52) sites with competition curves best fitted to a two-site model. Additionally, human calcitonin gene-related peptide alpha (hCGRPalpha), [Cys(Et)(2,7)]hCGRPalpha and [[R-(R,(R*,S*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-Piperidinecarboxamide] (BIBN4096BS) competed against specific [125I]human adrenomedullin-(13-52) binding with profiles that were also best fitted to a two-site model. Furthermore, binding assays performed in the presence of GTPgammaS (100 microM) revealed that this compound inhibited 20% of specific [125I]human adrenomedullin-(13-52) sites in rat brain homogenates and competition curves of human adrenomedullin-(1-52) and [Cys(Et)(2,7)]hCGRPalpha against specific [125I]human adrenomedullin-(13-52) sites remained best fitted to a two-site model. Moreover, the existence of specific [125I]human adrenomedullin-(13-52) binding sites that are resistant to human adrenomedullin-(22-52) and human CGRP-(8-37) is suggested in the rat brain and vas deferens. Taken together, these data provide evidence for the possible existence of heterogeneous populations of adrenomedullin binding sites in rat brain and peripheral tissues.  相似文献   

11.
Adrenomedullin (AM) has two known receptors formed by the calcitonin receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3: we report the effects of the antagonist fragments of human AM and CGRP (AM22-52 and CGRP8-37) in inhibiting AM at human (h), rat (r) and mixed species CL/RAMP2 and CL/RAMP3 receptors transiently expressed in Cos 7 cells or endogenously expressed as rCL/rRAMP2 complexes by Rat 2 and L6 cells. AM22-52 (10 microM) antagonised AM at all CL/RAMP2 complexes (apparent pA2 values: 7.34+/-0.14 (hCL/hRAMP2), 7.28+/-0.06 (Rat 2), 7.00+/-0.05 (L6), 6.25+/-0.17 (rCL/hRAMP2)). CGRP8-37 (10 microM) resembled AM22-52 except on the rCL/hRAMP2 complex, where it did not antagonise AM (apparent pA2 values: 7.04+/-0.13 (hCL/hRAMP2), 6.72+/-0.06 (Rat2), 7.03+/-0.12 (L6)). On CL/RAMP3 receptors, 10 microM CGRP8-37 was an effective antagonist at all combinations (apparent pA2 values: 6.96+/-0.08 (hCL/hRAMP3), 6.18+/-0.18 (rCL/rRAMP3), 6.48+/-0.20 (rCL/hRAMP3)). However, 10 microM AM22-52 only antagonised AM at the hCL/hRAMP3 receptor (apparent pA2 6.73+/-0.14). BIBN4096BS (10 microM) did not antagonise AM at any of the receptors. Where investigated (all-rat and rat/human combinations), the agonist potency order on the CL/RAMP3 receptor was AM approximately betaCGRP>alphaCGRP. rRAMP3 showed three apparent polymorphisms, none of which altered its coding sequence. This study shows that on CL/RAMP complexes, AM22-52 has significant selectivity for the CL/RAMP2 combination over the CL/RAMP3 combination. On the mixed species receptor, CGRP8-37 showed the opposite selectivity. Thus, depending on the species, it is possible to discriminate pharmacologically between CL/RAMP2 and CL/RAMP3 AM receptors.  相似文献   

12.
Although accumulated data suggest that calcitonin gene-related peptide (CGRP) produces anabolic effects in skeletal tissue by directly acting on osteogenic cells, neither the distribution of CGRP receptor subtypes nor the associated cellular signaling pathways are well understood. In this study, we have pharmacologically and biochemically characterized CGRP-binding sites in immature human osteoblastic MG63 cells. In a [125I]CGRP whole-cell-binding assay, nonlinear regression curve-fitting analysis demonstrated a single binding site (KD=405±29 pM; 13,100±223 sites per cell). Immunocytochemical and Western blot analyses demonstrated that 48-, 52-, and 120-kDa forms of the calcitonin receptor-like receptor (CRLR) and a 15-kDa form of the receptor-activity-modifying protein-1 (RAMP-1) was expressed on the plasma membrane. CGRP strongly stimulated cellular cAMP production and this effect was antagonized not only by an antagonist of the subtype-1 CGRP (CGRP1) receptor, CGRP-(8-37), but by an agonist of the putative subtype-2 CGRP (CGRP2) receptor, [Cys(Acm)2,7]-CGRP, that also itself acted as a weak agonist. In contrast to published data, CGRP dose- and time-dependently dephosphorylated and inactivated extracellular signal response kinase (ERK). This action was blocked by CGRP-(8-37), by an inhibitor of cAMP-dependent protein kinase (H-89), or by an inhibitor of protein phosphatases (vanadate). Prolonged CGRP treatments significantly suppressed DNA synthesis at 27 h, but up-regulated type I collagen. Both these actions were blocked by CGRP-(8-37) and mimicked by a specific inhibitor of ERK (PD98059). In summary, our data suggest that the CGRP receptors in MG63 cells meet many, but not all, of the classical criteria used to define CGRP1 receptors. These receptors that functioned in a pharmacologically distinct manner could inhibit cell proliferation, and were substantially more sensitive to a CGRP2 receptor agonist than are typical CGRP1 receptors. These receptor proteins were not exactly matched with the known components of a CGRP1 receptor that have been reported. Therefore, it is possible that the CGRP receptors expressed in immature osteoblastic human MG63 cells represent a variation of the known CGRP1 receptor.  相似文献   

13.
BIBN4096BS [[R-(R,(R*,S*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl] pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-Piperidinecarboxamide] is a selective calcitonin gene-related peptide (CGRP) receptor antagonist with a picomolar affinity to the CGRP receptor in human neuroblastoma SK-N-MC cells. Here, we describe the characterisation of the binding properties of the tritiated radioanalogue of BIBN4096BS in SK-N-MC cells as well as in marmoset tissue. [(3)H]BIBN4096BS showed reversible and saturable binding to SK-N-MC cells with a K(D) of 0.045 nM. In competition experiments, [3(H)]BIBN4096BS is concentration-dependently displaced from SK-N-MC cell membranes by BIBN4096BS as well as by the endogenous ligand CGRP and its analogues with the rank order of affinity BIBN4096BS>human alpha-CGRP=human beta-CGRP>[Cys(Et)(2,7)]human alpha-CGRP>adrenomedullin (high affinity site)=human alpha-CGRP-(8-37)=human beta-CGRP-(8-37)>calcitonin=amylin. In the marmoset cortex, saturable [(3)H]BIBN4096BS binding was observed with a K(D) of 0.077 nM. CGRP showed biphasic competition of [(3)H]BIBN4096BS binding, whilst BIBN4096BS monophasically displaced its radioanalogue with a K(i) of 0.099 nM. These data, using [(3)H]BIBN4096BS, confirm the high affinity of this novel antagonist for the primate CGRP receptor and demonstrate furthermore that this radioligand is a useful tool to study CGRP receptor pharmacology.  相似文献   

14.
Receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are heterodimeric complexes of the calcitonin-like receptor (CLR) together with associated receptor-activity-modifying proteins (RAMP)1, -2 or -3. The RAMP define the specificity of the CLR for CGRP or AM. Here, mouse (m)CLR/mRAMP1, -2 and -3 were expressed in COS-7 cells that lack detectable CGRP and AM receptors. myc epitope-tagged non-glycosylated mRAMP1 required V5-tagged mCLR for its translocation to the cell surface. The glycosylated myc-mRAMP2 and -3, on the other hand, were expressed at the cell surface in the absence of co-transfected mCLR. Selective binding of [125I]h alpha CGRP to mCLR/mRAMP1 expressing cells was inhibited by rat (r)alpha CGRP(1-37) and the CGRP antagonist r alpha CGRP(8-37) with IC(50) of 7.0+/-1.6 nM and 1.0+/-0.1 nM (mean+/-SEM). rAM(1-50) and the AM antagonist rAM(20-50) inhibited [125I]h alpha CGRP binding at over 36-fold higher concentrations than r alpha CGRP. In mCLR/mRAMP2 expressing cells, selective [125I]rAM binding was inhibited by rAM(1-50) and -(20-50) with IC(50) of 8.9+/-2.6 nM and 34+/-9 nM. r alpha CGRP(1-37) and -(8-37) displaced the binding at over 25-fold higher concentrations. mCLR/mRAMP3 expressing cells recognized both [125I]h alpha CGRP and -rAM. The IC(50) of rAM and r alpha CGRP(8-37) ranged between 5.8 and 7.0 nM, and those of r alpha CGRP and rAM(20-50) were only 4- to 8-fold higher. r alpha CGRP and rAM stimulated and r alpha CGRP(8-37) and rAM(20-50) antagonized mCLR/mRAMP1, -2 and -3 mediated cAMP formation with relative potencies that reflected the observed CGRP and AM selectivity of the three receptor types. In conclusion, mCLR/mRAMP1 and -2 are CGRP- and AM-selective receptors, respectively, whereas mCLR/mRAMP3 is an AM/CGRP receptor.  相似文献   

15.
Calcitonin gene-related peptide (CGRP), a 37-amino acid neuropeptide, is found in the central nervous system as well as in the heart. CGRP shows high sequence homology with amylin, salmon calcitonin, and adrenomedullin. This study aimed to investigate the effect of CGRP on atrial hemodynamics and atrial natriuretic peptide (ANP) release by using isolated perfused beating left atria and to identify its receptor subtypes. Rat alpha-CGRP (0.1, 1, 10, or 100 nM) increased atrial contractility and suppressed the release of ANP in a concentration-dependent manner. However, cys-CGRP (1 microM), a CGRP(2) receptor agonist, slightly decreased ANP release without positive inotropism. Human alpha-CGRP (1 nM) showed an effect on ANP release similar to that of rat alpha-CGRP with potent positive inotropism. However, salmon and rat calcitonin (1 microM) caused a slight decrease or no change in ANP release. Pretreatment with a receptor antagonist for CGRP(1) [rat alpha-CGRP-(8-37)] blocked rat alpha-CGRP-induced suppression of ANP release and positive inotropism, whereas the antagonists for salmon or amylin did not. Therefore, we suggest that rat alpha-CGRP causes a suppression of ANP release with positive inotropism through the receptor for CGRP(1) but not that for calcitonin and amylin.  相似文献   

16.
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. Both neuronal and non-neuronal CLR immunopositive cells were present in our model. High affinity, specific [(125)I]-AM binding sites (K(d) 79 +/- 9 pM and B(max) 571 +/- 34 fmol mg(-1) protein) were more abundant than specific [(125)I]-CGRP binding sites (K(d) 12 +/- 0.7 pM and B(max) 32 +/- 2 fmol mg(-1) protein) in embryonic spinal cord cells. Specific [(125)I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM > hAM(22-52) > rCGRPalpha > CGRP(8-37) > [r-(r(*),s(*))]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). Specific [(125)I]-CGRP binding was competed by rCGRPalpha > rAM > or = CGRP(8-37) > or = BIBN4096BS > hAM(22-52). Cellular levels of cAMP were increased by AM (pEC(50) 10.2 +/- 0.2) and less potently by rCGRPalpha (pEC(50) 8.9 +/- 0.4). rCGRPalpha-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA(2) 7.63 +/- 0.44) and hAM(22-52) (pA(2) 6.18 +/- 0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA(2) 7.41+/- 0.15) and AM(22-52) (pA(2) 7.26 +/- 0.18). BIBN4096BS only antagonized the effects of CGRP (pA(2) 8.40 +/- 0.30) on cAMP accumulation. These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP(1) (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM(1) (CLR/RAMP2) receptor subtype.  相似文献   

17.
18.
Adrenomedullin (ADM) and calcitonin gene-related peptide (CGRP) receptors and their respective ligands play important roles in cardiovascular (patho-)physiology. Functional expression of ADM and CGRP receptors requires the presence of the calcitonin receptor-like receptor (CRLR) together with receptor-activity-modifying proteins (RAMPs). We have characterized the expression patterns of CRLR and RAMP1 to RAMP3 in human cardiovascular-related tissues by quantitative polymerase chain reaction. We could identify high expression levels of CRLR, RAMP1, and RAMP2 in human heart and various blood vessels. RAMP3 expression in these tissues, however, was detectable at significantly lower levels. In addition, we describe here a novel, aequorin luminescence-based G protein-coupled receptor reporter assay that enables the real-time detection of receptor activation in living cells. In the assay system, intracellular cAMP levels are monitored with high sensitivity by using a modified, heteromultimeric cyclic nucleotide-gated channel mediating calcium influx. G(q)-coupled receptor activation is detected via aequorin luminescence stimulated by calcium release from intracellular stores. Using this novel reporter assay, we established and characterized stable ADM1 and CGRP1 receptor cell lines. The peptide ligands ADM, CGRP1, and CGRP2 were characterized as potent agonists at their respective receptors. In contrast, intermedin acted as a weak agonist on both receptors and showed only partial agonism on the ADM1 receptor. Agonist activities were effectively antagonized by the receptor antagonists ADM(22-52) and CGRP(8-37). Various vasoactive ADM fragments were also characterized but showed no activity on the ADM1 receptor cell line. In addition, luminescence signal kinetics after activation of G(s)- and G(q)-coupled receptors were found to be markedly different.  相似文献   

19.
20.
1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus, circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号