首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
射线能量对子宫内膜癌调强放疗计划质量的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
目的 研究射线能量对子宫内膜癌术后全盆腔调强放射治疗计划质量的影响。方法 选择10例子宫内膜癌术后患者,对每例患者分别设计6和18 MV的全盆腔调强放射治疗计划。所有计划均使用相同的布野方案和剂量体积约束。比较两组计划的靶区、危及器官和正常组织的剂量分布。结果 6和18 MV计划的平均PTV100分别是95.6%和95.3% (检验值P=0.26), Dmean分别是52.55 Gy和52.60 Gy(P=0.54),适形指数分别是0.87 和 0.88 (P=0.03),均匀性指数均为1.10 (P=0.38)。18 MV计划较6 MV计划正常组织的平均积分剂量下降了2.4% (P=0.001),小肠和结肠的平均V30和V50分别下降了4.2% (P=0.006)和3.3% (P=0.046),其他危及器官的剂量分布间差异无统计学意义。结论 对于子宫内膜癌的术后全盆腔调强放射治疗,18 MV计划比6 MV计划剂量分布的适形度更好,能够更好地保护正常组织、小肠和结肠。两组计划靶区的覆盖度和剂量分布的均匀性,以及直肠、膀胱和盆腔骨的保护相当。  相似文献   

2.
目的 利用多叶准直器(MLC)质量保证(QA)模体,对Truebeam加速器执行常规质量保证程序,检验MLC在治疗计划执行过程中的可靠性.方法 MLC QA模体是对MLC进行质量保证的专用模体,呈"L"形,嵌有5颗实心钢珠.模体在Truebeam加速器治疗床上进行摆位.在Eclipse v10.0治疗计划系统中,创建一个QA计划,包含叶片位置检测、叶片宽度检测、Multi-Port检测和叶片间漏射检测等信息.通过电子射野影像系统(EPID),获取MLC和模体的影像.按同样的操作对MLC执行每周1次,共6周的检测,并将影像导入PIPSpro软件进行分析.结果 叶片位置检测的误差结果为(0.21±0.02) mm;叶片宽度检测的误差结果为(0.04±0.02) mm;Multi-Port检测的误差结果为(0.26±0.04) mm;叶片透射检测叶片间的漏射结果为1.0%±0.14%.结论 Truebeam加速器的MLC系统运行状态良好,MLC QA模体是一个简单实用的质量保证工具.  相似文献   

3.
四种探测器测量射波刀离轴比曲线的比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 比较分析不同探测器测量射波刀离轴比曲线,为正确选择和应用探测器提供参考。方法 应用PTW-60017、PTW-60018、PTW-60019和IBA-SFD 4种探测器分别平行和垂直于射束中心轴方向测量射波刀不同孔径准直器、不同深度的离轴比曲线,分析不同探测器测量的离轴比曲线差异及探测器固定方式对测量结果的影响。结果 探测器平行于射束中心轴方向时,4种探测器测得的半高宽(full width at half maximum,FWHM)均比实际射野偏大,最大偏差为1.9 mm,偏差随测量深度增加而增大。4种探测器测得的FWHM之间最大偏差为0.2 mm。4种探测器测得的半影最大偏差为0.3 mm,IBA-SFD测得半影最小,PTW-60019最大。测得的半影均随准直器孔径和深度增加而增大。准直器孔径大于30 mm时,IBA-SFD在射野外存在过响应现象。探测器垂直于射束中心轴方向时,PTW-60017、PTW-60018、PTW-60019测得的FWHM和半影比探测器平行于射束中心轴方向时小,准直器孔径5 mm时尤为明显。而IBA-SFD测得的结果相反。随着准直器孔径增加,4种探测器测得的左右半影间差异增加,杆效应明显。结论 4种探测器测量的射波刀离轴比曲线相近,但应用时需考虑各自特点,并注意探测器固定方式和杆效应的影响。  相似文献   

4.
多叶准直器运动状态下叶片到位精度检测方法研究   总被引:4,自引:4,他引:0       下载免费PDF全文
目的 建立多叶准直器运动状态下叶片到位精度的检测方法.方法 设计多叶准直器测量序列,被测叶片每扫过1 cm的距离设置0.1~1 mm之间的叶片位置误差,利用二维电离室矩阵测量其运动轨迹上的吸收剂量,得出不同剂量率(100、300和600 MU/min)时,设置的位置误差与吸收剂量直线斜率之间的对应关系曲线,以此作为叶片位置校准曲线.进行日常检测时,通过多叶准直器叶片运动形成射野y方向的剂量曲线图得到有误差的叶片,依据射野x方向吸收剂量直线的斜率,与叶片位置校准曲线进行比较,得到检测叶片的实际位置误差.结果 通过y方向的剂量曲线图,可找出位置误差≥0.2 mm/cm的叶片.在一定的剂量率下,叶片位置校准曲线呈线性变化趋势.输出剂量率为600 MU/min时,叶片的位置误差分布直观清晰,可快速对叶片到位精度情况做定性分析.位置误差为0.1 mm/cm的叶片,吸收剂量直线斜率变化为0.74%,检测误差与引入误差的差别≤0.1 mm.结论 使用二维电离室矩阵检测多叶准直器运动状态下叶片到位精度的方法简便可靠,能满足常规检测的需要,为调强适形放射治疗质量控制体系的建立提供技术支持.  相似文献   

5.
目的 研究高能医用直线加速器运行过程中因光核反应所形成的光中子辐射场。方法 利用蒙特卡罗(MC)程序模拟Clinic 2300CD型医用电子加速器15 MV X射线模式下光中子污染,掌握机头内不同位置光中子能谱和不同照射野下等中心处中子周围剂量当量变化,分析光中子在等中心平面内剂量分布和水模体中剂量衰减。结果 准直器关闭时,加速器机头内靶、主准直器、均整器和多叶准直器下表面的光中子平均能量分别为1.08、1.20、0.35、0.30MeV;等中心处中子周围剂量当量随着照射野的增大先增大后减少,在30 cm × 30 cm照射野下达到最大;随着测点在水模体中的深度增加,中子通量先增加后减小,而中子剂量却在逐渐减小;不同照射野下,光中子剂量率在水模体深度20 cm处,基本都接近本底。结论 探究高能医用直线加速器机头光中子谱和剂量分布特点,以及光中子在水模体内剂量沉积规律,能为进一步研究高能医用直线加速器光中子污染对患者产生的附加剂量提供支持。  相似文献   

6.
目的 对TrueBeam加速器6 MV非均整模式(FFF)X射线蒙特卡罗模拟,寻找最佳的模型参数,为进一步研究6 MV FFF X射线临床剂量学奠定模型基础。方法 借助BEAMnrc和DOSXYZnrc程序,调整入射电子束能量、径向强度分布及角度展宽等参数,对TrueBeam加速器6 MV FFF X射线4 cm×4 cm到40 cm×40 cm射野的百分深度剂量(PDD)和离轴比(OAR)曲线进行蒙特卡罗模拟,比较不同大小射野情况下模拟和测量结果的差异。结果 在入射电子能量为6.1 MeV、半高宽(FWHM)为0.75 mm和角度展宽为0.9°时,模拟结果与相应条件下实际测量结果最接近。不同射野的PDD和30 cm×30 cm及以下射野的OAR曲线与测量数据相比满足Local Dose的限制条件,剂量误差< 1%,位置误差< 1 mm;40 cm×40 cm射野的OAR满足剂量误差<1.5%,位置误差<1 mm的限制条件。结论 本模型模拟结果与实际测量结果一致性较好,可将模型参数用于6 MV FFF X射线临床剂量学研究。  相似文献   

7.
目的 研究多叶光栅剂量学间隙(DLG)对计算剂量和实际剂量的影响。方法 在Eclipse计划系统中对典型全盆腔病例分别做动态调强计划(IMRT)和容积旋转调强(VMAT)计划。计算DLG为0与0.3 cm两种极端情况下剂量学指标的差异,分析DLG变化对平均叶片间隙的影响。固定多叶光栅位置,模拟实际治疗通量,通过改变DLG的大小,分析PTV平均剂量的变化趋势。结果 DLG在0与0.3 cm下计划靶区(PTV)接受50 Gy剂量时所对应的体积(V50)、直肠V40、膀胱V40、小肠V35、左右股骨头所接受的最大剂量(Dmax)的差异分别为1.49%、0.72%、0.82%、0.68%,0.02和0.14 Gy。多叶光栅的平均叶片间隙与剂量学间隙明显相关(R2=0.996,P<0.05),且随剂量学间隙的增大而变小。实际治疗中,对典型全盆腔病例,剂量学间隙每增大0.1 cm,IMRT的PTV平均剂量降低3.95%,VMAT降低1.5%。结论 动态多叶光栅剂量学间隙会影响多叶光栅的实际位置,导致实际治疗与治疗计划的剂量学差异,剂量学间隙越大,实际剂量越低。  相似文献   

8.
目的 用胶片(film)测量调强放射治疗(IMRT)多叶光栅(MLC)叶片到位精确度验证方法研究。方法 固体均质模体30 cm×30 cm,经CT扫描,影像传给放射治疗计划系统(TPS)制定治疗计划,多叶光栅片形成5条栅栏野条状,每条条状栅栏野长3 cm,宽0.6 cm,条状与条状之间距离3 cm,在最大剂量点(dmax)处,源皮距离100 cm,6 MV X射线,每条条状照射监督单位250 MU。25 cm×25 cm的放射性免冲洗胶片EBT2放在30 cm×30 cm均质固体模体上,厚度1.0 cm的固体模体板覆盖在胶片上面,实施调强放射治疗计划照射。结果 7台加速器胶片测量与TPS计划每条栅栏野MLC位置偏差≤±0.5 mm,符合要求,1台加速器结果为-0.6 mm,不符合要求。胶片测量每对与所有多叶光栅叶片位置偏差结果,8台医用加速器结果均符合要求。4台加速器胶片测量每对与每条所有多叶光栅实际宽度差值≤±0.75 mm,符合要求,3台加速器结果超出±0.75 mm,不符合要求。6台加速器胶片测量每对与每条所有多叶光栅实际宽度标准偏差≤0.3 mm,符合要求,2台加速器结果超出0.3 mm,不符合要求。结论 胶片剂量学验证调强放射治疗多叶光栅到位精度方法简单可靠,能满足检测的要求,是调强放射治疗质量控制的重要内容。  相似文献   

9.
目的 用放射性免冲洗胶片验证调强放射治疗(IMRT)多叶光栅(MLC)叶片到位精确度方法研究。方法 选择瓦里安、医科达、西门子3个厂家的医用电子直线加速器共7台,用25 cm×25 cm的放射性免冲洗胶片放在30 cm×30 cm、厚3.0 cm的均质固体模体上,厚度2.0 cm的固体模体板覆盖在胶片上面,经CT扫描,影像传给放射治疗计划系统(TPS)制定治疗计划,多叶光栅形成5条条状栅栏野,能量6 MV X射线束,每条栅栏野长3 cm,宽0.6 cm,每条条状野间隔3 cm,在最大剂量点处,胶片到源距离100 cm,每条栅栏野给出监督剂量250 MU。照射后邮寄到国际原子能机构(IAEA)剂量学实验室测量和计算。结果 6台加速器胶片测量与TPS计划每条栅栏野MLC条状位置偏差符合IAEA要求的±0.5 mm,1台加速器偏差不符合要求。7台加速器胶片测量每对与每条多叶光栅叶片位置偏差均在IAEA要求0.5 mm以内,符合要求。6台加速器胶片测量每对与每条所有MLC叶片实际宽度差值在0.75 mm范围内,1台加速器为-0.8 mm,不符合要求。6台加速器胶片测量每条多叶光栅叶片实际宽度标准偏差在0.3 mm范围内,符合要求。1台加速器为0.4 mm,不符合要求。结论 用放射性免冲洗胶片验证调强放射治疗多叶光栅片到位精确度的方法简单,快速精确,建议广泛应用到临床。  相似文献   

10.
目的 探讨Varian加速器不同射野形成方式对射野剂量学参数的影响,为治疗计划系统(TPS)数据建模提供理论依据。方法 在准直器(JAW)、多叶光栅(MLC)和准直器跟随多叶光栅(JAW+MLC)3种射野的形成方式下,分别测量百分深度剂量(PDD)、射野离轴量(OAR)及射野总散射因子(Scp),并对实测数据进行分析比较。结果 3种射野形成方式对中心轴的百分深度剂量影响很小;在加速器的左右方向和枪靶方向,MLC形成的射野均较JAW形成射野大,在左右方向最大可达2.9 mm。在枪靶方向,最大可达1.7 mm。在左右方向MLC形成的射野测量曲线的半影较在相同射野大小JAW形成射野的半影大。在枪靶方向MLC形成的射野测量曲线的半影较在相同射野大小JAW形成射野的半影小。在两个方向 JAW+MLC形成射野与JAW形成射野大小与半影均无明显差异。结论 射野的不同形成方式对射野大小、半影、总散射因子有影响,建议做调强放射治疗(IMRT)时,在TPS数据建模过程中,应对MLC射野的剂量参数进行关注。  相似文献   

11.
INTRODUCTION: In the present paper we discuss the main dosimetric characteristics of the multileaf collimator (MLC) installed on the Elekta SLi Precise accelerators. To evaluate the effectiveness of the MLC in conformal radiotherapy, beam transmission through leaves and/or diaphragms, leakage between the leaves, central axis depth dose, surface dose, effective penumbra, scalopping effect and field size factors were measured. MATERIALS AND METHODS: The MLC installed on the dual energy (4 and 6 MV) linear accelerator Elekta SLi Precise consists of 40 opposed pairs of 75 mm thick tungsten leaves, set in two raws mounted in place of the upper collimator. Each leaf has a nominal projected width of 10 mm. The maximum field size attainable is 40 x 40 cm2 at 100 cm SAD. Beam transmission through leaves and/or diaphragms and field size factors were measured in RW3 phantom with a ionization chamber, leakage between the leaves and effective penumbra were instead evaluated with radiographic films (X-Omat-V) and a laser scanning photodensitometer. Percentage depth doses were measured in an automatic water phantom. RESULTS: For both energies, approximately 1% of the incident radiation on the multileaf collimator is transmitted through the backup collimator, while the transmission through the different combinations of leaves and collimators is between 0.03 and 0.14%. These values show a good agreement with literature data and are in general lower than the peak values specified by the manufacturer. The peak value of the leakage between the leaves was about 2% for both energies, without significative variation with gantry or collimator angle or distance from the axis. MLC shaped fields show a skin dose less (about 3%) than the one of cerrobend block shaped fields, because of the electronic contamination due to the plexiglass tray of the cerrobend blocks; in both cases, the depth doses are similar, as are flatness and symmetry of irradiation fields. The effective penumbra increases with field dimension, depth and leaves positioning, with a mean value of about 9 mm for both energies. The different beam configurations do not significantly affect the values of the field size factors. CONCLUSIONS: The dosimetric characteristics and the case of use of the Elekta multileaf collimator make its application to conformal radiotherapy convenient and reliable, able to improve the accuracy and the effectiveness of radiation therapy and to develop new kinds of treatments. However, because of the complexity of the MLC, its implementation in radiotherapic practice requires careful dosimetric characterization to evaluate those parameters (transmission, penumbra and output factors) that play a fundamental role in the accuracy of the treatment.  相似文献   

12.
BACKGROUND: Nowadays, multileaf collimation of the treatment fields from medical linear accelerators is a common option. Due to the design of the leaf sides, the tongue and groove effect occurs for certain multileaf collimator applications such as the abutment of fields where the beam edges are defined by the sides of the leaves. MATERIAL AND METHODS: In this study, the tongue and groove effect was measured for two pairs of irregular multileaf collimator fields that were matched along leaf sides in two steps. Measurements were made at 10 cm depth in a polystyrene phantom using Kodak EDR2 films for a photon beam energy of 6 MV on an Elekta Sli-plus accelerator. To verify the measurements, full Monte Carlo simulations were done. In the simulations, the design of the leaf sides was taken into account and one component module of BEAM code was modified to correctly simulate the Elekta multileaf collimator. RESULTS AND CONCLUSION: The results of measurements and simulations are in good agreement and within the tolerance of film dosimetry.  相似文献   

13.
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.  相似文献   

14.
Mechanical accuracy of a stereotactic irradiation system using a micro multi-leaf collimator (mMLC), Elekta DMLC, has been evaluated. Measurements were made to obtain transmission, leakage, penumbra, and positioning accuracy of the DMLC leaf for a 6 MV photon beam. Mechanical accuracy and long term stability of a linac isocenter was also evaluated. The resulting transmission, along a line perpendicular to the leaf movement, was 0.31±0.01%, and the leakage from the closed opposing leaf pairs was 0.39±0.01%. The measured penumbra, at a depth incurring maximum dose, was 2.37±0.16 mm toward the leaf end and 2.14±0.18 mm toward the leaf side for various field sizes. The leaf gap width error, of 0.10±0.08 mm, was obtained by analyzing picket fence test results. The maximum leaf positioning error, of 0.14±0.06 mm, was obtained by analyzing the log file for a various gantry angles during an arc delivery. The isocenter accuracy was within a radius of 1 mm, without any recalibration for two years. In conclusion, our stereotactic irradiation system using DMLC was capable of providing accurate stereotactic treatment.  相似文献   

15.
目的 开展射波刀Iris可变准直器的研究工作,评价射束大小的可重复性。方法 在射波刀等中心800 mm处辐照胶片,扫描曝光后的胶片并使用Iris 质量保证(QA)软件获取胶片上的射束信息。结果 Iris可变准直器在5~40 mm大小范围内标准偏差<0.11 mm,在50、60 mm的情况下标准偏差<0.19 mm。结论 射波刀Iris可变准直器孔径大小重复性良好。  相似文献   

16.
INTRODUCTION: We studied the dosimetric characteristics of a multileaf collimator (MLC) installed on a dual energy accelerator with 6 and 18 MV photon beams in the Radiotherapy Department of Mauriziano Umberto I Hospital in Turin initiating its use in clinical practice. In particular, measurements included transmission through and between the leaves and at the junction under closed-leaves, central axis percentage depth dose, output factors and effective penumbra. MATERIAL AND METHODS: The MLC installed on the dual energy (6 and 18 MV) linear accelerator Varian Clinac 2100 C/D used in our radiotherapy department is an add-on component positioned below the standard jaws; it consists of 40 computer-controlled opposed pairs of 5 cm thick tungsten leaves, each projecting a 1 cm width at the isocenter, and it provides a maximum treatment field of 40 x 40 cm2 at 100 cm SAD. Transmission, penumbra and scalloping values were measured with the standard radiographic film routinary used in our department. A laser scanning photodensitometer (WP102, Wellhofer) with a 450 microns spot was used to obtain the optical density and the relative dose profile. Radiographic films had been calibrated with an ionization chamber, by irradiating samples to known doses; this calibration was used to correct the film scanner readings to dose. Percentage depth doses were also measured in an automatic water phantom (WP600, Wellhofer) for irregular fields defined by either MLC or alloy blocks, in order to test the differences in the build-up region due to the presence of the acrylic accessory tray. Measured and calculated output factors were compared for some irregular fields defined by the MLC. This comparison tested the algorithm accuracy of our Treatment Planning System 3D CadPlan 3.1.1 Varian-Dosetek. RESULTS AND DISCUSSION: For both energies, approximately 2% of the incident radiation on the MLC is transmitted and an additional 0.5% leakage occurs between adjacent leaves. The leakage under closed-leaves junction is remarkable: about 25-33%. Relative depth dose curves are similar for two fields shaped by either MLC or conventional jaws. Skin dose with MLC-shaped field is less (3.5%) than the one with cerrobend block-shaped fields. The monitor unit calculation procedure used in our treatment planning system can be applied to the MLC (the difference is less than 1%). Effective penumbra in MLC-shaped irregular fields is on the average 11 mm, which is slightly wider (2-3 mm) than the conventional cerrobend blocks penumbra. Effective penumbra increases with depth, field width and leaves positioning. CONCLUSIONS: The MLC, if properly used (collimator rotation, jaws and leaves position, high number of fields), can be applied to conformal radiotherapy with good results. The MLC is better than conventional cerrobend blocks both to improve the treatment reproducibility and accuracy, and relative to dosimetric characteristics like dose transmission and skin dose. The use of MLC to modulate beam fluence (IMRT) will permit to modify beam intensity for improved shaping of the treated volume and to overcome the static therapy dosimetric limitations.  相似文献   

17.
We investigated the dynamic positioning accuracy of Agility (Elekta) for volumetric modulated arc therapy (VMAT). The accuracy of the multileaf collimator (MLC) leaf position during VMAT was evaluated using three different tests: (1) a dynamic multileaf collimator (DMLC) output test with various leaf speeds, and gantry angles; (2) a slit-fence test with and without gantry rotation; and (3) a complicated VMAT plans test with dose distributions compared with measurements using gamma analysis. The DMLC output was within 1.5 % under all test conditions. The agreement between the static and VMAT in the slit-fence test was within 0.5 mm. The pass rate of each complicated VMAT test plan was more than 93.9 % ± 0.36 for gamma analysis. We confirmed the dynamic positioning accuracy of Agility, which during VMAT delivery is within VMAT tolerances. The fastest MLC was found to have the potential to offer clinical advantages, such as high-quality rapid VMAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号