首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蝾螈具有极强的肢体再生能力,爪蟾在发育过程中再生能力则逐渐下降,而人类和其它哺乳动物的成年个体没有肢体再生能力。借助单细胞转录组学技术可以分析细胞转录水平的优势,以蝾螈、爪蟾等肢体可再生的动物为模型,近年研究已发现并鉴定了一系列调控肢体再生的关键基因、信号通路和细胞类群,提示再生能力存在潜在的进化保守机制。单细胞转录组学技术在跨物种研究中的应用,使得免疫细胞、成纤维细胞类型和能量代谢机制对再生的重要影响得到进一步挖掘,再生组织细胞来源和异质性得以进一步明确,为解释再生相关机制奠定理论依据。单细胞多组学技术的发展和应用将有望为进一步研究有效提升哺乳动物再生能力指明方向。  相似文献   

2.
蛋白质是细胞功能的主要执行者,由于其无法在体外进行扩增,单细胞蛋白质组学技术相较单细胞基因组学和转录组学技术而言发展相对滞后。传统的蛋白质组学技术可获得大量细胞蛋白表达的平均值,但忽略了细胞亚型及细胞异质性等信息。单细胞水平的蛋白质分析有助于阐明细胞不同表型与异质性的分子基础。随着质谱仪的快速发展,基于质谱的方法将单细胞蛋白质组学推向新的高度。本文综述了近年来基于液质联用方法的单细胞蛋白质组学在单细胞挑选、样品前处理、同位素标签技术、肽段分离、质谱采集、数据分析等方面的研究进展,及其在生物医学研究中的应用,并对未来单细胞蛋白质组学面临的挑战和发展前景进行了展望。单细胞蛋白质组学技术的进步将为生物医学研究领域提供新的思路和解决方案,并加深我们对人类健康和疾病的理解。  相似文献   

3.
In the last decade, there has been a tremendous development of technologies focused on analysing various molecular attributes in single cells, with an ever-increasing number of parameters becoming available at the DNA, RNA and protein levels. Much of this progress has involved cells in suspension, but also in situ analysis of tissues has taken great leaps. Paralleling the development in the laboratory, and because of increasing complexity, the analysis of single-cell data is also constantly being updated with new algorithms and analysis platforms. Our immune system shares this complexity, and immunologists have therefore been in the forefront of this technological development. These technologies clearly open new avenues for immunology research, maybe particularly within autoimmunity where the interaction between the faulty immune system and the thymus or the target organ is important. However, the technologies currently available can seem overwhelming and daunting. The aim of this review is to remedy this by giving a balanced overview of the prospects of using single-cell analysis in basal and clinical autoimmunity research, with an emphasis on endocrine autoimmunity.  相似文献   

4.
5.
Macrophages are tissue-resident myeloid cells with essential roles in host defense, tissue repair, and organ homeostasis. The lung harbors a large number of macrophages that reside in alveoli. As a result of their strategic location, alveolar macrophages are critical sentinels of healthy lung function and barrier immunity. They phagocytose inhaled material and initiate protective immune responses to pathogens, while preventing excessive inflammatory responses and tissue damage. Apart from alveolar macrophages, other macrophage populations are found in the lung and recent single-cell RNA-sequencing studies indicate that lung macrophage heterogeneity is greater than previously appreciated. The cellular origin and development of mouse lung macrophages has been extensively studied, but little is known about the ontogeny of their human counterparts, despite the importance of macrophages for lung health. In this context, humanized mice (mice with a human immune system) can give new insights into the biology of human lung macrophages by allowing in vivo studies that are not possible in humans. In particular, we have created humanized mouse models that support the development of human lung macrophages in vivo. In this review, we will discuss the heterogeneity, development, and homeostasis of lung macrophages. Moreover, we will highlight the impact of age, the microbiota, and pathogen exposure on lung macrophage function. Altered macrophage function has been implicated in respiratory infections as well as in common allergic and inflammatory lung diseases. Therefore, understanding the functional heterogeneity and ontogeny of lung macrophages should help to develop future macrophage-based therapies for important lung diseases in humans.  相似文献   

6.
7.
8.
9.
The use of advanced tissue-imaging methodologies has greatly facilitated the study of molecular mechanisms and cellular interactions in humans and animal models of disease. Particularly, in HIV research, there is an ever-increasing demand for a comprehensive analysis of immune cell dynamics at tissue level stemming from the need to advance our understanding of those interactions that regulate the generation of adaptive antigen-specific immune responses. The latter is critical for the development of vaccines to elicit broadly neutralizing antibodies as well as for the discovery of novel targets for immuno-therapies to strengthen the cytolytic arm of the immune system at local level. In this review, we focus on current and emerging imaging technologies, discuss their strengths and limitations, and examine how such technologies can inform the development of new treatments and vaccination strategies. We also present some perspective on the future of the technology development.  相似文献   

10.
Macrophages play a major role in the pathogenesis of atherosclerosis. Many studies have shone light on the different phenotypes and functions that macrophages can acquire upon exposure to local cues. The microenvironment of the atherosclerotic plaque contains a plethora of macrophage-controlling factors, such as cytokines, oxidised low-density lipoproteins and cell debris. Previous research has determined macrophage function within the plaque mainly by using immunohistochemistry and bulk analysis. The recent development and rapid progress of single-cell technologies, such as cytometry by time of flight and single-cell RNA sequencing, now enable comprehensive mapping of the wide range of cell types and their phenotypes present in atherosclerotic plaques. In this review we discuss recent advances applying these technologies in defining macrophage subsets residing in the atherosclerotic arterial wall of mice and men. Resulting from these studies, we describe three main macrophage subsets: resident-like, pro-inflammatory and anti-inflammatory foamy TREM2hi macrophages, which are found in both mouse and human atherosclerotic plaques. Furthermore, we discuss macrophage subset-specific markers and functions. More insights into the characteristics and phenotype of immune cells within the atherosclerotic plaque may guide future clinical approaches to treat disease. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.  相似文献   

11.
T helper (Th) cell have a central role in modulating immune responses. While Th1 and Th2 cells have long been known to regulate cellular and humoral immunity, Th17 cells have been identified only recently as a Th lineage that regulates inflammation via production of distinct cytokines such as interleukin (IL)-17. There is growing evidence that Th17 cells are pathological in many human diseases, leading to intense interest in defining their origins, functions and developing strategies to block their pathological effects. The cytokines that regulate Th17 differentiation have been the focus of much debate, due primarily to inconsistent findings from studies in humans. Evidence from human disease suggests that their in vivo development is driven by specialized antigen-presenting cells. Knowledge of how Th17 cells interact with other immune cells is limited, but recent data suggest that Th17 cells may not be subject to strict cellular regulation by T regulatory cells. Notably, Th17 cells and T regulatory cells appear to share common developmental pathways and both cell types retain significant plasticity. Herein, we will discuss the molecular and cellular regulation of Th17 cells with an emphasis on studies in humans.  相似文献   

12.
Technical advances at the interface of biology and computation, such as single-cell RNA-sequencing (scRNA-seq), reveal new layers of complexity in cellular systems. An emerging area of investigation using the systems biology approach is the study of the metabolism of immune cells. The diverse spectra of immune cell phenotypes, sparsity of immune cell numbers in vivo, limitations in the number of metabolites identified, dynamic nature of cellular metabolism and metabolic fluxes, tissue specificity, and high dependence on the local milieu make investigations in immunometabolism challenging, especially at the single-cell level. In this review, we define the systemic nature of immunometabolism, summarize cell- and system-based approaches, and introduce mathematical modeling approaches for systems interrogation of metabolic changes in immune cells. We close the review by discussing the applications and shortcomings of metabolic modeling techniques. With systems-oriented studies of metabolism expected to become a mainstay of immunological research, an understanding of current approaches toward systems immunometabolism will help investigators make the best use of current resources and push the boundaries of the discipline.  相似文献   

13.
Recent studies in Type 1 Diabetes (T1D) support an emerging model of disease pathogenesis that involves intrinsic β-cell fragility combined with defects in both innate and adaptive immune cell regulation. This combination of defects induces systematic changes leading to organ-level atrophy and dysfunction of both the endocrine and exocrine portions of the pancreas, ultimately culminating in insulin deficiency and β-cell destruction. In this review, we discuss the animal model data and human tissue studies that have informed our current understanding of the cross-talk that occurs between β-cells, the resident stroma, and immune cells that potentiate T1D. Specifically, we will review the cellular and molecular signatures emerging from studies on tissues derived from organ procurement programs, focusing on in situ defects occurring within the T1D islet microenvironment, many of which are not yet detectable by standard peripheral blood biomarkers. In addition to improved access to organ donor tissues, various methodological advances, including immune receptor repertoire sequencing and single-cell molecular profiling, are poised to improve our understanding of antigen-specific autoimmunity during disease development. Collectively, the knowledge gains from these studies at the islet–immune interface are enhancing our understanding of T1D heterogeneity, likely to be an essential component for instructing future efforts to develop targeted interventions to restore immune tolerance and preserve β-cell mass and function.  相似文献   

14.
The clinical success of cancer immune checkpoint blockade (ICB) has refocused attention on tumor-infiltrating lymphocytes (TILs) across cancer types. The outcome of immune checkpoint inhibitor therapy in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell responses within the tumor microenvironment. State-of-the-art single-cell analysis of TIL gene expression profiles and clonality has revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune activation and exhaustion. Many of these states are conserved across tumor types, in line with the broad responses observed clinically. Despite this homology, not all cancer types with similar TIL landscapes respond similarly to immunotherapy, highlighting the complexity of the underlying tumor-immune interactions. This observation is further confounded by the strong prognostic benefit of TILs observed for tumor types that have so far respond poorly to immunotherapy. Thus, while a holistic view of lymphocyte infiltration and dysfunction on a single-cell level is emerging, the search for response and prognostic biomarkers is just beginning. Within this review, we discuss recent advances in the understanding of TIL biology, their prognostic benefit, and their predictive value for therapy.  相似文献   

15.
16.
Background: Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi‐scale vasculature seen in in vivo systems remains elusive. Results: 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. Conclusions: As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. Developmental Dynamics 244:629–640, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo- and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single-cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single-cell protein secretion. Spot-based and cytometry-based assays, such as ELISpot and flow cytometry, respectively, are well-established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single-cell level, and discuss and contrast their applications within immunology.  相似文献   

18.
19.
20.
Embryonic stem cells: prospects for developmental biology and cell therapy   总被引:35,自引:0,他引:35  
Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号