首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Neurological aspects of del(1q) syndrome.   总被引:4,自引:0,他引:4  
We have studied three children with de novo terminal deletion of the long arm of chromosome 1 (46,XX,del(1)(q43)). They all have minor anomalies and neurological signs (severe psychomotor developmental delay, generalized hypotonia, and seizures) that have been described previously. In addition, all of these three patients have autistic-like behavior. They avoid eye contact, show no interest in people, express little emotion, and repeat stereotypic movements such as head nodding and purposeless finger manipulation. They also spend excessive time in making unusual sounds consisting of a high-pitched shrill cry with little intonation in infancy and a harsh, strained, and glottal stridency in later life. They make no labial, lingual, or nasal sounds. We suggest that these observations may be unique clinical manifestations of certain terminal 1q deletions.  相似文献   

2.
Partial monosomy 21 was recently segregated into three regions associated with variable clinical severity. We describe 10 new patients, all examined by single nucleotide polymorphism (SNP) genotyping and G-banded karyotyping. Cohort A consisted of three patients seen in our medical genetics clinics with partial chromosome 21 monosomies. In two of these patients having terminal deletions (21q22.2-ter and 21q22.3-ter), the breakpoints differed by at least 812 Kb of sequence, containing seven RefSeq genes. A third patient had an interstitial hemizygous loss of 16.4 Mb (21q21.1–q22.11). All three patients had relatively mild phenotypes. Cohort B consisted of seven patients with partial chromosome 21 monosomies who had a greater number of dysmorphic features and some major malformations; SNP genotypes were obtained from the Coriell Genetic Cell Repository. We also collected data on partial monsomy 21 cases from the DECIPHER database. This report of 10 new cases of 21q deletion and review of a total of 36 confirms that deletion of the terminal region is associated with a mild phenotype, but suggests that deletion of regions 1 and 2 is compatible with life and have a variable phenotype perhaps relating more to other genetic and environmental variables than to genes in the interval.  相似文献   

3.
We report on a girl with a trisomy 1q42–q44 due to an inverted duplication of this region, associated with a terminal deletion of the long arm of the rearranged chromosome 1. Both the large duplication (more than 30 cM) and the small deletion were detected by FISH. Complete karyotype was: (46,XX, inv dup(1)(q44q42).ish(dup del 1)(q44q42)(D1S446×2, D1S423×2, tel1q‐). The phenotype of the patient is characterized by macrocephaly with prominent forehead, downslanting palpebral fissures, micrognathia, and psychomotor retardation. All these clinical features are the same as observed for the typical trisomy 1q42–qter syndrome. The phenotypic effects of the inversion and the terminal deletion of 1q in addition to the trisomy are discussed here. © 2001 Wiley‐Liss, Inc.  相似文献   

4.
The cytogenetic alterations in renal oncocytoma (RO) are poorly understood. We analyzed 130 consecutive RO for karyotypic alterations. Clonal chromosome abnormalities were identified in 63 (49%) cases, which could be categorized into three classes of mutually exclusive cytogenetic categories. Class 1 (N = 20) RO had diploid karyotypes with characteristic 11q13 rearrangement in balanced translocations with 10 or more different chromosome partners in all cases. We identified recurrent translocation partners at 5q35, 6p21, 9p24, 11p13‐14, and 11q23, and confirmed that CCND1 gene rearrangement at 11q13 utilizing fluorescence in situ hybridization (FISH). Class 2 RO (N = 25) exhibited hypodiploid karyotypes with loss of chromosome 1 and/or losses of Y in males and X in females in all cases. The class 3 tumors comprising of 18 cases showed diverse types of abnormalities with the involvement of two or more chromosomes exclusive of abnormalities seen in classes 1 and 2 tumors. Furthermore, karyotypically uninformative cases were subjected to FISH analysis to identify classes 1 and 2 abnormalities. In this group, we found similar frequencies of CCND1 rearrangement, loss of chromosome 1 or Y as with karyotypically abnormal cases. We validated our results against 91 tumors from the Mitelman database. Correlation of clinical data with all the three classes of ROs showed no clear evidence of overall patient survival. Our findings support the hypothesis that RO exhibit three principal cytogenetic categories, which may have different roles in initiation and/or progression. These cytogenetic markers provide a key tool in the diagnostic evaluation of RO.  相似文献   

5.
Summary Distal deletion of chromosome 1q has been reported in nearly 30 patients, all being associated with a deletion ranging from the 1q42 or q43 band to 1qter region. Here, we describe a girl with 1q terminal deletion resulting from an unbalancedde novo translocation t(1;D or G)(q44; p11), as revealed by the presence of a satellited feature and an NOR-stained region at the tip of 1q. We suggest that most of the phenotypic abnormalities seen in patients with 1q distal deletion are attributable to the monosomy for band 1q44.  相似文献   

6.
Patients with distal deletions of chromosome 1q have a recognizable syndrome that includes microcephaly, hypoplasia or agenesis of the corpus callosum, and psychomotor retardation. Although these symptoms have been attributed to deletions of 1q42-1q44, the minimal chromosomal region involved has not been identified. Using microsatellite and single nucleotide polymorphism (SNP) markers, we have mapped the deleted regions in seven patients with terminal deletions of chromosome 1q to define a 2.0-Mb microcephaly critical region including the 1q43-1q44 boundary and no more than 11 genes.  相似文献   

7.
Cryptic subtelomeric rearrangements are suspected to underlie a substantial portion of terminal chromosomal deletions. We have previously described two children, one with an unbalanced subtelomeric rearrangement resulting in deletion of 22q13→qter and duplication of 1qter, and a second with an apparently simple 22q13→qter deletion. We have examined two additional patients with deletions of 22q13→qter. In one of the new patients presented here, clinical findings were suggestive of the 22q13 deletion syndrome and FISH for 22qter was requested. Chromosome studies suggested an abnormality involving the telomere of one 22q (46,XX,?add(22)(q13.3)). FISH using Oncor D22S39 and Vysis ARSA probes confirmed a terminal deletion. A multi-telomere FISH assay showed a signal from 19qter on the deleted chromosome 22. Results were confirmed with 19qtel and 22qtel specific probes. The patient is therefore trisomic for 19qter and monosomic for 22qter. The patient''s mother was found to have a translocation (19;22)(q13.42;q13.31). We also re-examined chromosomes from two patients previously diagnosed with 22q deletions who were not known to have a rearrangement using the multi-telomere assay. One of these patients was found to have a derivative chromosome 22 (der(22)t(6;22)(p25;q13)). No evidence of rearrangement was detected in the other patient. Thus we have found the 22q13 deletion to be associated with a translocation in three of four patients. This report illustrates the usefulness of examining patients with hypotonia, severe language delay, and mild facial dysmorphism for this syndrome and suggests that most of these deletions may be unbalanced subtelomeric rearrangements.  相似文献   

8.
We report the clinical and chromosomal findings in 8 patients with deletions of the long arm of chromosome 4. Four of these patients appear to have terminal deletions beginning in band 4q31, and therefore, lack the digital 1/3 of the long arm of chromosome 4. We confirm that deletion of 4q31→qter causes a recognizable syndrome, and we further define the phenotype of that syndrome. A 5th patient has a shorter terminal deletion, ie, 4q33→qter. This deletion causes a milder phenotypic expression than that seen in the severe 4q terminal-deletion syndrome. The remaining 3 patients have interstitial deletions of the long arm of the 4th chromosome, including segments 4q21.1→q25, 4q21.3→q26, and 4q27→q31.3. The phenotypic expression noted in these patients is variable and differs from the 4q terminal-deletion syndrome.  相似文献   

9.
Subtelomeric deletions of 1q44 cause mental retardation, developmental delay and brain anomalies, including abnormalities of the corpus callosum (ACC) and microcephaly in most patients. We report the cases of six patients with 1q44 deletions; two patients with interstitial deletions of 1q44; and four patients with terminal deletions of 1q. One of the patients showed an unbalanced translocation between chromosome 5. All the deletion regions overlapped with previously reported critical regions for ACC, microcephaly and seizures, indicating the recurrent nature of the core phenotypic features of 1q44 deletions. The four patients with terminal deletions of 1q exhibited severe volume loss in the brain as compared with patients who harbored interstitial deletions of 1q44. This indicated that telomeric regions have a role in severe volume loss of the brain. In addition, two patients with terminal deletions of 1q43, beyond the critical region for 1q44 deletion syndrome exhibited delayed myelination. As the deletion regions identified in these patients extended toward centromere, we conclude that the genes responsible for delayed myelination may be located in the neighboring region of 1q43.  相似文献   

10.
Deletions of chromosome bands 13q33-34 are rare. Patients with such deletions have mental retardation, microcephaly, and distinct facial features. Male patients frequently also have genital malformations. We report on four patients with three overlapping deletions of 13q33-34 that have been characterized by tiling-path array-CGH. Patient 1 had mental retardation and microcephaly with an interstitial 4.7 Mb deletion and a translocation t(12;13)(q13.3;q32.3). His mother (Patient 2), who also had mental retardation and microcephaly, carried the identical chromosome aberration. Patient 3 was a girl with a de novo insertion ins(7;13)(p15.1;q22q31) and interstitial 4.5 Mb deletion in 13q33-34. She had mental retardation and microcephaly. Patient 4 was a newborn boy with severe genital malformation (penoscrotal transposition and hypospadias) and microcephaly. He had a de novo ring chromosome 13 lacking the terminal 9.3 Mb of 13q. Karyotype-phenotype comparisons of these and eight previously published del13q33-34 patients suggest EFNB2 as a candidate gene for genital malformations in males. Molecular cytogenetic definition of a common deleted region in all patients suggests ARHGEF7 as a candidate gene for mental retardation and microcephaly.  相似文献   

11.
A recent report described a translocation involving 10q24 in a compound nevus. We have examined our series of melanocytic tumors ranging from common nevi to metastatic melanomas with the following results. In 24 nevi (congenital or common acquired), no karyotypically abnormal clones were found. Two of 10 dysplastic nevi had abnormal clones: one had an unidentified marker chromosome, the other had a t(9;10)(p24;q24) translocation. Of the three complex primary melanomas studied (lesions with both radial and vertical growth phase present), one had a t(10;?)(q26;?) and one showed a loss of chromosome 10. Among 51 advanced melanomas (primary and metastatic), all but one had multiple alterations, and 18 of these had lost one or more copies of chromosome 10. The one invasive melanoma without multiple abnormalities had a complex three-way rearrangement: 46,XY,t(5;6;10) with breakpoints on chromosome 10 at both q23 and q25. These data support the view that the terminal region of 10q may harbor one or more genes involved in the early stages of melanocytic neoplasia.  相似文献   

12.
C1q along with its physiological role in maintenance of homeostasis and normal function of the immune system is involved in pathological conditions associated with repetitive generation of anti-C1q autoantibodies. The time and events that cause their first appearance are still unknown. We addressed this issue by analyzing the immunogenicity of C1q in two target groups—one of non-diseased humans and the other of lupus nephritis (LN) patients whose autoimmune disorder is associated with high titers of anti-C1q autoantibodies. The non-diseased humans were represented by pregnant women because the sex hormones are thought to be involved in triggering autoimmune pathologies by their ability to tip the balance of female adaptive immune response to production of antibodies.We screened, using ELISA, 31 sera from healthy pregnant women for the presence of IgM and IgG classes of autoantibodies, recognizing epitopes within the native C1q molecule, its collagen-like region (CLR) and globular head fragment (gC1q). The latter was represented by recombinant analogs of the three globular fragments of A, B and C chains, comprising C1q-ghA, ghB and ghC. We did not find IgM antibodies for all test-antigens which suggest that the natural IgM antibodies are not involved in triggering autoimmunity to C1q. Still more, we did not detect anti-CLR antibodies which have been proved pathogenic in already manifested LN. We completed the analysis with comparative epitope mapping of gC1q and we found similar immunogenic behavior in both target groups—ghA and ghC contained the immunodominant epitopes. This implies that the initial immune response to C1q might occur when the molecule has interacted with its ligands via ghB as part of gC1q. The presence of anti-gC1q in both healthy and diseased humans also implies that these antibodies, unlike anti-CLR, may have a contribution to an onset of autoimmunity.  相似文献   

13.
《Genetics in medicine》2015,17(2):143-148
PurposeJacobsen syndrome, also called the 11q terminal deletion disorder, is a contiguous gene disorder caused by the deletion of the end of the long arm of chromosome 11. Intellectual skills range from low average to severe/profound intellectual disability and usually correlate with deletion size. Comprehensive genotype/phenotype evaluations are limited, and little is known about specific behavioral characteristics associated with 11q terminal deletion disorder.MethodsIn this prospective study, 17 patients with 11q terminal deletion disorder underwent cognitive and behavioral assessments. Deletion sizes were determined by array comparative genomic hybridization.ResultsDeletion sizes ranged from 8.7 to 14.5 Mb across the patients. We found that 8 of 17 patients (47%) exhibited behavioral characteristics consistent with an autism spectrum disorder diagnosis. There was no correlation between deletion size and the presence of autism spectrum disorder, implicating at least one predisposing gene in the distal 8.7 Mb of 11q. The findings from three additional patients with autistic features and “atypical” distal 11q deletions led to the identification of an autism “critical region” in distal 11q containing four annotated genes including ARHGAP32 (also known as RICS), a gene encoding rho GTPase activating protein.ConclusionResults from this study support early autism spectrum disorder screening for patients with 11q terminal deletion disorder and provide further molecular insights into the pathogenesis of autism spectrum disorder.  相似文献   

14.
Patients with 9q34.3 terminal deletion usually show a clinically recognizable phenotype characterized by specific facial features (microcephaly, flat face, arched eyebrows, hypertelorism, short nose, anteverted nostrils, carp mouth and protruding tongue) in combination with severe mental retardation, hypotonia, and other anomalies. We analyzed six unrelated patients with a various 9q34.3 terminal deletion. While having different-sized 9q34.3 deletions, all of these patients shared several distinctive anomalies. These anomalies are likely to arise from a commonly deleted region at distal 9q34.3. Fluorescence in situ hybridization (FISH) analysis using a dozen BAC clones mapped at the 9q34.13-q34.3 region defined the shortest region of deletion overlap (SRO) as a 1-Mb segment proximal to 9qter containing eight known genes. Possible candidate genes delineating specific phenotypes of the 9q34.3 terminal deletion syndrome are discussed.  相似文献   

15.
The severe mental retardation and speech deficits associated with 22q13 terminal deletions have been attributed in large part to haploinsufficiency of SHANK3, which maps to all 22q13 terminal deletions, although more proximal genes are assumed to have minor effects. We report two children with interstitial deletions of 22q13 and two copies of SHANK3, but clinical features similar to the terminal 22q13 deletion syndrome, including mental retardation and severe speech delay. Both these interstitial deletions are completely contained within the largest terminal deletion, but do not overlap with the nine smallest terminal deletions. These interstitial deletions indicate that haploinsufficiency for 22q13 genes other than SHANK3 can have major effects on cognitive and language development. However, the relatively mild speech problems and normal cognitive abilities of a parent who transmitted her identical interstitial deletion to her more severely affected son suggests that the phenotype associated with this region may be more variable than terminal deletions and therefore contribute to the relative lack of correlation between clinical severity and size of terminal deletions. The phenotypic similarity between the interstitial deletions and non-overlapping small terminal 22q13 deletions emphasizes the general nonspecificity of the clinical picture of the 22q13 deletion syndrome and the importance of molecular analysis for diagnosis.  相似文献   

16.
Research has so far focused on neural mechanisms that allow us to predict the sensory consequences of our own actions, thus also contributing to ascribing them to ourselves as agents. Less attention has been devoted to processing the sensory consequences of observed actions ascribed to another human agent. Focusing on audition, there is consistent evidence of a reduction of the auditory N1 ERP for self‐ versus externally generated sounds, while ERP correlates of processing sensory consequences of observed actions are mainly unexplored. In a between‐groups ERP study, we compared sounds generated by self‐performed (self group) or observed (observation group) button presses with externally generated sounds, which were presented either intermixed with action‐generated sounds or in a separate condition. Results revealed an overall reduction of the N1 amplitude for processing action‐ versus externally generated sounds in both the intermixed and the separate condition, with no difference between the groups. Further analyses, however, suggested that an N1 attenuation effect relative to the intermixed condition at frontal electrode sites might exist only for the self but not for the observation group. For both groups, we found a reduction of the P2 amplitude for processing action‐ versus all externally generated sounds. We discuss whether the N1 and the P2 reduction can be interpreted in terms of predictive mechanisms for both action execution and observation, and to what extent these components might reflect also the feeling of (self) agency and the judgment of agency (i.e., ascribing agency either to the self or to others).  相似文献   

17.
Ma G  Shi Y  Tang W  He Z  Huang K  Li Z  He G  Feng G  Li H  He L 《Neuroscience letters》2007,425(3):146-150
The strong association between common psychiatric disorders and the 22q11.2 microdeletion suggests that haploinsufficiency of one or more genes in the region confers susceptibility to these disorders. Recent mouse studies have shown that the T-box 1 (TBX1) gene in the 22q11.2 region can cause prepulse inhibition (PPI) impairment in the heterozygous state. A study has also shown that phenotypic features of 22q11 deletion syndrome (22q11DS) were segregated with an inactivating mutation of TBX1 in one family, suggesting that the TBX1 gene plays a role in the pathogenesis of some psychiatric disorders. We performed an association study between three single nucleotide polymorphisms (SNPs) in the TBX1 gene and schizophrenia. However, we found no significant difference in the genotype or allele distributions between the 328 schizophrenics and 288 controls for any of the polymorphisms, nor was there any haplotype association. Our data suggest that the genetic polymorphisms within TBX1 do not confer an increased susceptibility to schizophrenia in the Chinese population.  相似文献   

18.
Partial duplication of chromosome 3q is a well-described condition of multiple congenital anomalies and developmental delay that resembles the Brachmann-de Lange syndrome. Similarly, an emerging phenotype of a distal 5q deletion syndrome has recently been described. The combination of both chromosome abnormalities has not been previously described. We report on a child with both a de novo duplication of distal 3q (q27 --> qter) and terminal deletion of 5q (q35.2 --> qter). The patient had facial anomalies, hypoplastic toenails, lymphedema of the dorsum of the feet, type I Chiari malformation, a seizure disorder, and moderate developmental delays. The phenotype is compared and contrasted to the few reports of patients with similar terminal 3q duplications and 5q deletions. Our patient did not have the characteristic phenotype of the 3q duplication syndrome, suggesting that the chromosome region responsible for this phenotype is more proximal than the terminal 3q27 region. In addition, comparison with three other reported cases of terminal 5q35 deletions suggests a possible association of terminal 5q deletions with central nervous system (CNS) structural abnormalities.  相似文献   

19.
Submicroscopic deletions involving chromosome 1q43-q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43-q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion.  相似文献   

20.
In gastric cancer, alterations in the long arm of chromosome 6 are a frequent event. Two regions of heterozygous loss have been described: 6q16.3-6q23 and 6q26-6q27. We have evaluated by microsatellite and FISH analyses the 6q status of three cell lines that we established from primary gastric carcinomas xenografted in nude mice, in order to elucidate the underlying mechanisms of 6q alterations. Alterations of the long arm of chromosome 6 were found in all three xenografts and corresponding cell lines. Allelic imbalance (AI) was found in the three cases, by microsatellite analysis. Fluorescence in situ hybridization analyses clearly demonstrated a duplication of the larger part of the 6q arm in all three cell lines. Two of the cell lines and the corresponding xenografts showed, in addition, complete loss of one of the parental alleles at the terminal part of 6q. Thus, the AI observed along the long arm of chromosome 6 is represented by gain of alleles in one distinct chromosomal segment and loss of alleles in another distinct segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号