首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traumatic brain injury (TBI) causes massive brain damage. However, the secondary injury and temporal sequence of events with multiple mechanisms after the insult has not been elucidated. Here, we examined the occurrence of apoptosis and a causal relationship between inflammation and apoptosis in the TBI brain. Following a lateral moderate fluid percussion injury model of TBI in adult rats, microarray analyses detected apparent changes in the expression levels of apoptosis-related genes which revealed time-dependent expression patterns for 23 genes in the lateral cortex. The upregulated 23 genes included inflammatory cytokines such as interleukin 1 (IL-1) α, IL-1β, and tumor necrotic factor (TNF) which immediately increased at 3 h following the injury. Time-dependent gene expression profile analyses showed that apoptosis was subsequently induced following inflammation. These results taken together suggested changes in expression of apoptosis-related genes may be associated with inflammatory response. Accompanying this surge of cell death genes after TBI was a neurostructural pathologic hallmark of apoptosis characterized by leakage of cytochrome c into cytoplasm, DNA fragmentation and apoptotic cells in the lateral cortex of the impacted hemisphere. Caspase-3 positive cells in the TBI brain were initially sporadic after 3 h, but these apoptotic cells subsequently increased and populated the cerebral cortex at 6 and 12 h, and gradually reached a plateau by 48 h. Interestingly, the expression profile of CD68 macrophage labeled cells closely resembled that of apoptotic cells after TBI, including the role of inflammatory signaling pathway in the progression of apoptotic cell death. These results taken together suggest that TBI induced upregulation of apoptosis-related genes, concomitant with the detection of apoptotic brain pathology during the 3-48 h post-injury period, which may be likely mediated by inflammation. Therapies designed at abrogating apoptosis and/or inflammation may prove effective when initiated at this subacute TBI phase.  相似文献   

2.
Traumatic brain injury (TBI) resulting from explosive-related blast overpressure is a topic at the forefront of neurotrauma research. Compromise of the blood–brain barrier (BBB) and other cerebral blood vessel dysfunction is commonly reported in both experimental and clinical studies on blast injury. This study used a rifle primer-driven shock tube to investigate cerebrovascular injury in rats exposed to low-impulse, pure primary blast at three levels of overpressure (145, 232, and 323 kPa) and with three survival times (acute, 24, and 48 h). BBB disruption was quantified immunohistochemically by measuring immunoglobulin G (IgG) extravasation with image analysis techniques. Pure primary blast generated small lesions scattered throughout the brain. The number and size of lesions increased with peak overpressure level, but no significant difference was seen between survival times. Despite laterally directed blast exposure, equal numbers of lesions were found in each hemisphere of the brain. These observations suggest that cerebrovascular injury due to primary blast is distinct from that associated with conventional TBI.  相似文献   

3.
MK-801对新生大鼠脑外伤后神经元凋亡的影响   总被引:1,自引:0,他引:1  
顾峻  顾红玉  陈玉英  何正瑞  丁文龙 《解剖学杂志》2006,29(6):738-740,F0004
目的:探讨N-甲基-D-天冬氨酸(NMDA)受体拮抗剂MK-801对新生大鼠创伤性脑外伤(traumatic brain injury,TBI)后神经元凋亡的影响。方法:建立新生7 d大鼠顶叶皮质挫伤模型,在TBI前30 min、TBI后即刻、TBI后30 min分别给予腹腔注射MK-8011 mg/kg,在TBI后24 h取脑,连续切片,行H-E染色和Caspase-3免疫组化染色,检测脑神经元细胞的损伤和凋亡。结果:MK-801三组不同时间用药组与TBI组相比,在创伤同侧的扣带皮质、顶叶皮质和丘脑神经元凋亡细胞数减少,有显著性差异。其中TBI后即刻用MK-801治疗效果最好。结论:MK-80l能明显减少TBI后神经元的凋亡。  相似文献   

4.
5.
目的:探讨依达拉奉对脑创伤后神经细胞凋亡的影响及其机制.方法:雄性SD大鼠随机分为对照组、创伤组、依达拉奉组,Marmarou's法建立弥漫性脑创伤模型.H-E染色观察皮质区神经细胞组织形态变化;免疫组织化学法和免疫印迹法检测磷酸化ERK1/2及Bax的表达;原位缺口末端标记法(TUNEL)检测神经细胞的凋亡,并对大鼠综合运动功能进行评定.结果:与对照组比较,创伤组中皮质区部分神经细胞出现变性坏死和凋亡的改变,磷酸化 ERK1/2(1、 6、 24、 48h)和Bax(6、 24、 48、 72h)表达水平增高;神经细胞凋亡数目(6、 24、 48、 72h)增多;大鼠综合运动能力评分下降.与创伤组比较,依达拉奉组中脑组织形态结构损伤程度、磷酸化ERK1/2和Bax表达、神经细胞凋亡数目显著下降;大鼠的运动功能评分升高.结论:依达拉奉通过抑制ERK1/2信号途径活化,进而抑制促凋亡蛋白Bax表达,减少神经细胞凋亡,发挥对弥漫性脑创伤的保护作用.  相似文献   

6.
Petrov T  Steiner J  Braun B  Rafols JA 《Neuroscience》2002,115(1):275-283
Endothelin 1 (ET-1) exerts normally a powerful vasoconstrictor role in the control of the brain microcirculation. In altered states, such as following traumatic brain injury (TBI), it may contribute to the development of ischemia and/or secondary cell injury. Because little is known of ET-1's cellular compartmentalization and its association to vulnerable neurons after TBI, we assessed its expression (both mRNA and protein) in cerebral cortex and hippocampus using correlative in situ hybridization and immunocytochemical techniques.Sprague-Dawley male rats were killed at 4, 24 or 48 h after TBI (450 g from 2 m, Marmarou's model). Semiquantitative analysis of our in situ hybridization results indicated a 2.5- and a 2.0-fold increase in ET-1 mRNA content in the hippocampus and cortex respectively which persisted up to 48 h post TBI. At 4 and 24 h after TBI enzyme-linked immunosorbent assay showed a tendency for increased ET-1 synthesis. In animals subjected to TBI, qualitative immunocytochemical analysis revealed a shift in ET-1 expression from astrocytes (in control animals) to endothelial cells, macrophages and neurons. Astrocytes and macrophages were identified unequivocally by using double immunofluorescence revealing ET-1 and glial fibrillary acidic protein or ED-1, respectively, the markers being specific for these cellular types. While this redistribution was most prominent at 4 and 24 h post TBI, at 48 h the endothelial cells remained strongly ET-1 immunopositive.The results suggest that cellular types which in the intact animal synthesize little or no ET-1 provide novel sources of the peptide after TBI. These sources may contribute to the sustained cerebrovascular hypoperfusion observed post TBI.  相似文献   

7.
Cell death mechanisms following traumatic brain injury   总被引:21,自引:0,他引:21  
Neuronal and glial cell death and traumatic axonal injury contribute to the overall pathology of traumatic brain injury (TBI) in both humans and animals. In both head-injured humans and following experimental brain injury, dying neural cells exhibit either an apoptotic or a necrotic morphology. Apoptotic and necrotic neurons have been identified within contusions in the acute post-traumatic period, and in regions remote from the site of impact in the days and weeks after trauma, while degenerating oligodendrocytes and astrocytes have been observed within injured white matter tracts. We review and compare the regional and temporal patterns of apoptotic and necrotic cell death following TBI and the possible mechanisms underlying trauma-induced cell death. While excitatory amino acids, increases in intracellular calcium and free radicals can all cause cells to undergo apoptosis, in vitro studies have determined that neural cells can undergo apoptosis via many other pathways. It is generally accepted that a shift in the balance between pro- and anti-apoptotic protein factors towards the expression of proteins that promote death may be one mechanism underlying apoptotic cell death. The effect of TBI on cellular expression of survival promoting-proteins such as Bcl-2, Bcl-xL, and extracellular signal-regulated kinases, and death-inducing proteins such as Bax, c-Jun N-terminal kinase, tumor-suppressor gene, p53, and the calpain and caspase families of proteases are reviewed. In light of pharmacologic strategies that have been devised to reduce the extent of apoptotic cell death in animal models of TBI, our review also considers whether apoptosis may serve a protective role in the injured brain. Together, these observations suggest that cell death mechanisms may be representative of a continuum between apoptotic and necrotic pathways.  相似文献   

8.
In contrast to the publicly available data on the safety of automobiles, consumers have no analytical mechanism to evaluate the protective performance of football helmets. The objective of this article is to fill this void by introducing a new equation that can be used to evaluate helmet performance by integrating player head impact exposure and risk of concussion. The Summation of Tests for the Analysis of Risk (STAR) equation relates on-field impact exposure to a series of 24 drop tests performed at four impact locations and six impact energy levels. Using 62,974 head acceleration data points collected from football players, the number of impacts experienced for one full season was translated to 24 drop test configurations. A new injury risk function was developed from 32 measured concussions and associated exposure data to assess risk of concussion for each impact. Finally, the data from all 24 drop tests is combined into one number using the STAR formula that incorporates the predicted exposure and injury risk for one player for one full season of practices and games. The new STAR evaluation equation will provide consumers with a meaningful metric to assess the relative performance of football helmets.  相似文献   

9.
Kinematic measurements of head impacts are sensitive to sports concussion, but not highly specific. One potential reason is these measures reflect input conditions only and may have varying degrees of correlation to regional brain tissue deformation. In this study, previously reported head impact data recorded in the field from high school and collegiate football players were analyzed using two finite element head models (FEHM). Forty-five impacts associated with immediately diagnosed concussion were simulated along with 532 control impacts without identified concussion obtained from the same players. For each simulation, intracranial response measures (max principal strain, strain rate, von Mises stress, and pressure) were obtained for the whole brain and within four regions of interest (ROI; cerebrum, cerebellum, brain stem, corpus callosum). All response measures were sensitive to diagnosed concussion; however, large inter-athlete variability was observed and sensitivity strength depended on measure, ROI, and FEHM. Interestingly, peak linear acceleration was more sensitive to diagnosed concussion than all intracranial response measures except pressure. These findings suggest FEHM may provide unique and potentially important information on brain injury mechanisms, but estimations of concussion risk based on individual intracranial response measures evaluated in this study did not improve upon those derived from input kinematics alone.  相似文献   

10.
Traumatic Brain Injury (TBI) is known to result in oxidative stress, and as variation at the Apolipoprotein E (APOE) gene has been shown to influence outcome following TBI, but through as yet unclear mechanisms, we used transgenic APOE mouse models to examine the relationship between APOE genotype and oxidative stress following TBI. We administered a controlled cortical impact (CCI) injury or sham injury to transgenic mice expressing either human APOE3 or APOE4 on a murine APOE-deficient background. RNA was prepared from the ipsilateral hippocampi and cortices retrieved at 24 h and 1 month post-TBI. Microarray analysis was performed on unpooled samples from three mice per group to determine the genomic response to TBI and to specifically investigate the response of genes involved in oxidative stress mechanisms. Our data demonstrated TBI-induced expression of many more anti-oxidant related genes in the APOE3 mice, suggesting a potential anti-oxidative role for ApoE3 compared to ApoE4. However, in an additional cohort of mice we isolated the ipsilateral hippocampi, cortices, and cerebella at 1 month after TBI or sham injury for immunohistochemical analysis of markers of oxidative stress: the formation and presence of carbonyls (indication of general oxidative modification), 3-nitrotyrosine (3NT; specific to protein modification), or 4-hydroxyl-2-nonenal (HNE; specific to lipid peroxidation). Although we observed significant increases in all three markers of oxidative stress in response to injury, and genotype was a significant factor for carbonyl and 3NT, we found no significant interaction between genotype and injury. This may be due to the overwhelming effect of injury compared to genotype in our ANOVA, but nonetheless suggests that an influence on oxidative stress response is not the primary mechanism behind the APOE-genotype dependent effects on outcome following TBI.  相似文献   

11.
Recent studies have shown that sulforaphane, a naturally occurring compound that is found in cruciferous vegetables, offers cellular protection in several models of brain injury. When administered following traumatic brain injury (TBI), sulforaphane has been demonstrated to attenuate blood-brain barrier permeability and reduce cerebral edema. These beneficial effects of sulforaphane have been shown to involve induction of a group of cytoprotective, Nrf2-driven genes, whose protein products include free radical scavenging and detoxifying enzymes. However, the influence of sulforaphane on post-injury cognitive deficits has not been examined. In this study, we examined if sulforaphane, when administered following cortical impact injury, can improve the performance of rats tested in hippocampal- and prefrontal cortex-dependent tasks. Our results indicate that sulforaphane treatment improves performance in the Morris water maze task (as indicated by decreased latencies during learning and platform localization during a probe trial) and reduces working memory dysfunction (tested using the delayed match-to-place task). These behavioral improvements were only observed when the treatment was initiated 1 h, but not 6 h, post-injury. These studies support the use of sulforaphane in the treatment of TBI, and extend the previously observed protective effects to include enhanced cognition.  相似文献   

12.
A mechanized and integrated computational scheme is introduced to determine the human brain responses in an environment where the human head is exposed to explosions from trinitrotoluene (TNT), or other high-yield explosives, in military applications. The procedure is based on a three-dimensional (3-D) non-linear finite element method (FEM) that implements a simultaneous conduction of explosive detonation, shock wave propagation, blast–head interactions, and the confronting human head. The processes of blast propagation in the air and blast interaction with the head are modeled by an Arbitrary Lagrangian–Eulerian (ALE) multi-material FEM formulation, together with a penalty-based fluid/structure interaction (FSI) algorithm. Such a model has already been successfully validated against experimental data regarding air-free blast and plate–blast interactions. The human head model is a 3-D geometrically realistic configuration that has been previously validated against the brain intracranial pressure (ICP), as well as shear and principal strains under different impact loadings of cadaveric experimental tests of Hardy et al. [Hardy W. N., C. Foster, M. Mason, S. Chirag, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Proc. 51 st Stapp. Car Crash J. 17–80, 2007]. Different scenarios have been assumed to capture an appropriate picture of the brain response at a constant stand-off distance of nearly 80 cm from the core of the explosion, but exposed to different amounts of a highly explosive (HE) material such as TNT. The overpressures at the vicinity of the head are in the range of about 2.4–8.7 atmosphere (atm), considering the reflected pressure from the head. The methodology provides brain ICP, maximum shear stresses and maximum principal strain within the milli-scale time frame of this highly dynamic phenomenon. While focusing on the two mechanical parameters of pressure, and also on the maximum shear stress and maximum principal strain to predict the brain injury, the research provides an assessment of the brain responses to different amounts of overpressure. The research also demonstrates the ability to predict the ICP, as well as the stress and strain within the brain, due to such an event. The research cannot identify, however, the specific levels of ICP, stress and strain that necessarily lead to traumatic brain injury (TBI) because there is no access to experimental data regarding head–blast interactions.  相似文献   

13.
The neurophysiology of concussion   总被引:5,自引:0,他引:5  
Cerebral concussion is both the most common and most puzzling type of traumatic brain injury (TBI). It is normally produced by acceleration (or deceleration) of the head and is characterized by a sudden brief impairment of consciousness, paralysis of reflex activity and loss of memory. It has long been acknowledged that one of the most worthwhile techniques for studying the acute pathophysiology of concussion is by the recording of neurophysiological activity such as the electroencephalogram (EEG) and sensory evoked potentials (EPs) from experimental animals. In the first parts of this review, the majority of such studies conducted during the past half century are critically reviewed. When potential methodological flaws and limitations such as anesthetic protocols, infliction of multiple blows and delay in onset of recordings were taken into account, two general principles could be adduced. First, the immediate post-concussive EEG was excitatory or epileptiform in nature. Second, the cortical EP waveform was totally lost during this period. In the second parts of this review, five theories of concussion which have been prominent during the past century are summarized and supportive evidence assessed. These are the vascular, reticular, centripetal, pontine cholinergic and convulsive hypotheses. It is concluded that only the convulsive theory is readily compatible with the neurophysiological data and can provide a totally viable explanation for concussion. The chief tenet of the convulsive theory is that since the symptoms of concussion bear a strong resemblance to those of a generalized epileptic seizure, then it is a reasonable assumption that similar pathobiological processes underlie them both. Further, it is demonstrated that EPs and EEGs recorded acutely following concussive trauma are indeed the same or similar to those obtained following the induction of a state of generalized seizure activity (GSA). According to the present incarnation of the convulsive theory, the energy imparted to the brain by the sudden mechanical loading of the head may generate turbulent rotatory and other movements of the cerebral hemispheres and so increase the chances of a tissue-deforming collision or impact between the cortex and the boney walls of the skull. In this conception, loss of consciousness is not orchestrated by disruption or interference with the function of the brainstem reticular activating system. Rather, it is due to functional deafferentation of the cortex as a consequence of diffuse mechanically-induced depolarization and synchronized discharge of cortical neurons. A convulsive theory can also explain traumatic amnesia, autonomic disturbances and the miscellaneous collection of symptoms of the post-concussion syndrome more adequately than any of its rivals. In addition, the symptoms of minor concussion (a.k.a. being stunned, dinged, or dazed) are often strikingly similar to minor epilepsy such as petit mal. The relevance of the convulsive theory to a number of associated problems is also discussed. These include the relationship between concussion and more serious types of closed head injury, the utility of animal models of severe brain trauma, the etiology of the cognitive deficits which may linger long after a concussive injury, the use of concussive (captive bolt) techniques to stun farm animals prior to slaughter and the question of why some animals (such as the woodpecker) can tolerate massive accelerative forces without being knocked out.  相似文献   

14.

Background  

Traumatic brain injury (TBI) initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury.  相似文献   

15.
Blast-related traumatic brain injury is the most prevalent injury for combat personnel seen in the current conflicts in Iraq and Afghanistan, yet as a research community,we still do not fully understand the detailed etiology and pathology of this injury. Finite element (FE) modeling is well suited for studying the mechanical response of the head and brain to blast loading. This paper details the development of a FE head and brain model for blast simulation by examining both the dilatational and deviatoric response of the brain as potential injury mechanisms. The levels of blast exposure simulated ranged from 50 to 1000 kPa peak incident overpressure and 1–8 ms in positive-phase duration, and were comparable to real-world blast events. The frontal portion of the brain had the highest pressures corresponding to the location of initial impact, and peak pressure attenuated by 40–60% as the wave propagated from the frontal to the occipital lobe. Predicted brain pressures were primarily dependent on the peak overpressure of the impinging blast wave, and the highest predicted brain pressures were 30%less than the reflected pressure at the surface of blast impact. Predicted shear strain was highest at the interface between the brain and the CSF. Strain magnitude was largely dependent on the impulse of the blast, and primarily caused by the radial coupling between the brain and deforming skull.The largest predicted strains were generally less than 10%,and occurred after the shock wave passed through the head.For blasts with high impulses, CSF cavitation had a large role in increasing strain levels in the cerebral cortex and periventricular tissues by decoupling the brain from the skull. Relating the results of this study with recent experimental blast testing suggest that a rate-dependent strain-based tissue injury mechanism is the source primary blast TBI.  相似文献   

16.
Bao F  Liu D 《Neuroscience》2003,116(1):59-70
We previously demonstrated that the peroxynitrite concentration increases after impact spinal cord injury. This study tests whether spinal cord injury-elevated peroxynitrite induces apoptotic cell death. Peroxynitrite was generated at the concentration and duration produced by spinal cord injury by administering S-morpholinosydnonimine through a microdialysis fiber into the gray matter of the rat spinal cord. Fragmented DNA was visualized by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling. Transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive neurons were quantitated by counting the transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling and neuron-specific enolase double-stained neurons along the fiber track in the sections removed at 6, 12, 24 and 48 h post-peroxynitrite exposure. Peroxynitrite significantly increased transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive neurons at all time points examined (P< or =0.001) compared with artificial cerebrospinal fluid controls (Two-way analysis of variance followed by Tukey test), peaking at 24 h post-exposure. Electron microscopic observation of characteristic features of apoptosis confirmed peroxynitrite-induced neuronal apoptosis. Total transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive cells were counted in areas near and 0.2 mm away from the fiber track. The counts both peaked at 24 h with no significant difference between the two areas. However, at 6 and 12 h post-exposure the counts were significantly higher near than away from the fiber track (P=0.03 and P=0.007 respectively, paired t test). Immunohistochemical staining indicates caspase-3 was activated by peroxynitrite; this activation peaked at 6 h post-exposure, suggesting that activation of caspase-3 might be an early event in the apoptotic cell death cascade. We conclude that 1) peroxynitrite generated in the cord at the level produced by spinal cord injury induces neuronal apoptosis, indicating a role for peroxynitrite in secondary spinal cord injury; 2) caspase activation might be involved in peroxynitrite-induced neuronal apoptosis; 3) therefore removal of peroxynitrite should reduce secondary cell death after spinal cord injury.  相似文献   

17.
Blast overpressure has long been known to cause barotrauma to air-filled organs such as lung and middle ear. However, experience in Iraq and Afghanistan is revealing that individuals exposed to explosive munitions can also suffer traumatic brain injury (TBI) even in the absence of obvious external injury. The interaction of a blast shock wave with the brain in the intact cranial vault is extremely complex making it difficult to conclude that a blast wave interacts in a direct manner with the brain to cause injury. In an attempt to “isolate” the shock wave and test its primary effects on cells, we exposed cultured microglia to simulated blast overpressure in a barochamber. Overpressures ranging from 15 to 45 psi did not change microglial Cox-2 levels or TNF-α secretion nor did they cause cell damage. Microarray analysis revealed increases in expression of a number of microglial genes relating to immune function and inflammatory responses to include Saa3, Irg1, Fas and CxCl10. All changes in gene expression were dependent on pulse duration and were independent of pressure. These results indicate that microglia are mildly activated by blast overpressure and uncover a heretofore undocumented role for pulse duration in this process.  相似文献   

18.
Traumatic brain injury induces adipokine gene expression in rat brain   总被引:4,自引:0,他引:4  
Traumatic brain injury (TBI) induces cachexia and neuroinflammation which profoundly impact patient recovery. Adipokine genes such as leptin (ob), resistin (rstn) and fasting-induced adipose factor (fiaf) are implicated in energy metabolism and body weight control and are also associated with chronic low grade inflammation. Since central rstn and fiaf expression was increased following hypoxic/ischemic brain injury, we hypothesized that these genes would also be induced in the rat brain following TBI. Realtime RT-PCR detected a 2-2.5-fold increase in ob mRNA in the ipsilateral cortex and thalamus 12h following lateral fluid percussion (FP)-induced brain injury. Fiaf mRNA was elevated 5-7.5-fold in cortex, hippocampus and thalamus, and modest increases were also detectable in the contralateral brain. Remarkably, rstn mRNA was elevated in ipsilateral (150-fold) and in contralateral (50-fold) hippocampus. To test whether these changes were part of an inflammatory response to TBI we also examined the effects of an intracerebral injection of lipopolysaccharide (LPS). We determined that central injection of LPS produced some, but not all, of the changes seen after TBI. For example, in contrast to the stimulatory influence of TBI, LPS had no effect on ob expression in any brain region, though fiaf and rstn mRNA levels were significantly elevated in both ipsi- and contralateral cortex. In conclusion: (a) brain-derived adipokines could be involved in the acute pathology of traumatic brain injury partly through modulation of central inflammatory responses, but also via leptin-mediated neuroprotective effects and (b) TBI-induced brain adipokines may induce the metabolic changes observed following neurotrauma.  相似文献   

19.
Increases of synaptically released zinc and intracellular accumulation of zinc in hippocampal neurons after traumatic or ischemic brain injury is neurotoxic and chelation of zinc has been shown to reduce neurodegeneration. Although our previous studies showed that zinc chelation in traumatically brain-injured rats correlated with an increase in whole-brain expression of several neuroprotective genes and reduced numbers of apoptotic neurons, the effect on functional outcome has not been determined, and the question of whether this treatment may actually be clinically relevant has not been answered. In the present study, we show that treatment of TBI rats with the zinc chelator calcium EDTA reduces the numbers of injured, Fluoro-Jade-positive neurons in the rat hippocampus 24 h after injury but does not improve neurobehavioral outcome (spatial memory deficits) 2 weeks post-injury. Our data suggest that zinc chelation, despite providing short-term histological neuroprotection, fails to improve long-term functional outcome, perhaps because long-term disruptions in homeostatic levels of zinc adversely influence hippocampus-dependent spatial memory.  相似文献   

20.
Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

Graphical Abstract

相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号