首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Glutamate decarboxylase activity, a specific marker for γ-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (?15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged.The results indicate that the nucleus accumbens sends γ-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.  相似文献   

2.
R P Vertes 《Neuroscience》1984,11(3):669-690
The origins of projections within the medial forebrain bundle from the upper brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in approximately 15 upper brainstem nuclei following injections of a conjugate of horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Labeled nuclei included (from caudal to rostral): dorsal and ventral parabrachial nuclei; Kolliker-Fuse nucleus; dorsolateral tegmental nucleus; A7 (lateral pontine tegmentum medial to lateral lemniscus); median and dorsal raphe nuclei; distinct group of cells oriented mediolaterally in the dorsal pontine tegmentum below the central gray; B9 (ventral midbrain tegmentum dorsal to medial lemniscus); retrorubral nucleus; nucleus of Darkschewitsch, interfascicular nucleus; rostral and caudal linear nuclei; ventral tegmental area; medial part of substantia nigra, pars compacta; and the supramammillary nucleus. With the exception of the ventral parabrachial nucleus, Kolliker-Fuse, A7, B9 and substantia nigra, pars compacta, each of the nuclei mentioned above sent strong projections along the medial forebrain bundle to the rostral forebrain. Sparse labeling was observed throughout the pontine and midbrain reticular formation. With the exception of the dorsal raphe nucleus, projections to the most anterior regions of the medial forebrain bundle (level of the anterior commissure) essentially only arose from presumed dopamine-containing nuclei-retrorubral nucleus (A8 area), interfascicular nucleus, rostral and caudal linear nuclei, substantia nigra pars compacta, and ventral tegmental area. Evidence was reviewed indicating that major forebrain sites of termination for these dopaminergic nuclei are structures that have been collectively referred to as the 'ventral striatum'. It is concluded from the present findings that several pontine and mesencephalic cell groups are in a position to exert a strong, direct effect on structures in the anterior forebrain and that the medial forebrain bundle is the main communication route between the upper brainstem and the forebrain.  相似文献   

3.
The sources and distribution of subcortical afferents to the anterior neocortex were investigated in the rat using the horseradish peroxidase technique. Injections into the prefrontal cortex labelled, in addition to the mediodorsal thalamic nucleus, neurons in a total of fifteen subcortical nuclei, distributed in the basal telencephalon, claustrum, amygdala, thalamus, subthalamus, hypothalamus, mesencephalon and pons. Of these, the projections from the zona incerta, the lateroposterior thalamic nucleus, and the parabrachial region of the caudal mesencephalon to the prefrontal cortex have not previously been described.Different parts of the mediodorsal thalamic nucleus project to different areas of the frontal cortex. Thus, horseradish peroxidase injections in the most ventral pregenual part of the medial cortex labelled predominantly neurons in the medial anterior and dorsomedial posterior parts of the mediodorsal nucleus; injections into the more dorsal pregenual area labelled only neurons in the lateral and ventral parts of the nucleus; injections placed supragenually labelled neurons in the dorsolateral posterior part of the nucleus; and injections into the dorsal bank of the anterior rhinal sulcus labelled neurons in the centromedial part of the nucleus.Several other subcortical nuclei had projections overlapping with that of the mediodorsal thalamic nucleus. Five different types of such overlap were distinguished: (1) cell groups labelled after horseradish peroxidase injections into one of the subfields of the projection area of the mediodorsal nucleus (defined as the prefrontal cortex), but not outside this area (parataenial nucleus of the thalamus); (2) cell groups labelled both after injection into a subfield of the projection area of the mediodorsal nucleus and after injections in a restricted area outside this area (anteromedial, ventral and laterposterior thalamic nuclei); (3) cell groups labelled after injections into all subfields of the mediodorsal nucleus projection area, but not outside this area (ventral tegmental area, basolateral nucleus of amygdala); (4) cell groups labelled after injections into any area of the anterior neocortex, including the mediodorsal nucleus projection area (parabrachial neurons of the posterior mesencephalon); (5) cell groups labelled after all neocortical injections investigated (claustrum, magnocellular nuclei of the basal forebrain, lateral hypothalamus, zona incerta, intralaminar thalamic nuclei, nuclei raphe dorsalis and centralis superior, and locus coeruleus).We can draw the following conclusions from these and related findings. First, because of the apparent overlap of projections of the mediodorsal, the anteromedial and ventral thalamic nuclei in the rat, parts of the prefrontal cortex can also be called ‘cingulate’ and ‘premotor’. Second, on the basis of projections from parts of the mediodorsal nucleus, the prefrontal cortex of the rat can be subdivided into areas corresponding to those in other species. Third, the neocortex receives afferents from a large number of subcortical cell groups outside the thalamus, distributed from the telencephalon to the pons; however, the prefrontal cortex seems to be the only neocortical area innervated by the ventral tegmental area and amygdala. Finally, neither the prefrontal cortex nor the mediodorsal thalamic nucleus receives afferents from regions directly involved in sensory and motor functions.  相似文献   

4.
Summary The corticonigral projections from area 6 in the raccoon were investigated using the autoradiographic tracing method. Injections of tritiated proline and leucine were made into either medial or lateral area 6 subdivisions. Uniformly distributed silver grains were observed overlying the ipsilateral substantia nigra pars compacta (SNc) while more restricted foci of label indicative of fiber labeling were present in the substantia nigra pars reticulata (SNr). Autoradiographic label was also present in the substantia nigra pars lateralis (SNl), the retrorubral area and the ventral tegmental area of Tsai. The existence of corticonigral projections from area 6 may serve to modulate SNc activity as a whole and provide an important substrate for the cerebral control of movement.Abbreviations cp cerebral peduncle - IP interpeduncular nucleus - PG pontine gray - R red nucleus - RR retrorubral area - SNc substantia nigra, pars compacta - SNl substantia nigra, pars lateralis - SNr substantia nigra, pars reticularis - VTA ventral tegmental area  相似文献   

5.
The present study was undertaken to provide anatomical evidence, in the rat, for a direct projection from the cerebellum towards structures, other than the red nucleus, which belong to the ventral midbrain tegmentum, by using the retrograde as well as the anterograde horseradish peroxidase transport method. Following unilateral injection in the ventral midbrain tegmentum of horseradish peroxidase, free or conjugated to wheat germ agglutinin, sparing the red nucleus, retrogradely labeled neurons were found in the contralateral cerebellar lateral nucleus and, at lower density, in the interpositus nucleus. No labeled neurons were found in the fastigial nucleus of either side. Anterogradely labeled axons from lectin coupled horseradish peroxidase injection sites in the lateral and interpositus nuclei reached the contralateral ventral midbrain tegmentum. Terminal labeling was observed in the entire red nucleus as well as in the lateral division of the ventral tegmental area of Tsai, in the dorsal region of the substantia nigra pars compacta, and in the medial part of the retrorubral field. No terminal labeling was found in the caudal linear nucleus, interfascicular nucleus, peripeduncular nucleus, rostral linear nucleus of the raphe, substantia nigra pars lateralis and the substantia nigra pars reticulata. Terminal labeling was also not observed in the ventral midbrain tegmentum following horseradish peroxidase injection in lateral and interpositus nuclei of rats pretreated with kainic acid. In conclusion, it is noteworthy that, besides the red nucleus, the sole structures of ventral midbrain tegmentum receiving cerebellar efferents are those with a higher density of dopaminergic cells.  相似文献   

6.
用HRP和荧光素—伊凡氏兰(EB)、核黄(NY)对大白鼠伏核的传入性联系,用WGAHRP对其传出性联系进行了实验研究。单纯HRP(19例)和荧光素EB(6例)、NY(4例)注入或泳入伏核后所产生的逆行标记结果基本一致。在丘脑,标记细胞大量出现于丘脑的带旁核、室周核、丘脑内侧核、板内核群;其它如连合核、菱形核和丘脑后内侧核也见到一些标记细胞。在中脑、黑质密带内侧份、被盖腹侧区有大量标记细胞。在边缘系统的海马、杏仁体有大量标记细胞,而内嗅区皮质和下脚仅在一些例中有明显的标记细胞。外例隔核、苍白球、尾壳核和丘脑下部等均未见标记。将WGA-HRP注入伏核内(7例),顺行性标记纤维主要经前脑内侧束下行。标记终支最明显的部位是腹侧苍白球、终纹床核和黑质网状带;其他如外侧隔核、下丘脑外侧核、丘脑底核和Forel H_2区、未定带、黑质密带等处也可见到少量的标记终支。  相似文献   

7.
本实验用神经元逆行荧光标记和单胺荧光组化联合法研究了大白鼠杏仁核内多巴胺能神经纤维的起源及投射特点。一侧杏仁核注射荧光标记物后,同侧黑质致密部背内份和被盖腹侧区背外份有较多的多巴胺神经元被标记。黑质外侧部、A_8群所在部位及对侧黑质致密部和被盖腹侧区亦有少数多巴胺细胞被标记。同侧黑质致密部和被盖腹侧区内还观察到少数非多巴胺能逆行标记细胞。杏仁核与同侧尾壳核、伏隔核或额前皮质配对注射不同荧光标记物后,同侧被盖腹侧区与黑质致密部的背侧区与腹侧区之间有不少多巴胺神经元被逆行荧光双标记。  相似文献   

8.
The afferent connections of the nucleus accumbens septi from subcortical centers in the cat were studied with the aid of two different retrograde tracer substances. In most experiments horseradish peroxidase was injected in the nucleus accumbens, either mechanically or by microiontophoresis. In a few cats injections of bisbenzimid were placed and subsequently the retrogradely labelled cells were visualized with fluorescence microscopy. In a number of experiments neighbouring nuclei of the nucleus accumbens were involved in the injection site. Control injections were placed in the nucleus caudatus.With both tracers the same topography of labelled cells could be demonstrated following injections into the nucleus accumbens. Labelled cells were found in the basolateral nucleus of the amygdaloid complex. In the thalamus the nucleus paraventricularis and the nucleus parataenialis were most heavily labelled. Other midline nuclei, which showed fewer labelled cells, included the nucleus interanteromedialis, the nucleus rhomboidalis, the nucleus centralis medialis and the nucleus reuniens. Some projections were also found to originate from the medial part of the parafascicular nucleus. In the mesencephalic tegmentum the ventral tegmental area of Tsai, the interfascicular nucleus and the retrorubral nucleus contained labelled cells. A smaller number of cells was found to be labelled in the substantia nigra proper. In addition, the rostral linear nucleus, the central linear nucleus and the dorsal raphe nucleus, all belonging to the raphe nuclei, showed labelling of cells.A comparison with the distribution of labelled cells following injections into the caudate nucleus showed that the accumbens and caudate nuclei share many projections from the mesencephalon and the thalamus. However, the accumbens can be distinguished from the caudate because it receives afferents from the amygdala.  相似文献   

9.
Axonal collateralization of neurons whose divergent branches innervate the medial prefrontal cortex (MFC) and the sulcal cortex was studied in the rat by using the retrograde double-labeling technique. Injections of bisbenzimide and propidium iodide into the MFC and sulcal cortex resulted in double-labeling of a small population of cells within the ventral tegmental area (VTA) and pars compacta of the substantia nigra (SNC). More extensive double-labeling was evident in the midbrain raphe nuclei. Collateralization++ therefore does not appear to be an important property of the dopamine innervation of the prefrontal cortex.  相似文献   

10.
Summary Amygdalotegmental projections were studied in 26 cats after injections of horseradish peroxidase (HRP) in the diencephalon, midbrain and lower brain stem and in 6 cats after injection of 3H-leucine in the amygdala. Following HRP injections in the posterior hypothalamus, periaqueductal gray (PAG) and tegmentum many retrogradely labeled neurons were present in the central nucleus (CE) of the amygdala, primarily ipsilaterally. Injections of HRP in the posterior hypothalamus and mesencephalon also resulted in the labeling of neurons in the basal nucleus, pars magnocellularis.Following 3H-leucine injections in CE and adjacent structures autoradiographically labeled fibers were present in the stria terminalis and ventral amygdalofugal pathways. In the mesencephalon heavily labeled fiber bundles were located lateral to the red nucleus. Labeled fibers and terminals were distributed to the mesencephalic reticular formation, substantia nigra, ventral tegmental area and PAG. In the pontine and medullary tegmentum the bulk of passing fibers was located laterally in the reticular formation. Many labeled fibers and terminals were distributed to the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus and lateral tegmental fields. Many terminals were also present in the solitary nucleus and dorsal motor nucleus of the vagus nerve.The location of the cells of origin and the distribution of the terminals of the amygdalotegmental projection suggest that this pathway plays an important role in the integration of somatic and autonomic responses associated with affective defense.Abbreviations A nucleus ambiguus - AL lateral amygdaloid nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BL basal amygdaloid nucleus, pars magnocellularis - BM basal amygdaloid nucleus, pars parvocellularis - BP brachium pontis - CE central amygdaloid nucleus - CI internal capsule - CN cochlear nucleus - CO cortical amygdaloid nucleus - CP cerebral peduncle - DCN dorsal column nuclei - DMV dorsal motor nucleus of the vagus nerve - E entopeduncular nucleus - F fornix - FLA longitudinal association bundle - GP globus pallidus - H hippocampal formation - 1C inferior colliculus - INJ injection site - LC locus coeruleus - IO inferior olive - LG lateral geniculate nucleus - LRN lateral reticular nucleus - LT lateral tegmental field - M medial amygdaloid nucleus - MB mammilary body - MG medial geniculate nucleus - ML medial lemniscus - MT medial tegmental field - MV motor nucleus of the trigeminus - OC optic chiasm - OT optic tract - P putamen - PAG periaqueductal gray - PB parabrachial nuclei - PC posterior commissure - PH posterior hypothalamus - PT pyramidal tract - PV principal sensory nucleus of the trigeminus - PYR pyriform cortex - R red nucleus - RF reticular formation - S solitary nucleus - SC nucleus subcoeruleus - SN substantia nigra - SO superior olive - SOL solitary nucleus - SPV spinal trigeminal complex - ST stria terminalis - VC vestibular complex - VTA ventral tegmental area - VII facial nucleus - XII hypoglossal nucleus  相似文献   

11.
H Tokuno  Y Nakamura  M Kudo  Y Kitao 《Neuroscience》1990,38(1):255-270
Using a semihorizontal section plane tangential to the ventral surface of the cerebral peduncle, the authors re-examined cyto-, myelo- and dendroarchitecture, acetylcholinesterase activity, afferent fibers, and efferent projection neurons of the substantia nigra pars reticulata. In the semihorizontal section plane, the substantia nigra pars reticulata was a disc-shaped nucleus and contained two to three myelinated fiber bundles running from anteromedial to posterolateral. Bands of high acetylcholinesterase activity existed parallel to the anteromedial-posterolateral direction. The Golgi silver impregnation study revealed that many nigral neurons extended their varicose dendrites anteromedially and posterolaterally. In cases with injections of wheat germ agglutinated horseradish peroxidase into the neostriatum or injections of tritiated leucine into the subthalamic nucleus, anterogradely labeled afferent fibers and axon terminals in the substantia nigra pars reticulata were organized into bands in the same anteromedial-posterolateral direction. In cases with injections of wheat germ agglutinated horseradish peroxidase into either the superior colliculus, the pedunculopontine tegmental nucleus or the ventromedial nucleus of the thalamus, retrogradely labeled neurons were also clustered along the anteromedial-posterolateral direction with their dendrites extending anteromedially and posterolaterally. The present findings strongly suggest that the substantia nigra pars reticulata has a laminar organization.  相似文献   

12.
The afferent projections to the peribrachial region in the rat were studied using retrograde and anterograde transport of horseradish peroxidase. Particular attention was paid to descending projections from the basal ganglia and related nuclei to the region of nucleus tegmenti pedunculopontinus. Following injection of peroxidase into nucleus tegmenti pedunculopontinus, few retrogradely-labelled neurons were found in the entopeduncular nucleus proper, but larger numbers were found with a wide distribution within the boundaries of the internal capsule and cerebral peduncle. Labelled cells were also consistently observed in the amygdala, the caudal globus pallidus, the subthalamus including zona incerta and subthalamic nucleus, the hypothalamus, the substantia nigra and the ventral tegmental area. Following iontophoretic injections of horseradish peroxidase into the entopeduncular nucleus, lateral hypothalamus, subthalamic nucleus or ventral tegmental area, terminal labelling was observed in and around the branchium conjunctivum in an area apparently corresponding to nucleus tegmenti pedunculopontinus in the rat.  相似文献   

13.
Afferents to the nucleus accumbens septi utilizing glutamate or aspartate have been investigated in the rat by autoradiography following injection and retrograde transport of D[3H]aspartate. Parallel experiments with the intra-accumbal injection of [3H]GABA were employed to establish the transmitter-selective nature of the retrograde labelling found with D[3H]aspartate. The topography of cortical and thalamic perikarya labelled by D[3H]aspartate was extremely precise. D[3H]Aspartate labelled perikarya were found in layer V of agranular insular cortex; bilaterally within prelimbic and infralimbic subareas perikarya, but predominantly ipsilaterally. Ipsilateral labelling was observed in dorsal, ventral and posterior agranular insular cortices, and in perirhinal cortex. Injections into ventral accumbens labelled perikarya in ipsilateral entorhinal cortex, while infusion of D[3H]aspartate into anterior caudate-putamen resulted in labelling of perikarya in ipsilateral cingulate and lateral precentral cortices. Following infusion of D[3H]aspartate, ipsilateral midline thalamic nuclei contained the highest density of labelled perikarya; infusions centred on nucleus accumbens resulted in heavy retrograde labelling of the parataenial nucleus, but labelling was sparse from a lateral site and not observed after injection into anterior caudate-putamen. Less prominent labelling of perikarya was seen in other thalamic nuclei (mediodorsal, central medial, rhomboid, reuniens and centrolateral), mostly near the midline. Perikaryal labelling was also found in the ipsilateral amygdaloid complex, particularly in basolateral and lateral nuclei. Only weak labelling resulted in ventral subiculum. Numerous labelled cells were present bilaterally in anterior olfactory nucleus, although perikarya were more prominent ipsilaterally. Labelled perikarya were not consistently observed in other regions (ventral tegmental area, medial substantia nigra, raphe nuclei and locus coeruleus) known to innervate nucleus accumbens. Presumptive anterograde labelling was detected in ventral pallidum/substantia innominata, ventral tegmental area and medial substantia nigra. [3H]GABA was generally not retrogradely transported to the same regions labelled by D[3H]aspartate; an exception being the anterior olfactory nucleus, where large numbers of labelled perikarya were found. [3H]GABA failed to label perikarya in thalamus and amygdala, and a topographic distribution of label was absent in neocortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The demonstration of the presence of catecholamines and horseradish peroxidase (HRP) in the same neuron has been achieved by submitting vibratome sections to a modified glyoxylic acid fluorescence method followed by the usual procedure to reveal HRP. After HRP injection into the striatum or into the nucleus accumbens of the rat, both fluorescent dopaminergic neurons labelled with HRP and non-fluorescent neurons labelled with HRP were observed in the substantia nigra or in the ventral tegmental area, respectively.  相似文献   

15.
Midbrain dopamine neurons are critical in mediating the rewarding effects of opiates in dependent rats, as well as modulating some manifestations of opiate withdrawal. Morphine is known to excite dopamine neurons and thereby facilitate forebrain dopamine transmission through inhibition of GABA neurons. Cholinergic neurons in the mesopontine laterodorsal and pedunculopontine tegmental nuclei provide the principal source of excitatory cholinergic input to ventral tegmental area and substantia nigra pars compacta dopamine-containing neurons, via actions on midbrain muscarinic and nicotinic acetylcholine receptors. The present study hypothesized that a reduction in tonic cholinergic input via blockade of midbrain muscarinic receptors would reduce the pharmacological effects of morphine on forebrain dopamine release. Using in vivo chronoamperometry, alterations in morphine-evoked dopamine efflux were monitored at stearate-graphite paste electrodes implanted unilaterally in the nucleus accumbens and striatum of urethane (1.5 g/kg) anesthetized rats, following the pharmacological inhibition of ventral tegmental area/substantia nigra pars compacta muscarinic receptors. The facilitatory effects of morphine (2.0 mg/kg, i.v.) on accumbens and striatal dopamine efflux were markedly reduced by prior infusion of the non-selective muscarinic receptor antagonist scopolamine (200 microg/microl) into the ventral tegmental area or substantia nigra pars compacta, respectively. These findings demonstrate that decreased activation of midbrain muscarinic receptors attenuates the excitatory effects of morphine on mesoaccumbens and nigrostriatal dopaminergic transmission.  相似文献   

16.
The topographic order of inputs to nucleus accumbens in the rat   总被引:4,自引:0,他引:4  
Afferents to the nucleus accumbens have been studied with the retrograde transport of unconjugated wheatgerm agglutinin as detected by immunohistochemistry using the peroxidase-antiperoxidase method, in order to define precisely afferent topography from the cortex, thalamus, midbrain and amygdala. Cortical afferent topography was extremely precise. The largest number of cells was found following injections to the anterior accumbens. Anteromedial injections labelled a very large extent of the subiculum and part of the entorhinal cortex. Anterolateral injections produced less subicular and entorhinal label but also labelled the posterior perirhinal cortex. Posteromedial injections labelled only the ventral subiculum and a few cells in the adjacent medial entorhinal cortex. Posterolateral injections labelled few lateral entorhinal neurones but did label a long anteroposterior strip of perirhinal cortex. Prefrontal cortex label was found only after anterior accumbens injections. In the amygdala labelled neurones were found in cortical, central, lateral posterior, anteromedial and basolateral nuclei. Basolateral amygdala projected chiefly to the anteromedial accumbens and central nucleus to anterolateral accumbens. Only a weak amygdala label was found after posterior accumbens injections. In the ventral tegmental area, the midline interfascicular nucleus projected only to medial accumbens. The paranigral ventral tegmentum projected chiefly to the medial accumbens and the parabrachial area chiefly to the lateral accumbens. In the thalamus, heaviest label was found after anterior accumbens injections. Most cells were found in the paraventricular, reuniens and rhomboid nuclei and at posterior thalamic levels lying medial to the fasciculus retroflexus. There was only restricted topography found from thalamic sites. Retrograde label was also found in the ventral pallidum and lateral hypothalamus. Single small injection sites within accumbens received input from the whole anteroposterior extent of the thalamus and ventral tegmentum. The medial accumbens was found to have a close relationship to habenula, globus pallidus and interfascicular nucleus. It appeared that the heaviest volume of inputs projected to anteromedial accumbens, where output from hippocampus (CAI), subiculum, entorhinal and prefrontal cortices converged with output from amygdala, midline thalamus and ventral tegmentum.  相似文献   

17.
In an attempt to evaluate the cellular organization and efferent projections of the nucleus tegmenti pedunculopontinus pars compacta, several experiments were performed in the rat. From measurements of neurons in the nucleus tegmenti pedunculopontinus pars compacta in Nissl-stained sections, the nucleus was observed to contain many large neurons which made it possible to demarcate this nucleus from surrounding pontomesencephalic reticular formation. Two other neuronal populations, medium and small neurons, were also seen in the nucleus tegmenti pedunculopontinus pars compacta. Detailed measurements showed that 90% by volume of all neurons in the nucleus tegmenti pedunculopontinus pars compacta were large and medium-sized neurons. After injections of [ 3H]leucine into the nucleus tegmenti pedunculopontinus pars compacta, transported label was observed in dorsally and ventrally coursing ascending fibers. The dorsally coursing fibers entered the centrolateral nucleus and centre median-parafascicular complex of the thalamus. The ventrally coursing fibers produced accumulation of silver grains in the ventral tegmental area, substantia nigra pars compacta, subthalamic nucleus, zona incerta and lateral hypothalamus. Crossed fibers of the nucleus tegmenti pedunculopontinus pars compacta were observed sparsely at the levels of the thalamus and posterior commissure, and to a greater degree through the supraoptic commissure of Meynert. Much less anterograde labeling was seen in the equivalent terminal sites on the contralateral side of the brain. By electron microscopic autoradiography major terminal sites of axons of the nucleus tegmenti pedunculopontinus pars compacta were examined in rats injected with [ 3H]leucine in the nucleus tegmenti pedunculopontinus pars compacta and later injected with horseradish peroxidase in the striatum and pallidum. Statistical data showed preferential radiolabeling of terminals forming asymmetrical synaptic contact with dendrites in the centrolateral nucleus, centre median-parafascicular complex and subthalamic nucleus. Apparent terminations in the substantia nigra pars compacta proposed in earlier studies and shown in the present light microscopic autoradiograms were not supported by this ultrastructural analysis. Several radiolabeled terminals of the asymmetrical type contacting horseradish peroxidase labeled dendrites in the thalamus confirmed direct input from the nucleus tegmenti pedunculopontinus pars compacta to the thalamostriate projection neurons. [ 3H]choline injections into the thalamus and subthalamic nucleus produced retrograde perikaryal labeling of large neurons in the nucleus tegmenti pedunculopontinus pars compacta. These neurons were unlabeled after [ 3H]choline injections in the substantia nigra. Other findings suggested retrograde transport of [ 3H]choline through cholinergic terminals as well as cholinergic fibers of passage. These data suggested a selective uptake mechanism for cholinergic fibers of passage.The results emphasize the cholinergic nature of the nucleus tegmenti pedunculopontinus pars compacta innervation of the thalamus and subthalamic nucleus. Large neurons in the nucleus tegmenti pedunculopontinus pars compacta seem responsible for this cholinergic innervation and probably provide the axon terminals making asymmetrical synapses in the thalamus and subthalamic nucleus as described above. In addition, large neurons as well as medium and small ones in the nucleus tegmenti pedunculopontinus pars compacta whose transmitters and exact destinations remain unknown send a number of axons through the supraoptic commissure of Meynert to innervate the contralateral subthalamic nucleus.  相似文献   

18.
Summary The high tonic discharge rates of globus pallidus neurons in awake monkeys suggest that these neurons may receive some potent excitatory input. Because most current electrophysiological evidence suggests that the major described pallidal afferent systems from the neostriatum are primarily inhibitory, we used retrograde transport of horseradish peroxidase (HRP) to identify possible additional sources of pallidal afferent fibers. The appropriate location was determined before HRP injection by mapping the characteristic high frequency discharge of single pallidal units in awake animals. In animals with injections confined to the internal pallidal segment, retrograde label was seen in neurons of the pedunculopontine nucleus, dorsal raphe nucleus, substantia nigra, caudate, putamen, subthalamic nucleus, parafascicular nucleus, zona incerta, medial and lateral subthalamic tegmentum, parabrachial nuclei, and locus coeruleus. An injection involving the external pallidal segment and the putamen as well resulted in additional labeling of cells in centromedian nucleus, pulvinar, and the ventromedial thalamus.Abbreviations AC anterior commissure - CG central grey - CM centromedian nucleus - CN caudate nucleus - DM dorsomedial nucleus - DR dorsal raphe nucleus - DSCP decussation of superior cerebellar peduncle - GPe globus pallidus, external segment - GPi globus pallidus, internal segment - LC locus coeruleus - LL lateral lemniscus - MG medial geniculate nucleus - ML medial lemniscus - NVI abducens nucleus - OT optic tract - Pbl lateral parabrachial nucleus - Pbm medial parabrachial nucleus - Pf parafascicular nucleus - PPN pedunculopontine nucleus - PuO oral pulvinar nucleus - RN red nucleus - SCP superior cerebellar peduncle - SI substantia innominata - SNc substantia nigra, pars compacta - SNr substantia nigra, pars reticulata - STN subthalamic nucleus - TMT mamillothalamic tract - VA ventral anterior nucleus - VLc ventral lateral nucleus, pars caudalis - VLm ventral lateral nucleus, pars medialis - VLo ventral lateral nucleus, pars oralis - VPI ventral posterior inferior nucleus - VPM ventral posterior medial nucleus - VPLc ventral posterior lateral nucleus, pars caudalis - ZI zona incerta  相似文献   

19.
R.C. Meibach  R. Katzman 《Neuroscience》1981,6(11):2159-2171
The organization of dopaminergic neurons projecting to the amygdala was examined using retrograde (horseradish peroxidase histochemistry) and anterograde ([3H]leucine autoradiography) transport methods and Falck-Hillarp histofluorescence techniques combined with microspectrofluorometry and radiofrequency lesions. Cell bodies located within the pars lateralis and pars compacta of the substantia nigra were found to project to the lateral and central amygdaloid nuclei, respectively. Both of these areas within the substantia nigra contained dopaminergic perikarya, while the central and lateral amygdaloid nuclei contained fluorescent varicosities with features indicative of dopaminergic neurons. Lesions restricted to the pars lateralis of the substantia nigra resulted in a loss of fluorescence in the lateral amygdaloid nucleus. Autoradiographic experiments revealed that the projections from the pars lateralis did not run with fibers originating from the pars compacta in the nigrostriatal tract but rather had their own course occupying a lateral position adjacent to the cerebral peduncle and joining the ventral amygdalo-fugal bundle.The data indicate that, in the cat, there are two separate dopaminergic projections to the amygdala arising from the substantia nigra.  相似文献   

20.
The afferent connections of the rat substantia nigra pars lateralis have been studied using the retrograde axonal transport of fluorescent latex microspheres. The most numerous groups of retrogradely labelled nerve cell bodies were observed bilaterally in the parabrachial complex and several hypothalamic nuclei, whereas the parietal neocortex, the fundus striati, the central nucleus of the amygdala and the bed nucleus of the stria terminalis were labelled on the injected side only. The neuronal projections from the central amygdaloid nucleus to the substantia nigra pars lateralis and lateral part of the rostral pars compacta have additionally been confirmed by anterograde tracing using wheat-germ agglutinin coupled to horseradish peroxidase. The presence of some peptides in this pathway was studied by combining the use of the same retrograde tracer with immunofluorescence after intra-amygdaloid injections of colchicine. With this method, we have demonstrated that Met-enkephalin, dynorphin and neurotensin are probably utilized as neurotransmitters or co-transmitters in the neurons of the amygdalo-nigral pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号