首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
B Jiang  J H Liu  Y M Bao  L J An 《Toxicon》2004,43(1):53-59
In the present study, using a rat pheochromocytoma (PC12) cell line, the effect of catalpol on H2O2-induced apoptosis was studied. The apoptosis in H2O2-induced PC12 cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol and sequential activation of caspase-1 and caspase-3 then leading to cleavage of poly-ADP-ribose polymerase (PARP). Catalpol not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation, PARP cleavage, and eventually protected against H2O2-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with catalpol can block H2O2-induced apoptosis by the regulation of Bcl-2 family members, as well as suppression of cytochrome c release and caspase cascade activation.  相似文献   

2.
Lovastatin, an HMG-CoA reductase inhibitor, was found to suppress growth and induce apoptosis in culture human promyelocytic leukaemic cell, HL-60. However, the mechanisms of lovastatin-induced apoptosis are still unclear. In this study, we attempted to elucidate the signal transduction pathway for lovastatin-induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The features of this apoptosis were attenuated by the presence of mevalonate, a metabolic intermediate of cholesterol synthesis. Treatment of lovastatin caused a rapid release of mitochondrial cytochrome c into cytosol and subsequent induction of caspase-3, but not caspase-1 activity. Lovastatin also stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP), and followed by the appearance of caspase activity and DNA fragmentation. Pretreatment with caspase-3 inhibitors, Ac-DEVD-CHO and Z-VAD-FMK, inhibited lovastatin induced caspase-3 activity and DNA fragmentation. Furthermore, we demonstrated that DNase II was involved in the DNA fragmentation induced by lovastatin. These results suggested that the mechanism of lovastatin induced HL-60 cells apoptosis through activation of caspase-3 and DNase II activities.  相似文献   

3.
Yomogin is an active compound isolated from Artemisia princep, a traditional Oriental medicinal herb, which has been shown to inhibit tumor cell proliferation. In this study, we investigated the effects of yomogin on the cytotoxicity, induction of apoptosis, and putative pathways of its actions in human promyelocytic leukemia cells. Yomogin-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, formation of DNA ladders in agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine residues. We observed that yomogin caused activation of caspase-8, caspase-9, and caspase-3. A general caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk) and caspase-3 inhibitor (z-DEVD-fmk), almost completely suppressed the yomogin-induced DNA fragmentation. We further demonstrated that yomogin induced Bid cleavage, mitochondrial translocation of Bax from the cytosol, and cytochrome c release from mitochondria in a caspase-8-dependent manner. Taken together, our data indicate that yomogin is a potent inducer of apoptosis and facilitates its activity via caspase-8 activation, Bid cleavage, Bax translocation to mitochondria, and subsequent release of cytochrome c into the cytoplasm, providing a potential mechanism for the anticancer activity of yomogin.  相似文献   

4.
To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 microM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.  相似文献   

5.
Exposure of human Jurkat T cells to MG132 caused apoptosis along with upregulation of Grp78/BiP and CHOP/GADD153, activation of JNK and p38MAPK, activation of Bak, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of caspase-12, -9, -3, -7, and -8, cleavage of Bid and PARP, and DNA fragmentation. However, these MG132-induced apoptotic events, with the exceptions of upregulation of Grp78/BiP and CHOP/GADD153 and activation of JNK and p38MAPK, were abrogated by overexpression of Bcl-xL. Pretreatment with the pan-caspase inhibitor z-VAD-fmk prevented MG132-induced apoptotic caspase cascade, but allowed upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of JNK and p38MAPK, Δψm loss, and cleavage of procaspase-9 (47kDa) to active form (35kDa). Further analysis using selective caspase inhibitors revealed that caspase-12 activation was required for activation of caspase-9 and -3 to the sufficient level for subsequent activation of caspase-7 and -8. MG132-induced cytotoxicity, apoptotic sub-G(1) peak, Bak activation, and Δψm loss were markedly reduced by p38MAPK inhibitor, but not by JNK inhibitor. MG132-induced apoptotic changes, including upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of caspase-12, p38MAPK and Bak, and mitochondria-dependent activation of caspase cascade were more significant in p56(lck)-stable transfectant JCaM1.6/lck than in p56(lck)-deficient JCaM1.6/vector. The cytotoxicity of MG132 toward p56(lck)-positive Jurkat T cell clone was not affected by the Src-like kinase inhibitor PP2. These results demonstrated that MG132-induced apoptosis was caused by ER stress and subsequent activation of mitochondria-dependent caspase cascade, and that the presence of p56(lck) enhances MG132-induced apoptosis by augmenting ER stress-mediated apoptotic events in Jurkat T cells.  相似文献   

6.
In the present study, we investigated the effect of saucernetin-7 (a biologically active compound isolated from the underground parts of Saururus chinensi) on the induction of apoptosis and the putative pathways of its action in HL-60 human promyelocytic leukemia cells. Saucernetin-7-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, DNA laddering by agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine (PS) residues. z-VAD-fmk (a broad-caspase inhibitor) almost completely suppressed saucernetin-7-induced DNA ladder formation, thereby implicating the caspase cascade in the apoptotic process. We also observed that saucernetin-7 caused the activations of caspase-3, -8 and -9, and that it induced Bid cleavage, the mitochondrial translocation of Bax from the cytosol, and cytochrome c release from mitochondria, but it had no effect on Bcl-2 and Bcl-xL levels. Taken together, the present study demonstrates that saucernetin-7 is a potent inducer of apoptosis and that its activity is facilitated by caspase-8 activation, Bid cleavage, Bax translocation to mitochondria, release of cytochrome c into cytoplasm, and subsequently caspase-3 activation, which offers a potential mechanism for the apoptosis-inducing activity of saucernetin-7.  相似文献   

7.
8.
In the present study we have studied the effect of resveratrol in signal transduction mechanisms leading to apoptosis in 3T3 fibroblasts when exposed to 4-hydroxynonenal (HNE). In order to gain insight into the mechanisms of apoptotic response by HNE, we followed MAP kinase and caspase activation pathways; HNE induced early activation of JNK and p38 proteins but downregulated the basal activity of ERK (1/2). We were also able to demonstrate HNE-induced release of cytochrome c from mitochondria, caspase-9, and caspase-3 activation. Resveratrol effectively prevented HNE-induced JNK and caspase activation, and hence apoptosis. Activation of AP-1 along with increased c-Jun and phospho-c-Jun levels could be inhibited by pretreatment of cells with resveratrol. Moreover, Nrf2 downregulation by HNE could also be blocked by resveratrol. Overexpression of dominant negative c-Jun and JNK1 in 3T3 fibroblasts prevented HNE-induced apoptosis, which indicates a role for JNK-c-Jun/AP-1 pathway. In light of the JNK-dependent induction of c-Jun/AP-1 activation and the protective role of resveratrol, these data may show a critical potential role for JNK in the cellular response against toxic products of lipid peroxidation. In this respect, resveratrol acting through MAP kinase pathways and specifically on JNK could have a role other than acting as an antioxidant-quenching reactive oxygen intermediate.  相似文献   

9.
Aim: To investigate the molecular mechanisms of ZD 1839-induced apoptosis in human leukemic U937 cells. Methods: The inhibition of human leukemic U937 cell growth was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphnyl-2H-tetrazolim bromide (MTT) assays, lactate dehydrogenase (LDH) release, and cell cycle distribution. The expression of anti- and pro-apoptotic proteins was detected by Western blot analysis. Results: This study demonstrated that ZD1839 induced apoptosis in leukemic U937 cells by the downregulation of Bcl-2, caspase activation and subsequent apoptotic features. Cotreatment with ZD 1839 and the caspase- 3 inhibitor z-DEVD-fmk blocked apoptosis, indicating that caspase-3 activation is at least partially responsible for ZD 1839-induced apoptosis. The ectopic expression of Bcl-2 attenuated caspase-3 activation, PARP cleavage, and subsequent indicators of apoptosis, including sub-G1 DNA content and LDH release. These results indicate that the downregulation of Bcl-2 plays a major role in the initiation of ZD1839-induced apoptosis, and that the activation of a caspase cascade is involved in the execution of apoptosis. Furthermore, ZD1839 treatment triggered the activation of p38 mitogen-activated protein kinase (MAPK) and the downregulation of c-Jun-N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and phosphatidyl inositol 3-kinase (PI3K)/Akt. The inhibition of the ERK and PI3K/Akt pathways also significantly increased cellular death. Conclusion: ZD 1839 activated caspase-3 and the inhibited Bcl-2 in human leukemic U937 cells through the downregulation of the ERK and PI3K/Akt pathways.  相似文献   

10.
Exposure of Jurkat T cells to mollugin (15–30 μM), purified from the roots of Rubia cordifolia L., caused cytotoxicity and apoptotic DNA fragmentation along with mitochondrial membrane potential disruption, mitochondrial cytochrome c release, phosphorylation of c-Jun N-terminal kinase (JNK), activation of caspase-12, -9, -7, -3, and -8, cleavage of FLIP and Bid, and PARP degradation, without accompanying necrosis. While these mollugin-induced cytotoxicity and apoptotic events including activation of caspase-8 and mitochondria-dependent activation of caspase cascade were completely prevented by overexpression of Bcl-xL, the activation of JNK and caspase-12 was prevented to much lesser extent. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk), the caspase-9 inhibitor (z-LEHD-fmk), the caspase-3 inhibitor (z-DEVD-fmk) or the caspase-12 inhibitor (z-ATAD-fmk) at the minimal concentration to prevent mollugin-induced apoptosis appeared to completely block the activation of caspase-7 and -8, and PARP degradation, but failed to block the activation of caspase-9 and -3 with allowing a slight enhancement in the level of JNK phosphorylation. Both FADD-positive wild-type Jurkat clone A3 and FADD-deficient Jurkat clone I2.1 exhibited a similar susceptibility to the cytotoxicity of mollugin, excluding involvement of Fas/FasL system in triggering mollugin-induced apoptosis. Normal peripheral T cells were more refractory to the cytotoxicity of mollugin than were Jurkat T cells. These results demonstrated that mollugin-induced cytotoxicity in Jurkat T cells was mainly attributable to apoptosis provoked via endoplasmic reticulum (ER) stress-mediated activation of JNK and caspase-12, and subsequent mitochondria-dependent activation of caspase-9 and -3, leading to activation of caspase-7 and -8, which could be regulated by Bcl-xL.  相似文献   

11.
AIM: To investigate the effect of curcumin on tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in rat cortical neurons and to explore the possible mechanism. METHODS: Primary cultured rat cortical neurons wereperformed in vitro and cell viability was measured by MTT assay. DNA fragmentation was used to evaluate cellapoptosis. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (Aψm) was determined by flow cytometric assay. Cellular glutathione (GSH) content was measured by spectrophotometer.‘ Bcl-2family proteins, cytochrome c, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) were detected byWestern blot. RESULTS: Exposure of tBHP 100 μmol/L to neurons for 60 rain resulted in △ψm loss and cyto-chrome c release from mitochondria and subsequent activation of caspase-3 and PARP cleavation, and cell apoptosis.After removal of tBHP and then further treatment with curcumin (2.5-20 μmol/L) for 18 h, curcumin abrogated △ψm loss and cytochrome c release, blocked activation of caspase 3, and altered the expression of Bcl-2 family.Further curcumin treatment also prevented cellular GSH and decreased intracellular ROS generation markedly.Curcumin eventually attenuated tBHP-induced apoptosis in cortical neurons. CONCLUSION: Curcumin mayattenuate oxidative damages in cortical neurons by reducing intracellular production of ROS and protecting mito-chondria from oxidative damage.  相似文献   

12.
Daunorubicin (DNR) induces apoptosis in the human myeloid leukemia cells by activation of neutral sphingomyelinease and ceramide production. In the present study, we determined the effect of the antiapoptosis protein Bcl-2 on caspase-3 activation, phospholipase C-gamma 1 (PLC-gamma 1) degradation and cytochrome c release during the DNR-induced apoptosis. Treatment with 3 microM DNR for 12 hr produced morphological features of apoptosis and DNA fragmentation in U937 cells, which was associated with caspase-3 activation and PLC-gamma 1 degradation. Induction of apoptosis was also accompanied by release of cytochrome c, down-regulation of X-linked inhibitor of apoptosis protein (XIAP), and inactivation of Akt, which was blocked by the pan-caspase inhibitor z-VAD-fmk. DNR-induced caspase-3 activation, PLC-gamma 1 degradation and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells. Ectopic expression of Bcl-2 appeared to inhibit DNR-induced apoptosis by interfering with inhibition of XIAP and Akt degradation.  相似文献   

13.
Mechanism of ricin-induced apoptosis in human cervical cancer cells   总被引:4,自引:0,他引:4  
The mechanism of ricin-induced apoptosis in human cervical cancer cell line HeLa was studied. The present study demonstrated that ricin induces apoptosis of human cervical cancer cells (HeLa) in a time dependent manner with an IC(50) for cell viability of 1 microg/ml. Ricin treatment resulted in a time dependent increase in LDH leakage, DNA fragmentation, percent apoptotic cells, generation of reactive oxygen species and depletion of intracellular glutathione levels. DNA agarose gel electrophoresis showed typical oligonucleosomal length DNA fragmentation. Additionally, DNA diffusion assay was performed to confirm DNA damage and apoptosis. Ricin activated caspase-3 as evidenced by both proteolytic cleavage of procaspase-3 into 20 and 18 kDa subunits, and increased protease activity. Caspase activity was maximum at 4h and led to the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP), resulting in the 85 kDa cleavage product. Ricin-induced caspase-3 activation also resulted in cleavage of DNA fragmentation factor-45 (DFF45/ICAD) and DFF40 or caspase-activated DNase in HeLa cells. Activation of caspase-3, cleavage of PARP and DNA fragmentation was blocked by pre-treatment with caspase-3 specific inhibitor Ac-DEVD-CHO (100 microM) and broad-spectrum caspase inhibitor Z-VAD-FMK (40 microM). Ricin-induced DNA fragmentation was inhibited by pre-treatment with PARP inhibitors 3-aminobenzamide (100 microM) and DPQ (10 microM). Our results indicate that ricin-induced cell death was mediated by generation of reactive oxygen species and subsequent activation of caspase-3 cascade followed by down stream events leading to apoptotic mode of cell death.  相似文献   

14.
Trimidox (3,4,5-trihydroxybenzamidoxime) has been shown to reduce the activity of ribonucleotide reductase accompanied by growth inhibition and the differentiation of mammalian cells. Here we examine the induction of apoptosis by trimidox in several human leukaemia cell lines, focusing on the release of cytochrome c and the activation of caspase proteases in the human B cell line NALM-6. Induction of apoptosis by trimidox (300 microM) was detected in NALM-6, HL-60 (premyelocytic leukaemia cells), MOLT-4 (an acute lymphoblastic leukaemia cells), Jurkat (a T-cell leukaemia cells), U937 (expressing many monocyte-like characteristics), and K562 (erythroleukaemia). NALM-6 was most affected by trimidox among leukaemia cells; therefore, we employed NALM-6 cells in the subsequent experiments. The cells showed a time-dependent increase in DNA damage after trimidox (250 microM) treatment. A significant increase in the amount of cytochrome c release was detected after treatment with trimidox. Bcl-2 and Bax protein expressions were not changed by trimidox. Caspase-3 and -9 were activated by incubation with trimidox, whereas caspase-8 was not. Furthermore, trimidox-induced apoptosis was prevented by a broad-spectrum caspase inhibitor, a caspase-3, and a caspase-9 inhibitor, but not by a caspase-8 inhibitor. Inhibition of c-Jun NH2-terminal kinase (JNK) by SP600125 appreciably protected cells from trimidox-induced apoptosis, but no effect inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580. In contrast, extracellular signal-regulated kinase (ERK) inhibitors U0126 and PD98059 strongly potentiated the apoptotic effect of trimidox. This report shows that the induction of apoptosis by trimidox occurs through a cytochrome c-dependent pathway, which sequentially activates caspase-3 and caspase-9.  相似文献   

15.
A pharmacological dose (2.5-10 μM) of 17α-estradiol (17α-E2) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17α-E2 was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G2/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56 phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17α-E2-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G2/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17α-E2-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G1/S boundary, 17α-E2 failed to induce the G2/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17α-E2 toward Jurkat T cells is attributable to apoptosis mainly induced in G2/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.  相似文献   

16.
Antileukemic interactions between the nucleoside analog 1-beta-D-arabinofuranosylcytosine (ara-C) and the kinase inhibitor 7-hydroxystaurosporine (UCN-01) have been examined in relation to Bcl-2 expression/phosphorylation, mitochondrial damage, caspase activation, and loss of clonogenic potential. Subsequent exposure of ara-C-pretreated U937 cells (1 microM; 6 hr) to UCN-01 (300 nM; 24 hr) resulted in marked potentiation of pro-caspase-3 and -9 cleavage/activation, poly(ADP-ribose)polymerase degradation, diminished mitochondrial membrane potential (Deltapsi(m)), enhanced cytochrome c release, reduction in the S-phase fraction, and induction of classic apoptotic morphologic features. Enforced expression of full-length Bcl-2 significantly protected cells (at 24 hr) from ara-C/UCN-01-induced caspase activation and apoptosis, but was ineffective in preventing loss of Deltapsi(m) and cytochrome c release. Ectopic expression of a Bcl-2 N-terminal phosphorylation loop-deleted protein (Bcl-2Delta(32-80)) was more potent than its full-length counterpart in blocking drug-induced loss of Deltapsi(m, ) caspase activation, and apoptotic morphology, but not cytochrome c release. Examination of cells at later intervals revealed that ectopic expression of Bcl-2 or Bcl-2Delta(32-80) could only delay, but not prevent, mitochondrial damage, caspase activation, and cell death induced by ara-C/UCN-01 treatment. Despite their initial ability to inhibit apoptosis, neither full-length nor truncated Bcl-2 protein restored clonogenic potential to drug-treated cells. These findings indicate that subsequent exposure of ara-C-pretreated human leukemia cells to UCN-01 potently triggers mitochondrial damage and apoptosis, and that these events are postponed but not prevented by ectopic expression of Bcl-2 or its phosphorylation loop-deleted counterpart.  相似文献   

17.
The oleanane triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) is a multifunctional molecule that induces monocytic differentiation of human myeloid leukemia cells and inhibits proliferation of diverse human tumor cell lines. The present studies on human osteosarcoma cells demonstrate that CDDO induces mitochondrial cytochrome c release, caspase-3 activation, and internucleosomal DNA fragmentation. Overexpression of the caspase-8 inhibitor CrmA blocked CDDO-induced cytochrome c release and apoptosis. By contrast, overexpression of the antiapoptotic Bcl-x(L) protein blocked CDDO-induced cytochrome c release, but only partly inhibited caspase-3 activation and apoptosis. In concert with these findings, we demonstrate that CDDO: 1) activates caspase-8 and thereby caspase-3 by a cytochrome c-independent mechanism and 2) induces cytochrome c release by caspase-8-dependent cleavage of Bid. The results also demonstrate that treatment of osteosarcoma cells with CDDO induces differentiation, as assessed by alkaline phosphatase activity and osteocalcin production, and that this response is abrogated in cells that overexpress CrmA. These findings demonstrate that CDDO induces both osteoblastic differentiation and apoptosis by caspase-8-dependent mechanisms.  相似文献   

18.
Exposure of human Jurkat T cells to MG132 caused apoptosis along with upregulation of Grp78/BiP and CHOP/GADD153, activation of JNK and p38MAPK, activation of Bak, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of caspase-12, -9, -3, -7, and -8, cleavage of Bid and PARP, and DNA fragmentation. However, these MG132-induced apoptotic events, with the exceptions of upregulation of Grp78/BiP and CHOP/GADD153 and activation of JNK and p38MAPK, were abrogated by overexpression of Bcl-xL. Pretreatment with the pan-caspase inhibitor z-VAD-fmk prevented MG132-induced apoptotic caspase cascade, but allowed upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of JNK and p38MAPK, Δψm loss, and cleavage of procaspase-9 (47 kDa) to active form (35 kDa). Further analysis using selective caspase inhibitors revealed that caspase-12 activation was required for activation of caspase-9 and -3 to the sufficient level for subsequent activation of caspase-7 and -8. MG132-induced cytotoxicity, apoptotic sub-G1 peak, Bak activation, and Δψm loss were markedly reduced by p38MAPK inhibitor, but not by JNK inhibitor. MG132-induced apoptotic changes, including upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of caspase-12, p38MAPK and Bak, and mitochondria-dependent activation of caspase cascade were more significant in p56lck-stable transfectant JCaM1.6/lck than in p56lck-deficient JCaM1.6/vector. The cytotoxicity of MG132 toward p56lck-positive Jurkat T cell clone was not affected by the Src-like kinase inhibitor PP2. These results demonstrated that MG132-induced apoptosis was caused by ER stress and subsequent activation of mitochondria-dependent caspase cascade, and that the presence of p56lck enhances MG132-induced apoptosis by augmenting ER stress-mediated apoptotic events in Jurkat T cells.  相似文献   

19.
Chronic inorganic manganese exposure causes selective toxicity to the nigrostriatal dopaminergic system, resulting in a Parkinsonian-like neurological condition known as Manganism. Apoptosis has been shown to occur in manganese-induced neurotoxicity; however, the down-stream cellular target of caspase-3 that contributes to DNA fragmentation is not established. Herein, we demonstrate that proteolytic activation of protein kinase Cdelta (PKCdelta) by caspase-3 plays a critical role in manganese-induced apoptotic cell death. Treatment of PC12 cells with manganese caused a sequential activation of mitochondrial-dependent pro-apoptotic events, including mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, and DNA fragmentation. Overexpression of Bcl-2 in PC12 cells remarkably attenuated each of these events, indicating that the mitochondrial-dependent apoptotic cascade contributes to manganese-induced apoptosis. Furthermore, PKCdelta was proteolytically cleaved by caspase-3, causing a persistent activation of the kinase. The manganese-induced proteolytic cleavage of PKCdelta was significantly blocked by Bcl-2-overexpression. Administration of active recombinant PKCdelta induced DNA fragmentation in PC12 cells, suggesting a pro-apoptotic role of PKCdelta. Furthermore, expression of catalytically inactive mutant PKCdelta(K376R) via a lentiviral gene delivery system effectively attenuated manganese-induced apoptosis. Together, these results suggest that the mitochondrial-dependent caspase cascade mediates apoptosis via proteolytic activation of PKCdelta in manganese-induced neurotoxicity.  相似文献   

20.
We previously demonstrated that beta-D-xylopyranosyl-(1-->3)-beta-D-glucuronopyranosyl echinocystic acid (codonoposide 1c), a biologically active compound isolated from the roots of Codonopsis lanceolata, is cytotoxic to cancer cells. In the present study, we investigated the effects of codonoposide 1c on the induction of apoptosis, and its putative action pathway in HL-60 human promyelocytic leukemia cells. Codonoposide 1c-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, formation of DNA ladders by agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine (PS) residues. We observed that codonoposide 1c caused activation of caspase-8, caspase-9, and caspase-3. A broad caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk), and caspase-3 inhibitor (z-DEVD-fmk) almost completely suppressed codonoposide 1c-induced DNA fragmentation. We further found that codonoposide 1c induces mitochondrial translocation of Bid from cytosol, reduction of cytosolic Bax, and cytochrome c release from mitochondria. Interestingly, codonoposide 1c also triggered the mitochondrial release of Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point) into cytosol, and a reduction in X-linked inhibitor of apoptosis protein (XIAP). Taken together, our data indicate that codonoposide 1c is a potent inducer of apoptosis and facilates its activity via Bid cleavage and translocation to mitochondria, Bax reduction in cytosol, release of cytochrome c and Smac/DIABLO into the cytosol, and subsequently caspase activation, providing a potential mechanism for the cytotoxic activity of codonoposide 1c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号