首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
We explored the potential of Smac mimetics, which antagonize Inhibitor of Apoptosis (IAP) proteins, for chemosensitization of neuroblastoma (NB). Here, we report that Smac mimetics, e.g. BV6, prime NB cells for chemotherapeutics including the topoisomerase II inhibitor doxorubicin (DOX) and vinca alkaloids such as Vincristine (VCR), Vinblastine (VBL) and Vinorelbine (VNR). Additionally, BV6 acts in concert with DOX or VCR to suppress long-term clonogenic growth. While BV6 causes rapid downregulation of cellular IAP (cIAP)1 protein and nuclear factor-kappaB (NF-κB) activation, DOX/BV6- or VCR/BV6-induced apoptosis occurs independently of NF-κB or TNFα signaling, since overexpression of dominant-negative IκBα superrepressor or the Tumor Necrosis Factor (TNF)α-blocking antibody Enbrel fail to block cell death. Mechanistic studies reveal that Receptor-interacting protein (RIP)1 is required for DOX/BV6-, but not for VCR/BV6-induced apoptosis, since transient or stable knockdown of RIP1 or the pharmacological RIP1 inhibitor necrostatin-1 significantly reduce apoptosis. By comparison, VCR/BV6-mediated apoptosis critically depends on the mitochondrial pathway. VCR/BV6 cotreatment causes phosphorylation of BCL-2 during mitotic arrest, enhanced activation of BAX and BAK and loss of mitochondrial membrane potential (MMP). Additionally, overexpression of BCL-2 profoundly suppresses VCR/BV6-induced apoptosis. Thus, BV6 sensitizes NB cells to chemotherapy-induced apoptosis via distinct initial signaling mechanisms depending on the chemotherapeutic drug. These findings provide novel mechanistic insights into Smac mimetic-mediated chemosensitization of NB.  相似文献   

2.
X-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K d > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.  相似文献   

3.
The prognosis for patients with acute myeloid leukaemia (AML) is still poor, thus calling for novel treatment strategies. Here, we report that the small-molecule Smac mimetic BV6, which antagonizes Inhibitor of Apoptosis (IAP) proteins, acts in concert with cytarabine (AraC) to trigger cell death in AML cells in a highly synergistic manner (combination index 0.02–0.27). Similarly, BV6 cooperates with AraC to trigger cell death in primary AML samples, underscoring the clinical relevance of our findings. Molecular studies reveal that the TNFα-blocking antibody Enbrel significantly reduces BV6/AraC-induced cell death, demonstrating that an autocrine/paracrine TNFα loop mediates cell death. Furthermore, BV6 and AraC synergize to induce loss of mitochondrial membrane potential, caspase activation and DNA fragmentation, consistent with apoptotic cell death. Nevertheless, the caspase inhibitor zVAD.fmk fails to protect against BV6/AraC-induced cell death. Intriguingly, this cell death upon caspase inhibition is significantly reduced by pharmacological inhibition of two key components of necroptosis signaling, i.e. by RIP1 kinase inhibitor Necrostatin-1 or MLKL inhibitor NSA. Thus, BV6 sensitizes AML cells to AraC-induced cell death and overcomes apoptosis resistance by triggering necroptosis as alternative form of cell death. These findings have important implications for Smac mimetic-based strategies to bypass apoptosis resistance of AML.  相似文献   

4.
5.
6.
Carfilzomib (CFZ) is a second generation proteasome inhibitor approved for the treatment of patients with multiple myeloma. It induces apoptosis in human cancer cells; but the underlying mechanisms remain undefined. In the present study, we show that CFZ decreases the survival of several human cancer cell lines and induces apoptosis. Induction of apoptosis by CFZ occurs, at least in part, due to activation of the extrinsic apoptotic pathway, since FADD deficiency protected cancer cells from undergoing apoptosis. CFZ increased total and cell surface levels of DR5 in different cancer cell lines; accordingly it enhanced TRAIL-induced apoptosis. DR5 deficiency protected cancer cells from induction of apoptosis by CFZ either alone or in combination with TRAIL. These data together convincingly demonstrate that DR5 upregulation is a critical mechanism accounting for CFZ-induced apoptosis and enhancement of TRAIL-induced apoptosis. CFZ inhibited the degradation of DR5, suggesting that DR5 stabilization contributes to CFZ-induced DR5 upregulation. In summary, the present study highlights the important role of DR5 upregulation in CFZ-induced apoptosis and enhancement of TRAIL-induced apoptosis in human cancer cells.  相似文献   

7.
Inhibitor of apoptosis (IAP) proteins are highly expressed in chronic lymphocytic leukemia (CLL) cells and contribute to evasion of cell death and poor therapeutic response. Here, we report that Smac mimetic BV6 dose‐dependently induces cell death in 28 of 51 (54%) investigated CLL samples, while B‐cells from healthy donors are largely unaffected. Importantly, BV6 is significantly more effective in prognostic unfavorable cases with, e.g., non‐mutated VH status and TP53 mutation than samples with unknown or favorable prognosis. The majority of cases with 17p deletion (10/12) and Fludarabine refractory cases respond to BV6, indicating that BV6 acts independently of p53. BV6 also triggers cell death under survival conditions mimicking the microenvironment, e.g., by adding CD40 ligand or conditioned medium. Gene expression profiling identifies cell death, NF‐κB and redox signaling among the top pathways regulated by BV6 not only in CLL but also in core‐binding factor (CBF) acute myeloid leukemia (AML). Consistently, BV6 stimulates production of reactive oxygen species (ROS), which are contributing to BV6‐induced cell death, since antioxidants reduce cell death. While BV6 causes degradation of cellular inhibitor of apoptosis (cIAP)1 and cIAP2 and nuclear factor‐kappaB (NF‐κB) pathway activation in primary CLL samples, BV6 induces cell death independently of caspase activity, receptor‐interacting protein (RIP)1 activity or tumor necrosis factor (TNF)α, as zVAD.fmk, necrostatin‐1 or TNFα‐blocking antibody Enbrel fail to inhibit cell death. Together, these novel insights into BV6‐regulated cell death in CLL have important implications for developing new therapeutic strategies to overcome cell death resistance especially in poor prognostic CLL subgroups.  相似文献   

8.
Y Sun  A Ottosson  S Pervaiz  B Fadeel 《Leukemia》2007,21(5):1035-1043
Second mitochondrial activator of caspase (Smac)-derived peptides have previously been shown to facilitate apoptosis of various types of cancer cells. However, it remains unclear whether the effects of such Smac agonists are dependent on apoptotic protease-activating factor-1 (Apaf-1), a key component of the apoptosome. Here, we explored the role of Apaf-1 through overexpression of this protein in the B-lymphoma cell line Raji that is defective for cytosolic Apaf-1 expression. Enforced expression of Apaf-1 rendered Raji cells sensitive to staurosporine as well as to the proteasome inhibitor, lactacystin. Importantly, co-treatment with Smac peptides resulted in a threefold higher degree of apoptosis in Apaf-1-expressing Raji cells, but not in mock-transfected cells. Smac peptides also potentiated apoptosis of the DG-75 cell line following liberation of endogenous Apaf-1 from the plasma membrane, but were ineffective when added alone. Furthermore, we observed high levels of expression in several B-lymphoma cell lines of cellular inhibitor of apoptosis protein-2 (cIAP2), and immunodepletion of cIAP2 (a target of Smac) was found to sensitize Apaf-1-overexpressing Raji cells to cytochrome c-dependent caspase activation. Collectively, these results demonstrate the importance of Apaf-1 in Smac-mediated potentiation of apoptosis of B-lymphoma-derived cells.  相似文献   

9.
PES (2-phenylethynesulfonamide) was initially identified as an inhibitor of p53 translocation to mitochondria and named Pifithrin-µ. Further studies showed that PES selectively killed tumour cells and was thus a promising anticancer agent. PES-induced cell death was characterised by a non-apoptotic, autophagosome-rich phenotype. We observed this phenotype via electron microscopy in wild type (wt) and double Bax-/- Bak-/- (DKO) mouse embryonic fibroblasts (MEFs) treated with PES. We excluded the involvement of effector caspases, BAX and BAK, in causing PES-triggered cell death. Therefore, apoptosis was ruled out as the lethal mode of action of PES. Surprisingly, MEFs containing BAX were significantly protected from PES treatments. BAX overexpression in Bax-/- MEFs confirmed this pro-survival effect. Moreover, this protective effect required the ability of BAX to localise to mitochondrial membranes. Conversely, mitochondrial fusion induced by treatment with Mdivi-1 conferred increased resistance to MEFs subjected to PES treatment. The involvement of BAX in the regulation of mitochondrial dynamics has been reported. We propose the promotion of mitochondrial fusion by BAX to be the pro-survival function attributed to BAX.  相似文献   

10.
Defects in apoptosis contribute to treatment resistance and poor outcome of pancreatic cancer, calling for novel therapeutic strategies. Here, we provide the first evidence that nuclear factor (NF) κB is required for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. The Smac mimetic BV6 cooperates with gemcitabine to reduce cell viability and to induce apoptosis. In addition, BV6 significantly enhances the cytotoxicity of several anticancer drugs against pancreatic carcinoma cells, including doxorubicin, cisplatin, and 5-fluorouracil. Molecular studies reveal that BV6 stimulates NF-κB activation, which is further increased in the presence of gemcitabine. Importantly, inhibition of NF-κB by overexpression of the dominant-negative IκBα superrepressor significantly decreases BV6- and gemcitabine-induced apoptosis, demonstrating that NF-κB exerts a proapoptotic function in this model of apoptosis. In support of this notion, inhibition of tumor necrosis factor α (TNFα) by the TNFα blocking antibody Enbrel reduces BV6- and gemcitabine-induced activation of caspase 8 and 3, loss of mitochondrial membrane potential, and apoptosis. By demonstrating that BV6 and gemcitabine trigger a NF-κB-dependent, TNFα-mediated loop to activate apoptosis signaling pathways and caspase-dependent apoptotic cell death, our findings have important implications for the development of Smac mimetic-based combination protocols in the treatment of pancreatic cancer.  相似文献   

11.
We previously reported that aberrant HH pathway activation confers a poor prognosis in rhabdomyosarcoma (RMS). Searching for new treatment strategies we therefore targeted HH signaling. Here, we identify a novel synthetic lethality of concomitant inhibition of HH and PI3K/AKT/mTOR pathways in RMS by GLI1/2 inhibitor GANT61 and PI3K/mTOR inhibitor PI103. Synergistic drug interaction is confirmed by calculation of combination index (CI < 0.2). Similarly, genetic silencing of GLI1/2 significantly increases PI103-induced apoptosis. GANT61 and PI103 also synergize to induce apoptosis in cultured primary RMS cells emphasizing the clinical relevance of this combination. Importantly, GANT61/PI103 cotreatment suppresses clonogenic survival, three-dimensional sphere formation and tumor growth in an in vivo model of RMS. Mechanistic studies reveal that GANT61 and PI103 cooperate to trigger caspase-dependent apoptosis via the mitochondrial pathway, as demonstrated by several lines of evidence. First, GANT61/PI103 cotreatment increases mRNA and protein expression of NOXA and BMF, which is required for apoptosis, since knockdown of NOXA or BMF significantly reduces GANT61/PI103-induced apoptosis. Second, GANT61/PI103 cotreatment triggers BAK/BAX activation, which contributes to GANT61/PI103-mediated apoptosis, since knockdown of BAK provides protection. Third, ectopic expression of BCL-2 or non-degradable phospho-mutant MCL-1 significantly rescue GANT61/PI103-triggered apoptosis. Fourth, GANT61/PI103 cotreatment initiate activation of the caspase cascade via apoptosome-mediated cleavage of the initiator caspase-9, as indicated by changes in the cleavage pattern of caspases (e.g. accumulation of the caspase-9 p35 cleavage fragment) upon addition of the caspase inhibitor zVAD.fmk. Thus, combined GLI1/2 and PI3K/mTOR inhibition represents a promising novel approach for synergistic apoptosis induction and tumor growth reduction with implications for new treatment strategies in RMS.  相似文献   

12.
Inhibitors of apoptosis proteins (IAP) are key regulators of apoptosis and are inhibited by the second mitocondrial activator of caspases (SMAC). Previously, a small subset of TNF-α-expressing non-small cell lung cancers (NSCLC) was found to be sensitive to SMAC mimetics alone. In this study, we determined if a SMAC mimetic (JP1201) could sensitize nonresponsive NSCLC cell lines to standard chemotherapy. We found that JP1201 sensitized NSCLCs to doxorubicin, erlotinib, gemcitabine, paclitaxel, vinorelbine, and the combination of carboplatin with paclitaxel in a synergistic manner at clinically achievable drug concentrations. Sensitization did not occur with platinum alone. Furthermore, sensitization was specific for tumor compared with normal lung epithelial cells, increased in NSCLCs harvested after chemotherapy treatment, and did not induce TNF-α secretion. Sensitization also was enhanced in vivo with increased tumor inhibition and increased survival of mice carrying xenografts. These effects were accompanied by caspase 3, 4, and 9 activation, indicating that both mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by the combination of vinorelbine and JP1201. Chemotherapies that induce cell death through the mitochondrial pathway required only inhibition of X-linked IAP (XIAP) for sensitization, whereas chemotherapies that induce cell death through multiple apoptotic pathways required inhibition of cIAP1, cIAP2, and XIAP. Therefore, the data suggest that IAP-targeted therapy using a SMAC mimetic provides a new therapeutic strategy for synergistic sensitization of NSCLCs to standard chemotherapy agents, which seems to occur independently of TNF-α secretion.  相似文献   

13.
Resistance to current treatment regimens, such as radiation therapy, remains a major concern in oncology and may be caused by defects in apoptosis programs. Because inhibitor of apoptosis proteins (IAPs), which are expressed at high levels in many tumors, block apoptosis at the core of the apoptotic machinery by inhibiting caspases, therapeutic modulation of IAPs could target a key control point in resistance. Here, we report for the first time that full-length or mature second mitochondria-derived activator of caspase (Smac), an inhibitor of IAPs, significantly enhanced gamma-irradiation-induced apoptosis and reduced clonogenic survival in neuroblastoma, glioblastoma, or pancreatic carcinoma cells. Notably, Smac had no effect on DNA damage/DNA repair, activation of nuclear factor-kappaB, up-regulation of p53 and p21 proteins, or cell cycle arrest following gamma-irradiation, indicating that Smac did not alter the initial damage and/or cellular stress response. Smac enhanced activation of caspase-2, caspase-3, caspase-8, and caspase-9, loss of mitochondrial membrane potential, and cytochrome c release on gamma-irradiation. Inhibition of caspases also blocked gamma-irradiation-induced mitochondrial perturbations, indicating that Smac facilitated caspase activation, which in turn triggered a mitochondrial amplification loop. Interestingly, mitochondrial perturbations were completely blocked by the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone or the relatively selective caspase-2 inhibitor N-benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-fluoromethylketone, whereas caspase-8 or caspase-3 inhibitors only inhibited the increased drop of mitochondrial membrane potential provided by Smac, suggesting that caspase-2 was acting upstream of mitochondria after gamma-irradiation. In conclusion, our findings provide evidence that targeting IAPs (e.g., by Smac agonists) is a promising strategy to enhance radiosensitivity in human cancers.  相似文献   

14.
The treatment of melanoma has been markedly improved by the introduction of targeted therapies and checkpoint blockade immunotherapy. Unfortunately, resistance to these therapies remains a limitation. Novel anticancer therapeutics targeting the MCL1 anti-apoptotic protein have shown impressive responses in haematological cancers but are yet to be evaluated in melanoma. To assess the sensitivity of melanoma to new MCL1 inhibitors, we measured the response of 51 melanoma cell lines to the novel MCL1 inhibitor, S63845. Additionally, we assessed combination of this drug with inhibitors of the bromodomain and extra-terminal (BET) protein family of epigenetic readers, which we postulated would assist MCL1 inhibition by downregulating anti-apoptotic targets regulated by NF-kB such as BCLXL, BCL2A1 and XIAP, and by upregulating pro-apoptotic proteins including BIM and NOXA. Only 14% of melanoma cell lines showed sensitivity to S63845, however, combination of S63845 and I-BET151 induced highly synergistic apoptotic cell death in all melanoma lines tested and in an in vivo xenograft model. Cell death was dependent on caspases and BAX/BAK. Although the combination of drugs increased the BH3-only protein, BIM, and downregulated anti-apoptotic proteins such as BCL2A1, the importance of these proteins in inducing cell death varied between cell lines. ABT-199 or ABT-263 inhibitors against BCL2 or BCL2 and BCLXL, respectively, induced further cell death when combined with S63845 and I-BET151. The combination of MCL1 and BET inhibition appears to be a promising therapeutic approach for metastatic melanoma, and presents opportunities to add further BCL2 family inhibitors to overcome treatment resistance.  相似文献   

15.
The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-x(L). Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-x(L) during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-x(L)-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-x(L) that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment.  相似文献   

16.
Recently, we demonstrated the association of sperm-associated antigen 9 (SPAG9) expression with breast cancer. Among breast cancer, 15 % of the cancers are diagnosed as triple-negative breast cancers (TNBC) based on hormone receptor status and represent an important clinical challenge because of lack of effective available targeted therapy. Therefore, in the present investigation, plasmid-based small hairpin (small hairpin RNA (shRNA)) approach was used to ablate SPAG9 in aggressive breast cancer cell line model (MDA-MB-231) in order to understand the role of SPAG9 at molecular level in apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT) signaling. Our data in MDA-MB-231 cells showed that ablation of SPAG9 resulted in membrane blebbing, increased mitochondrial membrane potential, DNA fragmentation, phosphatidyl serine surface expression, and caspase activation. SPAG9 depletion also resulted in cell cycle arrest in G0–G1 phase and induced cellular senescence. In addition, in in vitro and in vivo xenograft studies, ablation of SPAG9 resulted in upregulation of p21 along with pro-apoptotic molecules such as BAK, BAX, BIM, BID, NOXA, AIF, Cyto-C, PARP1, APAF1, Caspase 3, and Caspase 9 and epithelial marker, E-cadherin. Also, SPAG9-depleted cells showed downregulation of cyclin B1, cyclin D1, cyclin E, CDK1, CDK4, CDK6, BCL2, Bcl-xL, XIAP, cIAP2, MCL1, GRP78, SLUG, SNAIL, TWIST, vimentin, N-cadherin, MMP2, MMP3, MMP9, SMA, and β-catenin. Collectively, our data suggests that SPAG9 promotes tumor growth by inhibiting apoptosis, altering cell cycle, and enhancing EMT signaling in in vitro cells and in vivo mouse model. Hence, SPAG9 may be a potential novel target for therapeutic use in TNBC treatment.  相似文献   

17.
Cephalostatin 1 is a bis-steroidal marine natural product with a unique cytotoxicity profile in the in vitro screen system of the National Cancer Institute, suggesting that it may affect novel molecular target(s). Here we show that cephalostatin 1 induces a novel pathway of receptor-independent apoptosis that selectively uses Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point) as a mitochondrial signaling molecule. At nanomolar concentrations, cephalostatin 1 triggers dose- and time-dependent DNA fragmentation in leukemia Jurkat T cells. Apoptosis was found to be dependent on caspase activity because the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone blocks cephalostatin 1-mediated DNA fragmentation. The CD95 death receptor as well as other caspase-8-requiring death receptors were not involved because Jurkat T cells lacking the CD95 receptor or caspase-8 and control cells responded equally to cephalostatin 1. Although cephalostatin 1 affects mitochondria by dissipating the mitochondrial membrane potential, neither cytochrome c nor apoptosis-inducing factor is released, as shown by Western blot analysis. Interestingly, cephalostatin 1 selectively triggers the mitochondrial release of the inhibitor of apoptosis antagonist Smac/DIABLO. Overexpression of the antiapoptotic protein Bcl-x(L) delayed both Smac/DIABLO release and onset of apoptosis, suggesting that Smac/DIABLO is required for cephalostatin 1-induced apoptosis. This new mitochondrial pathway is accompanied by marked structural changes of mitochondria as shown by transmission electron microscopy.  相似文献   

18.
Since polo‐like kinase 1 (PLK1) is highly expressed in Ewing sarcoma (ES), we evaluated the therapeutic potential of the PLK1 inhibitor BI 6727. Here, we identify a synergistic induction of apoptosis by BI 6727 and several microtubule‐interfering drugs in ES cells, including vincristine (VCR), vinblastine (VBL), vinorelbine (VNR) and eribulin. Synergistic drug interaction is confirmed by calculation of combination index (CI). Also, BI 6727 and VCR act in concert to reduce long‐term clonogenic survival. Mechanistically, BI 6727/VCR co‐treatment cooperates to trigger mitotic arrest, phosphorylation of BCL‐2 and BCL‐XL and downregulation of MCL‐1. This inactivation of anti‐apoptotic BCL‐2 family proteins in turn promotes activation of BAX and BAK, activation of caspase‐9 and ‐3 and caspase‐dependent apoptosis. Overexpression of BCL‐2 or simultaneous knockdown of BAX and BAK significantly rescue BI 6727/VCR‐induced apoptosis, indicating that engagement of the mitochondrial pathway is critical for BI 6727/VCR‐mediated apoptosis. The clinical relevance of PLK1 inhibitor‐based combination therapies is underscored by the fact that BI 6727 is currently evaluated in phase I clinical trials in childhood cancer. In conclusion, PLK1 inhibitors such as BI 6727 may provide a new strategy to chemosensitize ES.  相似文献   

19.
The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and overexpression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor-induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain/MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Overexpression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of MCL-1 sequestering function by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death.Key words: MCL-1, Lapatinib, Obatoclax, Flavopiridol, Roscovitine, CDK inhibitor, RTK inhibitor, BCL-2 inhibitor, BAK  相似文献   

20.
Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation) in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号