首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This review highlights some important advances that have taken place in cannabinoid research over the last four years. It focuses on novel ligands that are of interest either as experimental tools or as lead compounds for therapeutic agents and possible clinical applications for some of these ligands. The molecular targets for these compounds are various components of the system of endogenous cannabinoids (endocannabinoids) and receptors that together constitute the 'endocannabinoid system'. These are CB1 cannabinoid receptors that are present mainly on central and peripheral neurones, CB2 cannabinoid receptors that are expressed predominantly by immune cells, the biochemical mechanisms responsible for the tissue uptake or metabolism of endocannabinoids and vanilloid receptors. Other cannabinoid receptor types may also exist. Recently developed ligands include potent and selective agonists for CB1 and CB2 receptors, a potent CB2-selective antagonist/inverse agonist and inhibitors of endocannabinoid uptake or metabolism. Future research should be directed at characterising the endocannabinoid system more completely and at obtaining more conclusive clinical data about the possible beneficial effects of cannabinoids as well as their adverse effects. There is also a need for improved cannabinoid formulations/modes of administration in the clinic and advances in this area should be facilitated by the recent development of a potent water-soluble CB1/CB2 receptor agonist. A growing number of strategies for separating sought-after therapeutic effects of cannabinoid receptor agonists from the unwanted consequences of CB1 receptor activation are now emerging and these are discussed at the end of this review.  相似文献   

2.
This review highlights some important advances that have taken place in cannabinoid research over the last four years. It focuses on novel ligands that are of interest either as experimental tools or as lead compounds for therapeutic agents and possible clinical applications for some of these ligands. The molecular targets for these compounds are various components of the system of endogenous cannabinoids (endocannabinoids) and receptors that together constitute the 'endocannabinoid system'. These are CB(1) cannabinoid receptors that are present mainly on central and peripheral neurones, CB(2) cannabinoid receptors that are expressed predominantly by immune cells, the biochemical mechanisms responsible for the tissue uptake or metabolism of endocannabinoids and vanilloid receptors. Other cannabinoid receptor types may also exist. Recently developed ligands include potent and selective agonists for CB(1) and CB(2) receptors, a potent CB(2)-selective antagonist/inverse agonist and inhibitors of endocannabinoid uptake or metabolism. Future research should be directed at characterising the endocannabinoid system more completely and at obtaining more conclusive clinical data about the possible beneficial effects of cannabinoids as well as their adverse effects. There is also a need for improved cannabinoid formulations/modes of administration in the clinic and advances in this area should be facilitated by the recent development of a potent water-soluble CB(1)/CB(2) receptor agonist. A growing number of strategies for separating sought-after therapeutic effects of cannabinoid receptor agonists from the unwanted consequences of CB(1) receptor activation are now emerging and these are discussed at the end of this review.  相似文献   

3.
Endocannabinoids in the regulation of appetite and body weight   总被引:4,自引:0,他引:4  
The discovery of cannabinoid receptors, together with the development of selective cannabinoid receptor antagonists, has encouraged a resurgence of cannabinoid pharmacology. With the identification of endogenous agonists, such as anandamide, scientists have sought to uncover the biological role of endocannabinoid systems; initially guided by the long-established actions of cannabis and exogenous cannabinoids such as delta9-tetrahydrocannabinol (THC). In particular, considerable research has examined endocannabinoid involvement in appetite, eating behaviour and body weight regulation. It is now confirmed that endocannabinoids, acting at brain CB1 cannabinoid receptors, stimulate appetite and ingestive behaviours, partly through interactions with more established orexigenic and anorexigenic signals. Key structures such as the nucleus accumbens and hypothalamic nuclei are sensitive sites for the hyperphagic actions of these substances, and endocannabinoid activity in these regions varies in relation to nutritional status and feeding expression. Behavioural studies indicate that endocannabinoids increase eating motivation by enhancing the incentive salience and hedonic evaluation of ingesta. Moreover, there is strong evidence of an endocannabinoid role in energy metabolism and fuel storage. Recent developments point to potential clinical benefits of cannabinoid receptor antagonists in the management of obesity, and of agonists in the treatment of other disorders of eating and body weight regulation.  相似文献   

4.
Cannabinoids   总被引:4,自引:0,他引:4  
Since the discovery of an endogenous cannabinoid system, research into the pharmacology and therapeutic potential of cannabinoids has steadily increased. Two subtypes of G-protein coupled cannabinoid receptors, CB(1) and CB(1), have been cloned and several putative endogenous ligands (endocannabinoids) have been detected during the past 15 years. The main endocannabinoids are arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG), derivatives of arachidonic acid, that are produced "on demand" by cleavage of membrane lipid precursors. Besides phytocannabinoids of the cannabis plant, modulators of the cannabinoid system comprise synthetic agonists and antagonists at the CB receptors and inhibitors of endocannabinoid degradation. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues, including immune system, reproductive and gastrointestinal tracts, sympathetic ganglia, endocrine glands, arteries, lung and heart. There is evidence for some non-receptor dependent mechanisms of cannabinoids and for endocannabinoid effects mediated by vanilloid receptors. Properties of CB receptor agonists that are of therapeutic interest include analgesia, muscle relaxation, immunosuppression, anti-inflammation, antiallergic effects, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. The current main focus of clinical research is their efficacy in chronic pain and neurological disorders. CB receptor antagonists are under investigation for medical use in obesity and nicotine addiction. Additional potential was proposed for the treatment of alcohol and heroine dependency, schizophrenia, conditions with lowered blood pressure, Parkinson's disease and memory impairment in Alzheimer's disease.  相似文献   

5.
Role of cannabinoid CB2 receptors in glucose homeostasis in rats   总被引:5,自引:0,他引:5  
Here we show that the activation of cannabinoid CB2 receptors improved glucose tolerance after a glucose load. Blockade of cannabinoid CB2 receptors counteracted this effect, leading to glucose intolerance. Since blockade of cannabinoid CB1 receptors mimics the actions of cannabinoid CB2 receptor agonists, we propose that the endocannabinoid system modulates glucose homeostasis through the coordinated actions of cannabinoid CB1 and CB2 receptors. We also describe the presence of both cannabinoid CB1 and CB2 receptor immunoreactivity in rat pancreatic beta- and non-beta-cells, adding the endocrine pancreas to adipose tissue and the liver as potential sites for endocannabinoid regulation of glucose homeostasis.  相似文献   

6.
In the last 25 years data has grown exponentially dealing with the discovery of the endocannabinoid system consisting of specific cannabinoid receptors, their endogenous ligands, and enzymatic systems of their biosynthesis and degradation. Progress is being made in the development of novel agonists and antagonists with receptor subtype selectivity which should help in providing a greater understanding of the physiological role of the endocannabinoid system and perhaps also in a broad number of pathologies. This could lead to advances with important therapeutic potential of drugs modulating activity of endocannabinoid system as hypnotics, analgesics, antiemetics, antiasthmatics, antihypertensives, immunomodulatory drugs, antiphlogistics, neuroprotective agents, antiepileptics, agents influencing glaucoma, spasticity and other “movement disorders“, eating disorders, alcohol withdrawal, hepatic fibrosis, bone growth, and atherosclerosis. The aim of this review is to highlight distribution of the CB1 and CB2 receptor subtypes in the nervous system and functional involvement of their specific ligands.  相似文献   

7.
Pertwee RG 《The AAPS journal》2005,7(3):E625-E654
There are at least 2 types of cannabinoid receptor, CB(1) and CB(2), both G protein coupled. CB(1) receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release, whereas CB(2) receptors are found mainly on immune cells, their roles including the modulation of cytokine release and of immune cell migration. Endogenous agonists for cannabinoid receptors also exist. These "endocannabinoids" are synthesized on demand and removed from their sites of action by cellular uptake and intracellular enzymic hydrolysis. Endocannabinoids and their receptors together constitute the endocannabinoid system. This review summarizes evidence that there are certain central and peripheral disorders in which increases take place in the release of endocannabinoids onto their receptors and/or in the density or coupling efficiency of these receptors and that this upregulation is protective in some disorders but can have undesirable consequences in others. It also considers therapeutic strategies by which this upregulation might be modulated to clinical advantage. These strategies include the administration of (1) a CB(1) and/or CB(2) receptor agonist or antagonist that does or does not readily cross the blood brain barrier; (2) a CB(1) and/or CB(2) receptor agonist intrathecally or directly to some other site outside the brain; (3) a partial CB(1) and/or CB(2) receptor agonist rather than a full agonist; (4) a CB(1) and/or CB(2) receptor agonist together with a noncannabinoid, for example, morphine or codeine; (5) an inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism; (6) an allosteric modulator of the CB(1) receptor; and (7) a CB(2) receptor inverse agonist.  相似文献   

8.
In the last 25 years data has grown exponentially dealing with the discovery of the endocannabinoid system consisting of specific cannabinoid receptors, their endogenous ligands, and enzymatic systems of their biosynthesis and degradation. Progress is being made in the development of novel agonists and antagonists with receptor subtype selectivity which should help in providing a greater understanding of the physiological role of the endocannabinoid system and perhaps also in a broad number of pathologies. This could lead to advances with important therapeutic potential of drugs modulating activity of endocannabinoid system as hypnotics, analgesics, antiemetics, antiasthmatics, antihypertensives, immunomodulatory drugs, antiphlogistics, neuroprotective agents, antiepileptics, agents influencing glaucoma, spasticity and other "movement disorders", eating disorders, alcohol withdrawal, hepatic fibrosis, bone growth, and atherosclerosis. The aim of this review is to highlight distribution of the CB1 and CB2 receptor subtypes in the nervous system and functional involvement of their specific ligands.  相似文献   

9.
The hypokinetic profile of certain cannabinoid agonists becomes these compounds as promising medicines to attenuate the hyperkinesia that characterizes the first grades of Huntington's disease (HD) and that represents the major neurological abnormality in this disease. The fact that CB(1) receptors, the receptor type involved in motor effects of cannabinoid agonists, are significantly reduced in the basal ganglia during the progression of HD represents a convincing explanation for the hyperkinesia typical of this disorder and supports the usefulness of enhancing CB(1) receptor signaling in HD. However, further studies revealed that the key property that enables certain cannabinoid agonists to reduce hyperkinesia is their capability to directly activate vanilloid TRPV(1) receptors. Cannabinoids may also serve to delay/arrest the progression of HD by protecting striatal projection neurons from death. Several cannabinoid agonists have been tested for this purpose in various animal models of HD, and these studies revealed that the major characteristics that enable cannabinoids to provide neuroprotection are three: (i) a reduction in inflammatory events exerted through activating CB(2) receptors located in glial cells; (ii) a normalization of glutamate homeostasis, then limiting excitotoxicity, an effect that would be exerted through CB(1) receptors; and (iii) an antioxidant effect exerted by cannabinoid receptor-independent mechanisms. The changes experienced by the endocannabinoid signaling system during the striatal degeneration support this neuroprotective effect, particularly the up-regulatory responses proved by CB(2) receptors in glial cells recruited at lesioned sites. The present article will review the neurochemical and pharmacological bases that sustain the importance of the endocannabinoid system in the pathophysiology of HD, trying to collect the present information and the future lines for research on the therapeutic potential of this system in this disorder.  相似文献   

10.
During the last decade there has been a growing interest towards the modulation of the cannabinoid CB1 receptor. The identification of CB1 cannabinoid receptor antagonists has been one of the major advances in cannabinoid research. Thus, the development of these ligands has opened new therapeutic applications. Since the discovery of the first cannabinoid receptor antagonist, rimonabant, by Sanofi in 1994, a large number of structural variations within this chemical series of 1,5-diarylpyrazoles have been described. So far, all attempts to identify novel structures for CB1 antagonists have been based on one or more pharmacophoric elements of the rimonabant structure. The advanced clinical trials of rimonabant confirm the therapeutic potential value of CB1 antagonists for the treatment of obesity. In addition, the results of pharmacological and clinical studies reveal other effective pharmacotherapeutic applications. The current review will mainly focus on the structure-activity relationships that have been established for antagonists/inverse agonists that bind to the CB1 cannabinoid receptors and on their therapeutic applications.  相似文献   

11.
Cannabinoids in current use such as nabilone activate both CB1 and CB2 receptors. Selective CB2 activation may provide some of the therapeutic effects of cannabinoids, such as their immuno-modulatory properties, without the psychoactive effects of CB1 activation. Therefore, cannabinoid CB2 receptors represent an attractive target for drug development. However, selective and potent CB2 agonists remain in development. CB1 and CB2 differ considerably in their amino acid sequence and tertiary structures. Therefore, clinical development of potent and selective CB2 agonists is probable. Mutational and ligand binding studies, functional mapping, and computer modelling have revealed key residues and domains in cannabinoid receptors that are involved in agonist and antagonist binding to CB1 and CB2. In addition, CB2 has undergone more rapid evolution, and results for ligand binding and efficacy cannot be automatically extrapolated from rat or mouse CB2 to human. Furthermore, loss of CB1 affinity is a crucial property for CB2-selective ligands, and although rat CB1 is 97% homologous with human CB1, critical differences do exist, with potential for further exploitation in drug design. In this paper we briefly review previous cannabinoid receptor models and mutation/binding studies. We also review binding affinity ratios with respect to CB1 and CB2. We then employ our own models to illustrate key cannabinoid receptor residues and binding subdomains that are involved in these differences in binding affinities and discuss how these might be exploited in the development of CB2 specific ligands. Published reports for species specific binding affinities for CB2 are scarce, and we argue that this needs to be corrected prior to the progression of CB2 agonists from pre-clinical to clinical research.  相似文献   

12.
Clinical trial data are beginning to emerge with respect to the therapeutic efficacy of cannabis extracts for the treatment of chronic pain. Although there is some evidence of efficacy, a major issue concerns the narrow margin between doses producing therapeutic effects and those producing the "highs" associated with cannabis misuse. In addition, long-term use is associated with an increased risk of psychiatric illness. These negative aspects constrain the doses of cannabis extracts and psychoactive cannabinoids that can be given to patients, and raise the risk that properly conducted clinical trials with too low dosages will impact negatively on subsequent drug development in this field. However, recent research has opened up a number of avenues whereby compounds acting directly upon cannabinoid (CB) receptors may have therapeutic potential. In this review, two such areas are discussed, namely a) the possible use of peripherally acting CB agonists and CB2 receptor-selective agonists for the treatment of pain, and b) the possible utility of CB2 receptor agonists for the prevention of stress-induced exacerbations of skin disorders such as psoriasis. A second area of drug development at present is that of CB1 receptor antagonists/inverse agonists, spearheaded by rimonabant, for the treatment of obesity and as an aid for smoking cessation. An important aspect of these compounds is their efficacy and selectivity, and this is discussed in detail in the present review.  相似文献   

13.
In the relatively short period of time since the discovery of cannabinoid receptors and their endogenous ligands, the endocannabinoids, an intensive research effort has resulted in the identification of agents that affect all aspects of the endocannabinoid system. The cannabinoid(1) receptor antagonist rimonabant is in phase III clinical trials for the treatment of obesity and as an aid to smoking cessation, and cannabinoid(2) receptor agonists are promising in animal models of inflammatory and neuropathic pain. In the present MiniReview, the endocannabinoid system is described from a pharmacological perspective. The main topics covered are: the mechanism of action of cannabinoid(2) receptor agonists; identification of the endocannabinoid(s) involved in retrograde signalling; the elusive mechanism(s) of endocannabinoid uptake; therapeutic possibilities for fatty acid amide hydrolase inhibitors; and the cyclooxygenase-2 and lipoxygenase-derived biologically active metabolites of the endocannabinoids.  相似文献   

14.
Croxford JL 《CNS drugs》2003,17(3):179-202
The major psychoactive constituent of Cannabis sativa, delta(9)-tetrahydrocannabinol (delta(9)-THC), and endogenous cannabinoid ligands, such as anandamide, signal through G-protein-coupled cannabinoid receptors localised to regions of the brain associated with important neurological processes. Signalling is mostly inhibitory and suggests a role for cannabinoids as therapeutic agents in CNS disease where inhibition of neurotransmitter release would be beneficial. Anecdotal evidence suggests that patients with disorders such as multiple sclerosis smoke cannabis to relieve disease-related symptoms. Cannabinoids can alleviate tremor and spasticity in animal models of multiple sclerosis, and clinical trials of the use of these compounds for these symptoms are in progress. The cannabinoid nabilone is currently licensed for use as an antiemetic agent in chemotherapy-induced emesis. Evidence suggests that cannabinoids may prove useful in Parkinson's disease by inhibiting the excitotoxic neurotransmitter glutamate and counteracting oxidative damage to dopaminergic neurons. The inhibitory effect of cannabinoids on reactive oxygen species, glutamate and tumour necrosis factor suggests that they may be potent neuroprotective agents. Dexanabinol (HU-211), a synthetic cannabinoid, is currently being assessed in clinical trials for traumatic brain injury and stroke. Animal models of mechanical, thermal and noxious pain suggest that cannabinoids may be effective analgesics. Indeed, in clinical trials of postoperative and cancer pain and pain associated with spinal cord injury, cannabinoids have proven more effective than placebo but may be less effective than existing therapies. Dronabinol, a commercially available form of delta(9)-THC, has been used successfully for increasing appetite in patients with HIV wasting disease, and cannabinoid receptor antagonists may reduce obesity. Acute adverse effects following cannabis usage include sedation and anxiety. These effects are usually transient and may be less severe than those that occur with existing therapeutic agents. The use of nonpsychoactive cannabinoids such as cannabidiol and dexanabinol may allow the dissociation of unwanted psychoactive effects from potential therapeutic benefits. The existence of other cannabinoid receptors may provide novel therapeutic targets that are independent of CB(1) receptors (at which most currently available cannabinoids act) and the development of compounds that are not associated with CB(1) receptor-mediated adverse effects. Further understanding of the most appropriate route of delivery and the pharmacokinetics of agents that act via the endocannabinoid system may also reduce adverse effects and increase the efficacy of cannabinoid treatment. This review highlights recent advances in understanding of the endocannabinoid system and indicates CNS disorders that may benefit from the therapeutic effects of cannabinoid treatment. Where applicable, reference is made to ongoing clinical trials of cannabinoids to alleviate symptoms of these disorders.  相似文献   

15.
The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimon-abant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued pharmacological profiling, as the prelude to first-in-man testing of CB1 receptor antagonists with unique modes of targeting/pharmacological action, represents an exciting translational frontier in the critical path to CB receptor blockers as medicines.  相似文献   

16.
Cannabinoid receptor agonists significantly diminish pain responses in animal models; however, they exhibit only modest analgesic effects in humans. The relative lack of efficacy in man may be because of the dose limitations imposed by psychoactive side effects. Cannabinoid agonists that selectively target CB(2) (peripheral) cannabinoid receptors should be free of psychoactive effects, perhaps allowing for more effective dosing. CB(2) receptor activation inhibits acute, inflammatory and neuropathic pain responses in animal models. In preclinical studies, CB(2) receptor agonists do not produce central nervous system effects. Therefore, they show promise for the treatment of acute and chronic pain without psychoactive effects.  相似文献   

17.
The endocannabinoid system consists of lipid-derived agonists that activate cannabinoid (CB) receptors. CB receptor agonists, namely, the phytocannabinoid Δ(9)-THC and the endocannabinoid anandamide, increase hunger sensation and food intake. These discoveries led to the clinical use of Δ(9)-THC derivatives for the treatment of cancer and HIV-related nausea and cachexia. Animal studies clarified the important role of CB1 receptors in the hypothalamus and in the limbic system in mediating orexigenic effects. In parallel, data on CB1-specific blockade either by drugs or by genetic ablation further demonstrated that CB1 inhibition protects against weight gain induced by high-fat feeding and reduces body weight in obese animals and humans. The mechanisms of weight reduction by CB1 blockade are complex: they comprise interactions with several orexigenic and anorexigenic neuropeptides and hormones, regulation of sympathetic activity, influences on mitochondrial function, and on lipogenesis. Although these mechanisms appear to be mainly mediated by the CNS, weight loss also occurs when drugs that do not reach CNS concentrations sufficient to inhibit CB1 signaling are used. The development of peripherally restricted CB1 inverse agonists and antagonists opened new routes in CB1 pharmacology because centrally acting CB1 inverse agonists, e.g., rimonabant and taranabant, exerted unacceptable side effects that precluded their further development and application as weight loss drugs. Tissue and circulating endocannabinoid concentrations are often increased in animal models of obesity and in obese humans, especially those with visceral fat accumulation. Thus, further research on CB1 inhibition is still promising to treat human obesity.  相似文献   

18.
The behavioral effects evoked by cannabinoids are primarily mediated by the CB(1) and CB(2) cannabinoid receptor subtypes. In vitro pharmacology of cannabinoid receptors has been elucidated using recombinant expression systems expressing either CB(1) or CB(2) receptors, with limited characterization in native cell lines endogenously expressing both CB(1) and CB(2) receptors. In the current study, we report the molecular and pharmacological characterization of the F-11 cell line, a hybridoma of rat dorsal root ganglion neurons and mouse neuroblastoma (N18TG2) cells, reported to endogenously express both cannabinoid receptors. The present study revealed that both receptors are of mouse origin in F-11 cells, and describes the relative gene expression levels between the two receptors. Pharmacological characterization of the F-11 cell line using cannabinoid agonists and antagonists indicated that the functional responses to these cannabinoid ligands are mainly mediated by CB(1) receptors. The non-selective cannabinoid ligands CP 55,940 and WIN 55212-2 are potent agonists and their efficacies in adenylate cyclase and MAPK assays are inhibited by the CB(1) selective antagonist SR141716A (SR1), but not by the CB(2) selective antagonist SR144528 (SR2). The endocannabinoid ligand 2AG, although not active in adenylate cyclase assays, was a potent activator of MAPK signaling in F-11 cells. The analysis of CB(1) and CB(2) receptor gene expression and the characterization of cannabinoid receptor pharmacology in the F-11 cell line demonstrate that it can be used as a tool for interrogating the endogenous signal transduction of cannabinoid receptor subtypes.  相似文献   

19.
Cannabinoid CB1 receptors are densely expressed on striatal projection neurons expressing dopamine D1 or D2 receptors. However, the specific neuronal distribution of CB1 receptors within the striatum is not known. Previous research has established that the endocannabinoid system controls facilitation of behavior by dopamine D2 receptors, but it is not clear if endocannabinoids also modulate D1 receptor-mediated motor behavior. In the present study, we show that cannabinoid CB1 receptor mRNA is present in striatonigral neurons expressing substance P and dopamine D1 receptors, as well as in striatopallidal neurons expressing enkephalin and dopamine D2 receptors. We explored the functional relevance of the interaction between dopamine D1 and D2 receptors and cannabinoid CB1 receptors with behavioral pharmacology experiments. Potentiation of endogenous cannabinoid signaling by the uptake blocker AM404 blocked dopamine D1 receptor-mediated grooming and D2 receptor-mediated oral stereotypies. In addition, contralateral turning induced by unilateral intrastriatal infusion of D1 receptor agonists is counteracted by AM404 and potentiated by the cannabinoid antagonist SR141716A. These results indicate that the endocannabinoid system negatively modulates D1 receptor-mediated behaviors in addition to its previously described effect on dopamine D2 receptor-mediated behaviors. The effect of AM404 on grooming behavior was absent in dopamine D1 receptor knockout mice, demonstrating its dependence on D1 receptors. This study indicates that the endocannabinoid system is a relevant negative modulator of both dopamine D1 and D2 receptor-mediated behaviors, a finding that may contribute to our understanding of basal ganglia motor disorders.  相似文献   

20.
Alterations in emotion regulation processes may form the basis of psychopathologies. The endocannabinoid (eCB) system, composed of endogenous ligands, the enzymatic machinery in charge of their metabolism and the specific metabotropic receptors, has emerged as a major neuromodulatory system critically involved in the control of emotional homeostasis and stress responsiveness. Data from animal models indicate that the eCB system plays a key role in brain development, and is probably involved in the control of emotional states from early developmental stages. The present review summarizes the latest information on the role of the eCB system in emotionality and anxiety-related disorders throughout the lifespan. Putative therapeutic strategies based on the pharmacological modulation of this system will be discussed. Given the fact that the pharmacological modulation of the eCB system has recently arisen as a promising strategy in the management of anxiety and mood disorders, the potential efficacy of this pharmacological approach (i.e. blockers of the catabolic pathway) will be discussed, as well as pharmacological alternatives such as modulators of cannabinoid receptors other than the classical CB1 receptor, or administration of other plant-derived compounds (e.g. cannabidiol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号