首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The expression of ionotropic glutamate receptor subunits in the motoneuronal pools of the hypoglossal nucleus was studied using specific antibodies against subunits of the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) subtypes. The highest numbers of intensely immunolabelled motoneurons were found in the dorsal tier and caudoventromedial part of the hypoglossal nucleus with all antibodies except that against the GluR1 AMPA subunit. Labelling for the GluR1 subunit was weak except for caudally located groups of motoneurons which innervate tongue muscles related to respiratory activity. By contrast, most motoneurons were intensely immunostained with antibodies against GluR2/3 and GluR4 subunits of the AMPA subtype. The low staining observed using an antibody specific for the GluR2 subunit (which prevents Ca2+-entry through AMPA channels) strongly suggests that AMPA receptors in hypoglossal motoneurons are Ca2+-permeable. Immunolabelling for the GluR5/6/7 kainate receptor subunits was found in many motoneuronal somata as well as in thin axon-like profiles and puncta that resembled synaptic boutons. Most motoneurons were intensely immunostained for the NMDA receptor subunit NR1. These results show that the hypoglossal nucleus contains five heterogeneous pools of motoneurons which innervate functionally defined groups of tongue muscles. The uneven expression of the different receptor subunits analysed here could reflect diverse phenotypic properties of hypoglossal motoneurons which might be expected to generate different patterns of motor responses under different physiological or pathological conditions.  相似文献   

2.
Unilateral hypoglossal nerve axotomy was used as a model to analyse immunohistochemically the expression of the GluR1, GluR2, GluR3, and GluR4 glutamate receptor subunits of the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype and the NR1 subunit of the N-methyl-D-aspartate (NMDA) subtype in the different morphofunctional hypoglossal pools from 1 to 45 days postaxotomy. Following hypoglossal nerve axotomy, the percentage of motoneurons that were GluR1-immunopositive and the labeling intensity for this subunit was increased in some hypoglossal pools. Immunolabeling for the GluR2 subunit was undetectable. These results contrast with the unchanged pattern for these two subunits after sciatic nerve axotomy previously described. Image analysis showed a significant decrease in the intensity of immunohistochemical labeling for the GluR2/3 and GluR4 subunits in motoneurons, although most motoneurons were still immunopositive for these 2 subunits after axotomy. The intensity of immunolabeling for the NR1 subunit was slightly decreased postlesion, whereas the percentage of NR1-immunopositive motoneurons increased. Immunoreactivity returned to basal levels 45 days postlesion. These findings show that in axotomized hypoglossal motoneurons, i) AMPA and NMDA receptor subunits are still expressed, ii) the composition of the ionotropic glutamate receptor subunit pool is subjected to continuous changes during the regeneration process, iii) AMPA receptors, if functional, would have physiological properties different to those in intact motoneurons, and iv) the various AMPA receptor subunits are differentially regulated. The present results also suggest a faster recovery of basal levels of immunoreactivity for caudally localised groups of motoneurons which could reflect a caudo-rostral sequential functional revovery in the hypoglossal nucleus.  相似文献   

3.
Potentiation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function has been proposed as being useful in the treatment of depression, but thus far, little is known about the possible changes in AMPA receptor expression in the brain, after antidepressant treatment. The present study was carried out to study the expression of AMPA receptor subunits in different brain regions of mice that had been chronically injected with maprotiline. The latter is a modified tricyclic antidepressant that functions as a noradrenaline uptake inhibitor. Daily intraperitoneal injection with 10 mg/kg maprotiline for 30 days resulted in significantly increased GluR1 and GluR2/3 subunit expression in the nucleus accumbens and dorsal striatum as detected by immunohistochemistry; and significantly increased GluR1 and GluR2/3 expression in the hippocampus, as demonstrated by Western blot analysis. No change, or a decrease in GluR2 expression was detected in all the brain regions by both immunohistochemistry and Western blots. The increase in GluR1 and GluR2/3, but no increase in GluR2 subunits suggests that there could be an increase in calcium permeability of AMPA receptors in limbic/striatal brain regions after maprotiline treatment. This could lead to increased synaptic activity or plasticity in the hippocampus and striatum, and may underlie the therapeutic effect of maprotline, and possibly, other antidepressant drugs.  相似文献   

4.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

5.
The dorsal horn of the subnucleus caudalis of the spinal trigeminal nucleus is a relay of oro-facial pain transmission; increase in subnucleus caudalis neuronal activity in response to tissue injury affects the level of chemical mediators participating in nociceptive processing. We investigated, by means of immunocytochemistry, the expression of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) glutamate receptor subunits in this nucleus in a model of inflammation. Rats injected with formalin in the whisker pad were compared with saline-injected control rats. One and two days after formalin injection, the immunostaining of cell bodies and neuropil of the AMPA receptor subunits GluR1 and GluR2/3 was markedly decreased in the ipsilateral superficial laminae of the subnucleus caudalis compared to the contralateral side. Side differences were not evident in the saline-treated animals. The down-regulation of AMPA GluR1 and GluR2/3 was no longer detectable in the subnucleus caudalis three days after formalin injection. No side difference was detected in the N-methyl-D-aspartate receptor subunit NR2A/B immunoreactivity of the subnucleus caudalis at any time-point in the formalin-injected animals. The modulation of AMPA receptor may be related to the decrease of hyperalgesia evident 1 h after formalin injection, in spite of the increasing perioral inflammation evident later on and characteristic of the formalin model. The present findings point out a selective down-regulation of AMPA receptor subunits in the transduction of trigeminal pain. These data also support the involvement of glutamate receptor subunits in the processing of trigeminal inflammation induced by noxious chemical stimulation.  相似文献   

6.
7.
Previous evidence has suggested that glutamate-driving neurotransmission and glutamate-excitotoxicity are modulated by substance P in the basal ganglia, but the assembly of glutamate receptors mediating this process remains to be delineated. By using a double immunofluorescence, cellular expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits (GluR1-4) in substance P receptor (SPR)-containing neurons was examined in the striatum of rats. It revealed that distribution of SPR-immunoreactive neurons completely overlapped with that of GluR1, 2, 3 or 4-immunoreactive neurons in the caudate-putamen. Neurons showing both SPR and AMPA receptor subunits (except of GluR3)-immunoreactivity were observed: all (100%) of SPR-positive neurons displayed GluR1-, GluR2- or GluR4-immunoreactivity, and the double-labeled neurons constituted about 33, 3 or 29% of total GluR-positive ones. In contrast, the neurons exhibiting both SPR- and GluR3-immunoreactivity were not detected, though numerous GluR3-positive neurons were still distributed in the caudate-putamen regions. Co-localization of SPR and distinct AMPA receptor subunits in the striatal neurons has provided a basis for functional modulation of neuronal APMA receptors by substance P in the caudate-putamen of rodents. Taken together with previous observations, this study has also suggested that, through interaction with AMPA receptors composed of subunits 1, 2 and 4, substance P or neurokinin peptides may play important roles in regulating neuronal properties and protecting neurons from excitotoxicity in the basal ganglia of mammals.  相似文献   

8.
Within neurons of several regions of the CNS, mature dendrite architecture is attained via extensive reorganization of arbor during the developmental period. Since dendrite morphology determines the firing patterns of the neuron, morphological refinement of dendritic arbor may have important implications for mature network activity. In the neocortex, a region of brain that is sensitive to activity-dependent structural rearrangement of dendritic arbor, the proportion of AMPA receptors increases over the developmental period. However, it is unclear whether changes in AMPA receptor expression contribute to maturation of dendritic architecture. To determine the effects of increasing AMPA receptor expression on dendrite morphology and connectivity within the neocortex, and to determine whether these effects are dependent on specific AMPA receptor subunits, we overexpressed the AMPA glutamate receptor subunit 1 (GluR1) and glutamate receptor subunit 2 (GluR2) in cultured rat neocortical neurons at the time that AMPA receptors would normally be incorporated into synapses. Following expression of GluR1 or GluR2 we observed increases in the length and complexity of dendritic arbor of cortical neurons, and a concurrent reduction in motility of spines. In addition, expression of either subunit was associated with an increased density of excitatory postsynaptic puncta. These results suggest that AMPA receptor expression is an important determinant of dendrite morphology and connectivity in neocortical neurons, and further, that contrary to other regions of the CNS, the effects of AMPA receptors on dendrite morphology are not subunit-specific.  相似文献   

9.
-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate excitatory neurotransmission in the central nervous system, and contain combinations of four subunits (GluR1-4). We developed a GluR3-specific monoclonal antibody and quantified the cellular distribution of GluR3 in rat hippocampus. GluR3 immunoreactivity was detected in all pyramidal neurons and most interneurons. In addition, we found a subset of parvalbumin (PV)-containing interneurons in the hippocampus and neocortex that was notable for its intense GluR3 immunoreactivity and lack of GluR2 immunoreactivity. Such an expression pattern of AMPA receptor subunits is likely to make these interneurons selectively vulnerable to excitotoxicity.  相似文献   

10.
Vitanova L 《Acta histochemica》2007,109(2):154-163
Glutamate is one of the main neurotransmitters in the retina. Its effects are mediated by a large number of ionotropic and metabotropic membrane receptors. The distribution of ionotropic AMPA receptor subunits GluR1-4, kainate receptor subunits GluR5-7 and KA2, delta receptors 1-2, as well as the metabotropic receptor mGluR6 were studied in the frog retina. Indirect immunofluorescence was used to localize the different receptor subunits. Results showed that all subunits, with the exception of GluR1 and GluR5, are widely distributed in the retina. They are mainly located in both plexiform layers: the outer (OPL) and the inner one (IPL), where punctate labelling, a sign of synaptic localization, is observed. The metabotropic receptor mGluR6 is localised only in the OPL. The AMPA receptor subunit GluR4 is localised on the glial Müller cells of the retina. The vast majority of the subunits possess specific patterns of labelling that indicate that they are involved with different retinal functions. The significance of the AMPA receptors and involvement of glia in modulation of synaptic transmission are discussed.  相似文献   

11.
Until recently it was generally accepted that the only neurotransmitter to be released at central synapses of somatic motoneurons was acetylcholine. However, studies on young mice (P0-10) have provided pharmacological evidence indicating that glutamate may act as a cotransmitter with acetylcholine at synapses between motoneurons and Renshaw cells. We performed a series of anatomical experiments on axon collaterals obtained from intracellularly labeled motoneurons from an adult cat and labeled by retrograde transport in adult rats to determine if glutamate is co-localized with acetylcholine by these terminals. We could find no evidence for the presence of vesicular glutamate transporters in motoneuron axon terminals of either species. In addition, we were unable to establish any obvious relationship between motoneuron terminals and the R2 subunit of the AMPA receptor (GluR2). However we did observe a population of cholinergic terminals in lamina VII which did not originate from motoneurons but were immunoreactive for the vesicular glutamate transporter 2 and formed appositions to GluR2 subunits. These were smaller than motoneuron terminals and, unlike them, formed no relationship with Renshaw cells. The evidence suggests that glutamate does not act as a cotransmitter with acetylcholine at central synapses of motoneurons in the adult cat and rat. However, glutamate is present in a population of cholinergic terminals which probably originate from interneurons where its action is via an AMPA receptor.  相似文献   

12.
Cocaine-associated cues acquire incentive motivational effects that manifest as craving in humans and cocaine-seeking behavior in rats. We have reported an increase in neuronal activation in rats, measured by Fos protein expression, in various limbic and cortical regions following exposure to cocaine-associated cues. This study examined whether the conditioned neuronal activation involves glutamate AMPA receptors by measuring coexpression of Fos and AMPA glutamate receptor subunits (GluR1, GluR2/3, or GluR4). Rats trained to self-administer cocaine subsequently underwent 22 days of abstinence, during which they were exposed daily to either the self-administration environment with presentations of the light/tone cues previously paired with cocaine infusions (Extinction group) or an alternate environment (No Extinction group). All rats were then tested for cocaine-seeking behavior (i.e. responses without cocaine reinforcement) and Fos and AMPA glutamate receptor subunits were measured postmortem using immunocytochemistry. The No Extinction group exhibited increases in cocaine-seeking behavior and Fos expression in limbic and cortical regions relative to the Extinction group. A large number of Fos immunoreactive cells coexpressed GluR1, GluR2/3, and GluR4, suggesting that an action of glutamate at AMPA receptors may in part drive cue-elicited Fos expression. Importantly, there was an increase in the percentage of cells colabeled with Fos and GluR1 in the anterior cingulate and nucleus accumbens shell and cells colabeled with Fos and GluR4 in the infralimbic cortex, suggesting that within these regions, a greater, and perhaps even different, population of AMPA receptor subunit-expressing neurons is activated in rats engaged in cocaine-seeking behavior.  相似文献   

13.
The permeability properties of kainate/AMPA receptors are determined by subunit composition. The GluR1 and GluR3 subunits form Ca(2+)-permeable channels and exhibit inward rectification; heteromeric receptors containing the GluR2 subunit are Ca(2+)-impermeable and electrically linear. These observations raise the possibility of a developmental 'switch' in which turning on or off of GluR2 expression regulates the level of Ca2+ permeable kainate/AMPA receptors. We examined the ratio of GluR1 and GluR3 to GluR2 gene expression in developing and adult rat brain by in situ hybridization. A larger value of this ratio is likely to be associated with greater Ca2+ permeability. Our data suggest that in neocortex, striatum and cerebellum the number of Ca(2+)-permeable kainate/AMPA receptors is high at P4 and declines monotonically with age. In hippocampus, the number increases from P7 to P21, after which it declines. These findings provide evidence for a developmental 'switch' in which Ca2+ permeable glutamate receptors are turned off following early developmental events.  相似文献   

14.
In the present investigation, we address the question of whether the expression of GluR2-R4 subunits mRNAs and GluR2 and GluR4 subunits protein of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptors are modulated in the vestibular nuclei following unilateral labyrinthectomy. Specific GluR2-R4 radioactive oligonucleotides were used to probe sections of rat vestibular nuclei according to in situ hybridization methods. The signal was detected by means of film or emulsion photography. GluR2 and GluR4 subunit expression were also measured in control and operated rats by use of specific monoclonal GluR2 and GluR4 antibodies. Animals were killed at different stages following the lesion: 1, 3 or 8 days for the in situ hybridization study and 4 and 8 days for the immunohistochemical study.In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei expressed all the GluR2, GluR3 and GluR4 subunit mRNAs. Moreover, numerous vestibular nuclei neurons are endowed with AMPA receptors containing the GluR2 and the GluR4 subunits.In unilaterally labyrinthectomized rats, no asymmetry could be detected on autoradiographs between the two medial vestibular nuclei probed with the GluR2 and the GluR4 oligonucleotide probes regardless of the delay following the lesion. However, compared to control, a bilateral decrease (-22%) in GluR3 gene expression was observed in the medial vestibular nuclei 3 days after the lesion followed by a return to normal at day 8 post-lesion. No significant asymmetrical changes in the density of GluR2- and GluR4-immunopositive cells could be detected between the intact and deafferented sides in any part of the vestibular nuclear complex and at any times (day 4 or day 8) following the lesion.Our data show that the removal of glutamatergic vestibular input induced an absence of modulation of GluR2 and GluR4 gene and subunits expression. This demonstrates that GluR2 and GluR4 expression do not play a role in the recovery of the resting discharge of the deafferented medial vestibular nuclei neurons and consequently in the functional restoration of the static postural and oculomotor deficits. The functional role of the slight and bilateral GluR3 mRNA decrease in the vestibular nuclei remains to be elucidated.  相似文献   

15.
Mokin M  Keifer J 《Neuroscience》2004,128(2):219-228
The synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning of a neural correlate of an eyeblink response was examined by fluorescence imaging of punctate staining for glutamate receptor subunits and the presynaptic marker synaptophysin. There was a significant increase in GluR4-containing AMPA receptors to synaptic sites after conditioning as determined by colocalization of GluR4 subunit puncta with synaptophysin. Moreover, the trafficking of these receptor subunits requires NMDA receptor activation as it was blocked by D,L-2-amino-5-phosphonovaleric acid (AP-5). In contrast, colocalization of NR1 subunits with synaptophysin was stable regardless of whether the preparations had undergone conditioning or had been treated by AP-5. The enhanced colocalization of GluR4 and synaptophysin was accompanied by an increase in both the total number and size of puncta for both proteins, suggesting greater synthesis and aggregation during conditioning. Western blot analysis confirmed upregulation of synaptophysin and GluR4 following conditioning. These data support the hypothesis that GluR4-containing AMPA receptors are delivered to synaptic sites during conditioning. Further, they suggest coordinate presynaptic and postsynaptic modifications during in vitro classical conditioning.  相似文献   

16.
Using a thrombin cleavage assay in cultured hippocampal neurons, we studied the kinetics, regulation and site of AMPA receptor surface delivery. Surface insertion of the GluR1 subunit occurs slowly in basal conditions and is stimulated by NMDA receptor activation and insulin, whereas GluR2 exocytosis is constitutively rapid. Although both subunits ultimately concentrate in synapses, GluR1 and GluR2 show different spatial patterns of surface accumulation, consistent with GluR1 being inserted initially at extrasynaptic sites and GluR2 being inserted more directly at synapses. The spatiotemporal pattern of surface accumulation is determined by the cytoplasmic tails of GluR subunits, and in heteromeric receptors, GluR1 acts dominantly over GluR2. We propose that GluR1 controls the exocytosis and GluR2/3, the recycling and endocytosis of AMPA receptors.  相似文献   

17.
Chatha BT  Bernard V  Streit P  Bolam JP 《Neuroscience》2000,101(4):1037-1051
Glutamatergic neurotransmission in the substantia nigra pars compacta and pars reticulata is mediated through N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxaline propionic acid/kainate (AMPA) type receptors as well as other glutamate receptors and is critical for basal ganglia functioning. A major glutamatergic input to the substantia nigra originates in the subthalamic nucleus, and the long-lasting stimulation of the dopaminergic cells of the substantia nigra pars compacta by the subthalamic neurons has been implicated in the pathophysiology of Parkinson's disease. The objectives of the present study were to determine the subcellular and subsynaptic localization of subunits of the N-methyl-D-aspartate and AMPA receptors in the substantia nigra, and also to determine whether co-localization of N-methyl-D-aspartate and AMPA receptor subunits occur at individual synapses. To achieve this, pre-embedding and post-embedding immunocytochemistry was applied to sections of substantia nigra using antibodies that recognize the NR1 and NR2A/B subunits of the N-methyl-D-aspartate receptor, and GluR2/3 subunits of the AMPA receptor.In both regions of the substantia nigra, immunolabelling for each of the subunits was observed in numerous perikarya and proximal dendrites. At the subcellular level, silver-intensified immunogold particles localizing N-methyl-D-aspartate and AMPA receptor subunits were most commonly present within dendrites where they were associated with a variety of intracellular organelles and with the internal surface of the plasma membrane. Post-embedding immunogold labelling revealed immunoparticles labelling for NR1, NR2A/B and GluR2/3 to be enriched at asymmetric synaptic specializations, although a large proportion of asymmetric synapses were immunonegative. Double immunolabelling revealed, in addition to single-labelled synapses, the co-localization of subunits of the N-methyl-D-aspartate receptor and subunits of the AMPA receptor at individual asymmetric synapses. Similarly, double immunolabelling also revealed the co-localization of the NRl and NR2A/B subunits of the N-methyl-D-aspartate receptor at individual asymmetric synapses. Labelling for NR1 and GluR2/3 was, on average, relatively evenly distributed across the width of the synapse with a gradual reduction towards the periphery when analysed in single sections.In summary, the present results demonstrate that AMPA and N-methyl-D-aspartate receptors are selectively localized at a subpopulation of asymmetric synapses in the substantia nigra pars compacta and reticulata and that the two receptor types, at least partially co-localize at individual synapses. It is concluded that glutamatergic transmission in the substantia nigra pars compacta and pars reticulata occurs primarily at asymmetric synapses and, at least in part, is mediated by both N-methyl-D-aspartate and AMPA receptors.  相似文献   

18.
19.
The regulated incorporation of AMPA receptors into synapses is important for synaptic plasticity. Here we examine the role of protein kinase A (PKA) in this process. We found that PKA phosphorylation of the AMPA receptor subunits GluR4 and GluR1 directly controlled the synaptic incorporation of AMPA receptors in organotypic slices from rat hippocampus. Activity-driven PKA phosphorylation of GluR4 was necessary and sufficient to relieve a retention interaction and drive receptors into synapses. In contrast, PKA phosphorylation of GluR1 and the activity of calcium/calmodulin-dependent kinase II (CaMKII) were both necessary for receptor incorporation. Thus, PKA phosphorylation of AMPA receptor subunits contributes to diverse mechanisms underlying synaptic plasticity.  相似文献   

20.
Neurons restore their function in response to external or internal perturbations and maintain neuronal or network stability through a homeostatic scaling mechanism. Homeostatic responses at synapses along the auditory system would be important for adaptation to normal and abnormal fluctuations in the sensory environment. We investigated at the electron microscopic level and after postembedding immunogold labeling whether projection neurons in the cochlear nucleus responded to modifications of auditory nerve activity. After unilaterally reducing the level of auditory inputs by ∼20 dB by monaural earplugging, auditory nerve synapses on bushy cells somata and basal dendrites of fusiform cells of the ventral and dorsal cochlear nucleus, respectively, upregulated GluR3 AMPA receptor subunit, while inhibitory synapses decreased the expression of GlyRα1 subunit. These changes in expression levels were fully reversible once the earplug was removed, indicating that activity affects the trafficking of receptors at synapses. Excitatory synapses on apical dendrites of fusiform cells (parallel fibers) with different synaptic AMPA receptor subunit composition, were not affected by sound attenuation, as the expression levels of AMPA receptor subunits were the same as in normal hearing littermates. GlyRα1 subunit expression at inhibitory synapses on apical dendrites of fusiform cells was also found unaffected. Furthermore, fusiform and bushy cells of the contralateral side to the earplugging upregulated the GluR3 subunit at auditory nerve synapses. These results show that cochlear nucleus neurons innervated by the auditory nerve, are able to respond to small changes in sound levels by redistributing specific AMPA and glycine receptor subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号