首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purposes of this study were as follows: (1) to radiolabel ibandronic acid (IBA, a third‐generation bisphosphonate) with 177Lu, investigating optimal labeling conditions, and (2) to analyze biodistribution and imaging properties of intravenous 177Lu‐ibandronate (177Lu‐IBA) administered in animals. 177Lu‐labeled methylene diphosphonate (177Lu‐MDP) served as a comparator agent. Differing proportions of IBA solution and 177LuCl3 solution were combined to determine an optimal ratio for radiolabeling purposes, varying pH, temperature, and time to establish ideal reactivity conditions. Radiochemical purity of the labeled compounds was then assessed by paper chromatography. In vitro and in vivo stabilities were also measured at specific time intervals. In Kunming mice, biodistributions of 177Lu‐IBA and 177Lu‐MDP and respective agent activities in various organs were monitored by gamma counter, and we performed single photon computed tomography/computed tomography (SPECT/CT) imaging of 177Lu‐IBA in normal New Zealand White rabbits. Radiolabeling yields for 177Lu‐IBA proved to be >97% within 30 minutes at 90°C, and its radiochemical purity ensured stability in vitro and in vivo. Furthermore, we found that 177Lu‐IBA is readily soluble in water, showing higher skeletal uptake than 177Lu‐MDP but lower uptake by liver and spleen. The image quality of 177Lu‐IBA was so clear that even after 6 days, analysis was still feasible.  相似文献   

2.
This study was aimed at evaluating the role of bifunctional chelators DOTA‐NCS and CHX‐A″‐DTPA‐NCS used for conjugating 177Lu with Nimotuzumab on the radiochemical yields, purity, in vitro stability, and specificity of the radioimmunoconjugates to EGFR. Two immunoconjugates were prepared wherein Nimotuzumab was conjugated with the acyclic ligand p‐NCS‐Bn‐CHX‐A″‐DTPA and macrocyclic ligand p‐NCS‐Bn‐DOTA. These were radiolabeled with 177Lu, purified on PD‐10 column, and characterized by SE‐HPLC. In vitro stability was determined up to 4 days post preparation. Specificity of the radioimmunoconjugates was ascertained by in vitro studies in A431 cells while the biodistribution patterns were studied in normal Swiss mice up to 96 hours post injection. Four to five molecules of CHX‐A″‐DTPA/DOTA were attached to one molecule of Nimotuzumab. Radiochemical purity of both 177Lu‐CHX‐A″‐DTPA‐Nimotuzumab and 177Lu‐DOTA‐Nimotuzumab was determined to be greater than 98%. Both the radioimmunoconjugates exhibited good in vitro stability at 37°C up to 4 days post preparation in saline, and their clearance was largely by the hepatobiliary route. The DOTA‐ and CHX‐A″‐DTPA‐based radioimmunoconjugates could be prepared with good radiochemical purity, in vitro stability, and specificity to EGFR. Further studies in EGFR‐positive cancers would pave way for them for use in the clinics.  相似文献   

3.
Targeted radionuclide therapy using 177Lu‐labeled peptidomimetic inhibitor of prostate specific membrane antigen (PSMA) viz. PSMA‐617 is emerging as one the most effective strategies for management of metastatic prostate cancer, which is one of the leading causes of cancer related death. The aim of the present study is to develop a robust and easily adaptable protocol for formulation of therapeutic dose of 177Lu‐PSMA‐617 at hospital radiopharmacy using moderate specific activity 177Lu available at an affordable cost. Extensive radiochemical studies were performed to optimize the required [PSMA‐617] / [Lu] ratio and other parameters to formulate 7.4 GBq dose of 177Lu‐PSMA‐617. Based on these, 7.4 GBq therapeutic dose of 177Lu‐PSMA‐617 was formulated by incubating 160 µg of PSMA‐617 with indigenously produced 177LuCl3 (555 GBq/µg specific activity of 177Lu) at 90 °C for 30 min. The radiochemical purity of the formulation was 98.3 ± 0.6% (n = 7) which was retained to the extent of >95% after 7 d in normal saline at room temperature and >96% after 2 d in human serum at 37 °C. Preliminary clinical studies showed specific targeting of the agent in the lesion sites and similar physiological distribution as in diagnostic 68Ga‐PSMA‐11 PET scans performed earlier. The developed optimized protocol for formulating therapeutic dose of 177Lu‐PSMA‐617 could be useful for large number of nuclear medicine therapy clinics across the world having access to moderate specific activity 177Lu at an affordable cost.  相似文献   

4.
Use of bone‐seeking radiopharmaceuticals is an established modality in the palliative care of pain due to skeletal metastases. 177Lu‐DOTMP is a promising radiopharmaceutical for this application owing to the ideally suited decay properties of 177Lu and excellent thermodynamic stability and kinetic rigidity of the macrocyclic complex. The aim of the present study is to develop a robust and easily adaptable protocol for formulation of clinical doses of 177Lu‐DOTMP at hospital radiopharmacy. After extensive radiochemical studies, an optimized strategy for formulation of clinical doses of 177Lu‐DOTMP was developed, which involves simple mixing of approximately 3.7 GBq of 177Lu activity as 177LuCl3 solution to an aqueous solution containing 5 mg of DOTMP and 8 mg of NaHCO3. The proposed protocol yielded 177Lu‐DOTMP with >98% radiochemical purity, and the resultant formulation showed excellent in vitro stability and desired pharmacokinetic properties in animal model. Preliminary clinical investigations in 5 patients showed specific skeletal accumulation with preferential localization in the osteoblastic lesion sites and almost no uptake in soft tissue or any other major nontarget organ. The developed “mix‐and‐use” strategy would be useful for large number of nuclear medicine centers having access to 177Lu activity and would thereby accelerate the clinical translation of 177Lu‐DOTMP.  相似文献   

5.
The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target‐specific molecular recognition. Peptides based on the cyclic Arg‐Gly‐Asp (RGD) sequence have been reported as high‐affinity agents for the α(ν)β(3) integrin. The aim of this research was to prepare a multimeric system of 177Lu‐labeled gold nanoparticles conjugated to c(RGDfK)C (cyclo(Arg‐Gly‐Asp‐Phe‐Lys)Cys) and to compare the radiation‐absorbed dose with that of 177Lu‐labeled monomeric and dimeric RGD peptides to α(ν)β(3) integrin‐positive U87MG tumors in mice. DOTA‐GGC (1,4,7,10‐tetraazacyclododecane‐N‐N′,N″,N?‐tetraacetic acid‐Gly‐Gly‐Cys) and c(RGDfK)C peptides were synthesized and conjugated to AuNPs by a spontaneous reaction of the thiol groups. Transmission electron microscopy, ultraviolet–visible, X‐ray photoelectron spectroscopy, Raman and far‐infrared spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. For the 177Lu‐AuNP‐c(RGDfK)C to be obtained, the 177Lu‐DOTA‐GGC radiopeptide was first prepared and added to a solution of AuNPs followed by c(RGDfK)C (25 µl, 5 µ m ) at 18 °C for 15 min. 177Lu‐DOTA‐GGC, 177Lu‐DOTA‐cRGDfK and 177Lu‐DOTA‐E‐c(RGDfK)2 were prepared by adding 177LuCl3 (370 MBq) to 5 µl (1 mg/ml) of the DOTA derivative diluted with 50 µl of 1 m acetate buffer pH 5. The mixture was incubated at 90 °C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. Biokinetic studies were accomplished in athymic mice with U87MG‐induced tumors. The radiochemical purity for all 177Lu‐RGD derivatives was 96 ± 2%. 177Lu‐absorbed doses per injected activity delivered to U87MG tumors were 0.357 ± 0.052 Gy/MBq (multimer), 0.252 ± 0.027 Gy/MBq (dimer) and 0.102 ± 0.018 Gy/MBq (monomer). 177Lu‐labeled dimeric and multimeric RGD peptides demonstrated properties suitable for targeted radionuclide therapy of tumors expressing α(ν)β(3) integrins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Bone pain is the major manifestation of skeletal metastases. Although various treatment modalities are available for bone pain palliation, use of radiolabeled phosphonates is documented to be more effective. Among radionuclides available for this purpose, lutetium‐177 is gaining popularity due to its moderate beta energy, theranostic capability, favorable half‐life and convenient production logistics. 177Lu‐DOTMP has shown considerable promise as a metastatic bone pain palliating agent in preliminary evaluations and recent clinical studies. Therefore, an attempt was made to elucidate the possible mechanism of in vitro cell death induced by 177Lu‐DOTMP in MG63 cells. 177Lu‐DOTMP binding studies were carried out in mineralized bone of MG63 cells and around 50% binding was observed. Skeletons of Wistar rats showed 1.78 ± 0.5% IA/g at a 3 h time period which was almost constant up to 7 days. MG63 cells were incubated with 3.7 and 37 MBq of 177Lu‐DOTMP for 48 h prior to perform assays. An increase in the magnitude of cell toxicity and apoptotic DNA fragmentation was observed. Enhancement of G2/M phase cell cycle arrest and apoptosis were documented which were dose‐dependent. Thus, 177Lu‐DOTMP induced apoptotic cell death in MG63 cells, which might be one of the primary causes of pain relief in osseous metastases.  相似文献   

7.
The clinical applications of radiolabeled somatostatin analogue 177Lu‐DOTA‐Tyr3‐Thr8‐Octreotide (177Lu‐DOTATATE) constitute a promising treatment option for patients with disseminated and inoperable neuroendocrine (NET) tumors. Formulation of 177Lu‐DOTATATE in hospital radiopharmacy under aseptic conditions in a safe and reliable manner is a major constraint for its extensive use. The present work was intended to develop a kit for the safe preparation of the therapeutic radiopharmaceutical, viz. 177Lu‐DOTATATE of high quality that can be easily adapted at conventional hospital radiopharmacies. Single vial kits of DOTATATE were formulated and evaluated for suitability for radiolabeling as well as stability on its storage. Patient dose of 177Lu‐DOTATATE (7.4 GBq) could be successfully prepared using semi‐automated in‐house setup that assures safe handling and high yields of product of pharmaceutical purity suitable for clinical use. Fast clearance of activity via renal route was observed in preclinical biodistribution studies of 177Lu‐DOTATATE carried out in normal Swiss mice. Deployment of in‐house produced 177LuCl3, cold kits and easy adaptability of synthesis setup at hospital radiopharmacy for preparation is likely to expand applications of peptide receptor radionuclide therapy.  相似文献   

8.
Integrin ανβ3 is a receptor and is highly expressed on activated and proliferating endothelial cells during the growth and metastasis of solid tumors but not on resting endothelial cells and normal organs. Because RGD peptide binds to integrin ανβ3 receptor, a variety of radiolabeled RGD peptides have been evaluated for non‐invasive imaging of integrin ανβ3‐positive tumors. In an attempt to develop RGD‐based radiopharmaceuticals, a novel GluDTPA‐cyclo arginine‐glycine‐aspartic acid‐d ‐phenylalanine‐lysine (GluDTPA‐cycloRGDfK) was simply synthesized and radiolabeled with 177Lu. Also, tumor targeting and retention of the radiolabeled complex were evaluated in U87MG glioma‐bearing mice. The 177Lu‐labeled GluDTPA‐cyclo(RGDfK) was formulated with a high radiolabeling yield (>98%) under mild condition, and the radiochemical purity was sustained in both saline and serum for over 4 days at 37°C. The radiolabeled compounds were rapidly cleared from the blood pool and non‐target tissue. Tumor‐to‐blood ratio was 12.09 at 2 h post injection and increased to 134.67 at 24 h, while tumor to liver ratio was 2.01 at 24 h similar to that of 2 h. Though it is inappropriate for targeted therapy due to its low uptake in tumor (~ 1 %ID/g), the acceptable results on radiochemistry and biodistribution propose to take a further assessment for non‐invasive imaging and detection of integrin ανβ3‐positive tumors by applying diagnostic radionuclides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this study is to develop 177Lu‐5‐Flourouracil as a potential cancer therapeutic radiopharmaceutical. 5‐Flourouracil (5‐FU) is widely accepted as an anticancer drug of broad spectrum fame. The labeling of 5‐FU was carried out at different set of experimental conditions using high specific activity of 177LuCl3. The optimum conditions for maximum radiochemical yield was set: 5‐FU (5 mg), 177LuCl3 (185 MBq), diethylenetriaminepentaacetic acid (10 µg), reaction volume (2 mL), pH (5.5), temperature (80°C), and reaction time (20 min). The radiochemical labeling was assessed with Whatman No. 2 paper, instant thin layer chromatographic, and radio‐HPLC, which revealed >94% labeling results with sufficient stability up to 6 h. Serum stability study also showed 177Lu‐5‐FU promising stability. Biodistribution study in normal rats and rabbits showed liver, stomach, kidney, and heart as area of increased tracer accumulation just after injection, which decreased to 1.4%, 0.4%, 0.2%, and 0.39% ID/g, respectively, after 72 h. Glomerular filtration rate and cytotoxicity study results of 177Lu‐5‐FU showed it had no adverse effect on renal function and nontoxic to blood cells. The promising characteristics of 177Lu‐5‐FU, that is, clever elimination from kidney and nontoxic nature toward blood cells make it the radiopharmaceutical for further testing in patients for therapeutic purposes.  相似文献   

10.
Kanamycin is an antibiotic, isolated from Streptomyces kanamyceticus, which is used to treat serious bacterial infections. The fact that the present radioligand 99mTc‐kanamycin used for diagnosis is short‐lived, raised a need to label and study kanamycin with one of the most important beta (β) radiation emitting isotope 177Lu. Labeling yield of 177Lu‐kanamycin was confirmed by different chromatography techniques such as paper chromatography, TLC, HPLC. Several experiments were performed to optimize labeling with changing reaction conditions such as pH, temperature, amount of ligand, and reaction time. In vitro stability analysis was performed incubation with human serum. Electrophoresis analysis was also conducted to determine the charge on 177Lu‐kanamycin. The biodistribution and scintigraphy were performed in normal mice and rabbit, respectively, at different time intervals of postinjection. 177Lu‐kanamycin was prepared with very high yield (~100%), with excellent stability in vivo and in vitro (>99% 6 hr postprep.), at pH 7. Maximum labeling was achieved at less reaction time (15 min), with maximum conjugation of the ligand (12.5 mg) with 177Lu. Electrophoresis analysis showed net neutral charge. The radioligand showed rapid clearance from body in biodistribution and scintigraphy studies. The preparation 177Lu‐kanamycin could be used as a radio‐pharmaceutical for infection imaging purpose, especially when transporting the radioligand to long‐range distances.  相似文献   

11.
In this study, the radiocomplexation of risedronic acid, a potent bisphosphonate with a no carrier added (NCA) 177Lu, was investigated and followed by quality control studies, biodistribution evaluation, and dosimetry study for human based on biodistribution data in Wistar rats. The moderate energy β emitter, 177Lu (T ½ = 6.7 days, E βmax = 497 keV), has been considered as a potential agent for development of bone‐seeking radiopharmaceuticals. Because the specific activity of the radiolabeled carrier molecules should be high, the NCA radionuclides have an effective role in nuclear medicine. Many researchers illustrated an NCA 177Lu production; among these separation techniques, extraction chromatography has been considered more capable than other methods. The NCA 177Lu was produced with specific activity of 48 Ci/mg and radionuclidic purity of 99.99% by the irradiation of enriched 176Yb target in thermal neutron flux of 4 × 1013 n·cm2·s1 for 14 days. The NCA 177Lu was mixed to a desired amount of sodium risedronate (15 mg/mL, 200 μL) and incubated with stirring at 95°C for 30 minutes. The radiochemical purity of 177Lu‐risedronate was determined by radio thin‐layer chromatography, and high radiochemical purities (>97%) were obtained under optimized reaction conditions . The complex was injected to Wistar rats, and complex biodistribution was performed 4 hours to 7 days postinjections showing high bone uptake (9.8% ± 0.24% ID/g at 48 hours postinjection). Also, modeling the radiation dose delivery by RADAR software for the absorbed dose evaluation of each human organ showed a major accumulation of the radiocomplex in bone tissue.  相似文献   

12.
While radiation synovectomy (RSV) constitutes a successful paradigm for the treatment of arthritis, a major cornerstone of its success resides in the selection of appropriate radiolabeled agent. Among the radionuclide used for RSV, the scope of using 177Lu [T1/2 = 6.65 d, Eβ(max) = 497 keV, Eγ = 113 KeV (6.4%), 208 KeV (11%)] seemed to be attractive owing to its suitable decay characteristics, easy availability, and cost‐effective production route. The present article describes a formulation of 177Lu‐labeled hydroxyapatite (HA) using ready‐to‐use kits of HA particles of 1–10 µm size range. The developed kits enable convenient one‐step preparation of 177Lu‐HA (400 ± 30 MBq doses) in high radiochemical purity (>99%) and stability at hospital radiopharmacy. The preparation showed promising results in pre‐clinical studies carried out in Wistar rats bearing arthritis in knee joints. In preliminary clinical investigation, significant improvement in the disease conditions was reported in 10 patients with rheumatoid arthritis of knee joints treated with 333 ± 46 MBq doses of 177Lu‐HA. The studies reveal that while 177Lu labeled HA particles holds considerable promise as a cost‐effective agent for RSV, the adopted strategy of using HA kits could be a potential step toward wider clinical utilization of radiolanthanide‐labeled HA particles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The purpose of this study was to develop preclinical evaluation of a novel radiolabeled gonadotropin‐releasing hormone (GnRH) receptor targeting peptide for prostate cancer therapy. The new antiproliferative agent of GnRH‐I analogue was developed on the basis of the D‐Trp6‐GnRH‐I scaffold, and in vivo pharmacokinetics and receptor binding affinity were enhanced by the substitution of Gly‐NHNH2 for Gly‐NH2 at position 10 in D‐Trp6‐GnRH‐I. To evaluate 177Lu‐DOTA‐triptorelin‐hydrazide as radionuclide therapy of tumor, the quality control tests and preclinical stage assessment were carried out. Solid‐phase method was used to synthesize new peptide. Characterization and purity of peptide were done by mass spectroscopy and high‐performance liquid chromatography (HPLC). In order to be utilized in targeted therapy, the new GnRH‐I agonist was coupled with pSCN‐Bn‐DOTA. The precipitate crude of DOTA‐triptorelin‐hydrazide was then purified via preparative HPLC. At optimal conditions of time, temperature, ligand amount, and lutetium content, DOTA‐triptorelin‐hydrazide was labeled with 177Lu (specific activity not less than 925 GBq/mg). Investigation of the in vivo biodistribution and in vitro studies for 177Lu‐DOTA‐TRPHYD was performed in three different ways, and the binding of radiopeptide to GnRH receptors was expressed on the human cell lines using 125I‐labeled D‐TRP6GnRH‐I as a tracer, respectively. Synthesized novel GnRH‐I was obtained with purity greater than 98%. Paper chromatography was found to be the most suitable with Rf of the complex and observed radiochemical purity of RTLC and HPLC greater than 97%. For in vivo studies, 177Lu‐DOTA‐triptorelin‐hydrazide showed promising results with fast clearance from the blood and resulted in good T/NT ratios at 1, 4, and 24 hours postinjection and satisfactory biodistribution with no significant activity seen in normal tissue. The values of internalization efficiency and receptor affinity of new radiopeptide binding were IC50 = 0.47 ± 0.06 vs 0.13 ± 0.01 nM for triptorelin and cellular uptake: 3.4 ± 0.7% at 1 hour and 6.8 ± 1.17% at 4 hours of the internal reference. The results showed a good stability and radiochemical purity of the obtained radioconjugate. For in vivo and in vitro studies, new radiopeptide showed a high uptake of 177Lu conjugate in tumor and rapid clearance from the blood stream almost entirely via the renal/urinary pathway and binding to the GnRH receptors with high specificity and affinity, respectively.  相似文献   

14.
Radiolabeled gold nanoparticles may function simultaneously as radiotherapy and thermal ablation systems. The gastrin‐releasing peptide receptor (GRP‐r) is overexpressed in prostate cancer, and Lys3‐bombesin is a peptide that binds with high affinity to the GRP‐r. HIV Tat(49–57) is a cell‐penetrating peptide that reaches the DNA. In cancer cells, 177Lu shows efficient crossfire effect, whereas 99mTc that is internalized in the cancer cell nuclei acts as an effective system of targeted radiotherapy because of the biological Auger effect. The aim of this research was to evaluate the in vitro potential of 99mTc‐labeled and 177Lu‐labeled gold nanoparticles conjugated to Tat(49–57)‐Lys3‐bombesin peptides (99mTc/177Lu‐AuNP‐Tat‐BN) as a plasmonic photothermal therapy and targeted radiotherapy system in PC3 prostate cancer cells. Peptides were conjugated to AuNPs (5 nm) by spontaneous reaction with the thiol group of cysteine (Cys). The effect on PC3 cell viability after laser heating of the AuNP‐Tat‐BN incubated with the cancer cells was conducted using an Nd:YAG laser pulsed for 5 ns at 532 nm (0.65 W/cm2). For the 99mTc/177Lu‐AuNP‐Tat‐BN to be obtained, the 177Lu‐DOTA‐Gly‐Gly‐Cys and 99mTc‐HYNIC‐octreotide radiopeptides were first prepared and added simultaneously to a solution of AuNP‐Tat‐BN. 99mTc/177Lu‐AuNP‐Tat‐BN (20 Bq/cell) was incubated with PC3 cells, and the effect on the cell proliferation was evaluated after 3 days. Fluorescence images of 99mTc/177Lu‐AuNP‐Tat‐BN internalized in nuclei of PC3 were also obtained. After laser irradiation, the presence of AuNP‐Tat‐BN caused a significant increase in the temperature of the medium (46.4 vs 39.5 °C of that without AuNP) resulting in a significant decrease in PC3 cell viability down to 1.3%. After treatment with 99mTc/177Lu‐AuNP‐Tat‐BN, the PC3 cell proliferation was inhibited. The nanosystem exhibited properties suitable for plasmonic photothermal therapy and targeted radiotherapy in the treatment of prostate cancer.  相似文献   

15.
Rituximab is used for the treatment of non‐Hodgkin lymphoma (NHL). This study focuses on development of 68Ga‐labeled rituximab fragments, (68Ga‐NOTA‐F (ab′)‐rituximab and 68Ga‐NOTA‐F (ab′)2‐rituximab, as PET‐imaging agents for NHL. Rituximab was digested with immobilized pepsin and papain to yield F (ab′)2 and Fab fragments respectively that were characterized by size exclusion HPLC (SE‐HPLC) and SDS‐PAGE. They were conjugated with p‐SCN‐Bn‐NOTA, labeled with 68Ga and characterized by SE‐HPLC. Intact rituximab was labeled with gallium‐68 for comparison. Specificity of 68Ga‐labeled immunoconjugates was ascertained by immunoreactivity and cell binding studies in Raji cells, while biodistribution studies were performed in normal Swiss mice. Gradient SDS‐PAGE under nonreducing condition showed molecular weights of F (ab′)2‐rituximab and F (ab′)‐rituximab as approximately 100 and 40 Kd, respectively. Radiochemical purity (RCP) of 68Ga‐NOTA‐F (ab′)2‐rituximab and 68Ga‐NOTA‐F (ab′)‐rituximab were 98.2 ± 0.5% and 98.8 ± 0.2% respectively with retention times of 17.1 ± 0.1 min and 19.3 ± 0.1 min in SE‐HPLC. 68Ga‐labeled rituximab fragments were stable in saline and serum up to 2‐hour post preparation and exhibited specificity to CD20 antigen. Immunoreactivity of 68Ga‐labeled immunoconjugates was greater than 80%. Clearance of the fragmented radioimmunoconjugates was predominantly through renal route. Preliminary results from this study demonstrate the potential of 68Ga‐ NOTA‐F (ab′)2‐rituximab and 68Ga‐NOTA‐F (ab′)‐rituximab as PET imaging agents for NHL.  相似文献   

16.
Radiolabelled monoclonal antibodies (mAbs) are increasingly being utilized in cancer theranostics, which is a significant move toward tailored treatment for individual patients. Cetuximab is a recombinant, human–mouse chimeric IgG1 mAb that binds to the epidermal growth factor receptor with high affinity. We have optimized a protocol for formulation of clinically relevant doses (~2.22 GBq) of 90Y‐labelled Cetuximab and 177Lu‐labelled Cetuximab by conjugation of the mAb with a suitable bifunctional chelator, N‐[(R)‐2‐amino‐3‐(paraisothiocyanato‐phenyl)propyl]‐trans‐(S,S)‐cyclohexane‐1,2‐diamine‐N,N,N′,N″,N″‐pentaacetic acid (CHX‐A″‐DTPA). The radioimmunoconjugates demonstrated reasonably high specific activity (1.26 ± 0.27 GBq/mg for 90Y‐CHX‐A″‐DTPA‐Cetuximab and 1.14 ± 0.15 GBq/mg for 177Lu‐CHX‐A″‐DTPA‐Cetuximab), high radiochemical purity (>95%) and appreciable in vitro stability under physiological conditions. Preliminary biodistribution studies with both 90Y‐CHX‐A″‐DTPA‐Cetuximab and 177Lu‐CHX‐A″‐DTPA‐Cetuximab in Swiss mice bearing fibrosarcoma tumours demonstrated significant tumour uptake at 24‐h post‐injection (p.i.) (~16%ID/g) with good tumour‐to‐background contrast. The results of the biodistribution studies were further corroborated by ex vivo Cerenkov luminescence imaging after administration of 90Y‐CHX‐A″‐DTPA‐Cetuximab in tumour‐bearing mice. The tumour uptake at 24 h p.i. was significantly reduced with excess unlabelled Cetuximab, suggesting that the uptake was receptor mediated. The results of this study hold promise, and this strategy should be further explored for clinical translation.  相似文献   

17.
A major drawback of conventionally radioiodinated monoclonal antibodies for radioimmunotherapy is in vivo dehalogenation of iodine as a result of deiodinase recognition. To solve this problem we have synthesized a YYK tri‐peptide consisting of non‐metabolizable D ‐amino acids modified with the N‐succinimidyl (N‐Succ) function. The chemical purity of the synthesized peptide as assessed by analytical high performance liquid chromatography was 95%. Labeling of the Fmoc‐D ‐Tyr(tBu)‐D ‐Tyr(tBu)‐D ‐Lys(Boc)‐N‐Succ was performed using the chloramine‐T method and the conventional extraction, resulting in a radiochemical yield of 50–71% and a radiochemical purity of >95%. Radioiodination of the peptide was followed by conjugation to anti‐CD20 antibody with 65–75% labeling efficiency and 90% radiochemical purity. The effect of radioiodinated peptide on the biological behavior of the conjugate was evaluated through biodistribution studies in normal Lewis rats. Thyroid and stomach levels from Rituximab labeled with [131I]‐YYK‐peptide were two‐ to four‐fold less than those with directly labeled [131I]‐Rituximab, suggesting low recognition of its D ‐iodotyrosine residue by endogenous deiodinases. The favorable in vitro/in vivo stability and biodistribution profiles suggest that this radioiodine‐labeled YYK peptide is a good candidate for further exploration of its potential clinical application. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Monoclonal antibodies have emerged as novel oncology therapeutics. These biologics exert anticancer effects via a variety of mechanisms of action including modulating the function of key regulatory molecules and signaling pathways of tumor cells such as blocking growth factor/receptor interaction and/or down‐regulating expression of oncogenic proteins (e.g., growth factor receptors) on the cell surface; recruiting effector mechanisms of the immune system, such as antibody‐dependent cellular cytotoxicity and complement‐mediated cytotoxicity; as a targeting device in immnuoconjugates; and other mechanisms such as anti‐idiotype, catalytic antibodies, or antibodies that modulate patient's immune responses to tumors. In this review, we focus on the research and development experience of four such representative antibody therapeutics, rituximab (Rituxan®), trastuzumab (Herceptin®), cetuximab (Erbitux®), and bevacizumab (Avastin®), approved for treating non‐Hodgkin's lymphoma, metastatic breast cancer, and colorectal cancer, respectively. The biology behind each antibody target, their proposed mechanisms of action, as well as preclinical and clinical development of these antibodies are the topics of this article. Experience drawn from the development process of these four antibodies is instrumental for ongoing and future antibody development activities. In addition, perspective views on challenges and opportunities of oncology antibody therapeutics are presented. Drug Dev. Res. 67:699–728, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

19.
The radiotracer, [18F]‐THK‐5351, is a highly selective and high‐binding affinity PET imaging agent for aggregates of hyper‐phosphorylated tau protein. Our report is a simplified 1‐pot, 2‐step radiosynthesis of [18F]‐THK‐5351. This report is broadly applicable for routine clinical production and multi‐center trials on account of favorable half‐life of flourine‐18 and the use of a commercially available radiosynthesis module, the GE TRACERlab™ FXFN. First, the O‐THP protected tosyl precursor underwent nucleophilic fluorinating reaction with potassium cryptand fluoride ([18F] fluoride (K[18F]/K222)) in Dimethyl sulfoxide at 110°C for 10 minutes followed by O‐THP removal by using diluted hydrochloric acid (HCl) at same temperature. [18F]‐THK‐5351 was purified via semi‐preparative high‐performance liquid chromatography and formulated by using 10% EtOH, United States Pharmacopeia (USP) in 0.9% sodium chloride for injection, USP and an uncorrected radiochemical yield of 21 ± 3.5%, with a specific activity of 153.11 ± 25.9 GBq/μmol (4138 ± 700 mCi/μmol) at the end of synthesis (63 minutes; n  = 3).  相似文献   

20.
LS177 is a novel inhibitor of mesenchymal epithelial transition (MET) that was used as an anticancer agent. The present study was to evaluate the absolute bioavailability of LS177 in rats. A rapid and sensitive ultra‐high performance liquid chromatography‐mass spectrometry (UHPLC‐MS/MS) method has been developed and validated for the determination of LS177 in rat plasma. LS177 and internal standard (IS, LS410) were extracted from rat plasma samples by protein precipitation (PPT) for intravenous group and liquid‐liquid extraction (LLE) procedure for oral group, then separated on a Phenomenex Kinetex XB‐C18 (2.1 mm I.D. × 50 mm, 2.6 µm) using a mobile phase consisting of 0.1% formic acid in acetonitrile‐0.1% formic acid water with a gradient elution program. The standard curves were linear over the ranges of 5.0–2000.0 ng · mL‐1 for PPT and 1.0–200.0 ng · mL‐1 for LLE. The mean recovery of LS177 was greater than 83.4% for PPT and not less than 88.5% for LLE, respectively. The intra‐ and inter‐day accuracy and precision were within the acceptable limits of less than 15.0% at all concentrations. The validated method was successfully applied to the bioavailability study in rat plasma of LS177 and its absolute bioavailability was 25.37%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号