首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a new type of organic Ca2+ channel blocker, NC-1100 [(±)-1-(3,4-dimethoxyphenyl)-2-(4-diphenylmethylpiperazinyl)ethanol dihydrochloride], on both low- and high-threshold Ca2+ currents was studied in the whole-cell mode of the pyramidal neurons freshly dissociated from rat hippocampal CA1 region under voltage-clamp condition. The NC-1100 reversibly reduced the high-threshold Ca2+ current (HVAICa) in a concentration-dependent manner without affecting the current-voltage relationship. The values of half-inhibition (IC50) were 1.3 × 10−5 and 9.1 × 10−6M in external solution containing 10 and 2.5 mM Ca2+, respectively. The NC-1100 also decreased the low-threshold Ca2+ current (LVAICa) in a concentration-dependent manner. The inhibitory potency was augmented by increasing the stimulation frequency and / or decreasing the extracellular Ca2+ concentration to a physiological range (2.5 mM). The IC50 value decreased to 7.7 × 10−7M in external solution containing 2.5 mM Ca2+ at a stimulation frequency of 1 Hz. The NC-1100 delayed the reactivation of LVA Ca2+ channel and enhanced voltage-dependently the steady-state inactivation, suggesting that this drug bound not only the resting LVA Ca2+ channel but also the inactivated one.  相似文献   

2.
The effect of a dihydropyridine Ca2+ antagonist, cilnidipine, on voltage-dependent Ca2+ channels was studied in acutely dissociated rat CA1 pyramidal neurons using the nystatin-perforated patch recording configuration under voltage-clamp conditions. Cilnidipine had no effect on low-voltage-activated (LVA) Ca2+ channels at the low concentrations under 10−6 M. On the other hand, cilnidipine inhibited the high-voltage-activated (HVA) Ca2+ current (ICa) in a concentration-dependent manner and the inhibition curve showed a step-wise pattern; cilnidipine selectively reduced only L-type HVA ICa at the low concentrations under 10−7 and 10−6 M cilnidipine blocked not only L- but also N-type HVA ICa. At the high concentration over 10−6 M cilnidipine non-selectively blocked the T-type LVA and P/Q- and R-type HVA Ca2+ channels. This is the first report that cilnidipine at lower concentration of 10−6 M blocks both L- and N-type HVA ICa in the hippocampal neurons.  相似文献   

3.
Effects of nilvadipine on the low- and high-voltage activated Ca2+ currents (LVA and HVA ICa, respectively) were compared with other organic Ca2+ antagonists in acutely dissociated rat hippocampal CA1 pyramidal neurons. The inhibitory effects of nilvadipine, amlodipine and flunarizine on LVA ICa were concentration- and use-dependent. The apparent half-maximum inhibitory concentrations (IC50s) at every 1- and 30-s stimulation were 6.3×10−7 M and 1.8×10−6 M for flunarizine, 1.9×10−6 M and 7.6×10−6 M for nilvadipine, and 4.0×10−6 M and 8.0×10−6 M for amlodipine, respectively. Thus, the strength of the use-dependence was in the sequence of nilvadipine>flunarizine>amlodipine. Nilvadipine also inhibited the HVA ICa in a concentration-dependent manner with an IC50 of 1.5×10−7 M. The hippocampal CA1 neurons were observed to have five pharmacologically distinct HVA Ca2+ channel subtypes consisting of L-, N-, P-, Q- and R-types. Nilvadipine selectively inhibited the L-type Ca2+ channel current which comprised 34% of the total HVA ICa. On the other hand, amlodipine non-selectively inhibited the HVA Ca2+ channel subtypes. These results suggest that the inhibitory effect of nilvadipine on the neuronal Ca2+ influx through both LVA and HVA L-type Ca2+ channels, in combination with the cerebral vasodilatory action, may prevent neuronal damage during ischemia.  相似文献   

4.
The effects of Bay K 8644 on the reactivity and 45Ca2+ uptake in segments from human cerebral arteries were studied. Bay K 8644 induced concentration-dependent contractions up to 10−6 M; 10−5 M produced a reduction of the maximal response. The Ca2+ agonist elicited these contractions by itself, and no previous depolarization was needed. The response to Bay K 8644 was antagonized competitively by nifedipine (5 × 10−8 and 10−7 M, πA2 value of 8.17) and non-competitively by verapamil (10−6, 5 × 10−6 and 10−5 M). The contraction induced by 10−7 M Bay K 8644 was inhibited by a Ca2+-free medium containing 1 mM EGTA. The subsequent cumulative Ca2+ addition, caused concentration-dependent contractions up to 2.5 mM Ca2+, which were reduced by nifedipine (10−8 and 10−7 M) or verapamil (5 × 10−6 and 10−5 M). When the EGTA concentration in the Ca2+-free solution was reduced to 0.1 mM, contractions induced by Ca2+ up to 5 mM, including 0 Ca2+, were increased with respect to those obtained in the presence of 1 mM EGTA. Basal 45Ca2+ uptake was not modified with Bay K 8644 (10−6 M) or nifedipine (10−6 M). K+ (25 and 50 mM) produced an increase on 45Ca2+ uptake, which was potentiated by Bay K 8644 (10−6 M) and antagonized by nifedipine (10−6 M); this latter agent reduced the potentiation elicited by the Ca2+ agonist. These results suggest that contractions caused by Bay K 8644 in human cerebral arteries are produced by the opening of the voltage-dependent Ca2+ channels present in vascular smooth muscle cells, which appear to be preactivated in a basal situation, facilitating Ca2+ influx. Nevertheless, Bay K 8644 needed a previous cell depolarization to produce an increase in 45Ca2+ uptake.  相似文献   

5.
Voltage-activated Ca2+ currents have been studied in pyramidal cells isolated enzymatically from the dorsal cochlear nuclei of 6–11-day-old Wistar rats, using whole-cell voltage-clamp. From hyperpolarized membrane potentials, the neurones exhibited a T-type Ca2+ current on depolarizations positive to −90 mV (the maximum occurred at about −40 mV). The magnitude of the T-current varied considerably from cell to cell (−56 to −852 pA) while its steady-state inactivation was consistent (E50=−88.2±1.7 mV, s=−6.0±0.4 mV). The maximum of high-voltage activated (HVA) Ca2+ currents was observed at about −15 mV. At a membrane potential of −10 mV the L-type Ca2+ channel blocker nifedipine (10 μM) inhibited approximately 60% of the HVA current, the N-type channel inhibitor ω-Conotoxin GVIA (2 μM) reduced the current by 25% while the P/Q-type channel blocker ω-Agatoxin IVA (200 nM) blocked a further 10%. The presence of the N- and P/Q-type Ca2+ channels was confirmed by immunochemical methods. The metabotropic glutamate receptor agonist (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (200 μM) depressed the HVA current in every cell studied (a block of approximately 7% on an average). The GABAB receptor agonist baclofen (100 μM) reversibly inhibited 25% of the HVA current. Simultaneous application of ω-Conotoxin GVIA and baclofen suggested that this inhibition could be attributed to the nearly complete blockade of the N-type channels. Possible physiological functions of the voltage-activated Ca2+ currents reported in this work are discussed.  相似文献   

6.
Following mobilization with the inositol 1,4,5-trisphosphate (IP3)-generating agonist bradykinin, Ca2+ stores in neuroblastoma × glioma hybrid, NG108-15 cells require extracellular Ca2+ to refill. The process by which this store refills with Ca2+ was characterized by recording bradykinin-induced intracellular free Ca2+ concentration transients as an index of the degree of refilling of the store. Cyclopiazonic acid, a microsomal Ca2+ ATPase inhibitor, reversibly depleted intracellular Ca2+ stores in these cells, but did not recruit detectable Ca2+ influx, suggesting that these cells lack substantial capacitative Ca2+ entry. The paucity of voltage-sensitive Ca2+ channels in undifferentiated NG108-15 cells, suggested that a channel analogous to that proposed to mediate capacitative Ca2+ entry in nonexcitable cells might assist refilling IP3-sensitive Ca2+ stores in these cells. The possibility that compounds shown previously to inhibit capacitative Ca2+ entry in nonexcitable cells might inhibit the refilling of the IP3-sensitive store in NG108-15 cells was explored. The IP3-sensitive store was depleted by exposure to bradykinin, allowed to refill briefly in the presence of the test compound and then challenged again with bradykinin to evaluate the degree of refilling of the store. The imidazole derivatives, econazole (10 μM), L-651582 (10 μM)and SKF 96365 (20 μM), all completely blocked the bradykinin-induced Ca2+ response. Calmodulin antagonists, W-7 (100 μM)and trifluoperazine (10 μM), were also effective, although at concentrations well above those required to inhibit calmodulin. Because of the high concentrations required to inhibit bradykinin responses, the possibility that these agents might have additional effects was explored. Compounds were tested in a paradigm in which the store was preloaded with Ca2+ before treatment. All of these agents depleted, at least partially, the preloaded store. Econazole was the least effective of the compounds tested for releasing stores, although it was comparable to the other compounds for inhibition of refilling. Although NG108-15 cells refill intracellular Ca2+ stores by a plasmalemmal Ca2+ leak, this leak shares a pharmacology similar to the capacitative Ca2+ entry pathway described for nonexcitable cells.  相似文献   

7.
Preparations of lysed synaptosomes exhibit a high affinity Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ accumulation activity, with aKm forCa2+ 0.5 μM, close to the cytosolic concentration of Ca2+. When these membrane suspensions were incubated with cholinergic agonists muscarine or oxotremorine (1–20 μM), both Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake were inhibited in a concentration-dependent fashion. Atropine alone (0.5–1.0 μM) had no effect on either enzyme or uptake activity, but significantly inhibited the actions of both muscarine and oxotremorine. No significant effects by cholinergic agonists or antagonists were seen on fast or slow phase voltage-dependent Ca2+ channels or Na+-Ca2+ exchange. These results suggest that activation of presynaptic muscarinic receptors produce inhibition of two processes required for the buffering of optimal free Ca2+ by the nerve terminal. Activation of presynaptic muscarinic receptors have been reported to reduce the release of ACh from nerve terminals. Alterations in intracellular free Ca2+ may contribute to a reduction in transmitter (ACh) release seen following activation of cholinergic receptors.  相似文献   

8.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

9.
Ionic currents were investigated by a patch clamp technique in a clonal strain of pituitary (GH3) cells, using the whole cell configuration with Cs+ internal solution. Depolarizing pulses positive to 0 mV from a holding potential of −50 mV activated the voltage-dependent L-type Ca2+ current (ICa,L) and late outward current. Upon repolarization to the holding potential, a slowly decaying inward tail current was also observed. This inward tail current upon repolarization following a depolarizing pulse was found to be enhanced by Bay K 8644, but blocked by nifedipine or tetrandrine. This current was eliminated by Ba2+ replacement of external Ca2+ as the charge carrier through Ca2+ channels, removal of Ca2+ from the bath solution, or buffering intracellular Ca2+ with EGTA (10 mM). The reversal potential of inward tail current was approximately −25 mV. When intracellular Cl was changed, the reversal potential of the Ca2+-activated currents was not shifted. Thus, this current is elicited by depolarizing pulses that activate ICa,L and allow Ca2+ influx, and is referred to as Ca2+-activated nonselective cationic current (ICAN). Without including EGTA in the patch pipette, the slowly decaying inward current underlying the long-lasting depolarizing potential after Ca2+ spike was also observed with a hybrid current–voltage protocol. Thus, the present studies clearly indicate that Ca2+-activated nonselective cationic channels are expressed in GH3 cells, and can be elicited by the depolarizing stimuli that lead to the activation of ICa,L.  相似文献   

10.
The effect of dibutyryl cGMP (dbcGMP), a membrane permeant cGMP analogue, on cytosolic concentrations of Ca2+ ([Ca2+]i) was studied in cultured nodose ganglion neurons of the rabbit using fura-2AM and microfluorometry. Application of dbcGMP (10–1000 μM) increased [Ca2+]i in 42% of neurons (n=67). The effect was observed in a dose-dependent fashion. The threshold dose was 100 μM and the increase at 500 μM averaged 117±8%. Removal of extracellular Ca2+ abolished the dbcGMP effect. Application of Ni2+ (1 mM) or neomycin (50 μM), a non-L-type voltage-gated Ca2+ channel (VGCC) antagonist, eliminated the dbcGMP effect. ω-conotoxin GVIA (2 μM), the N-type Ca2+ channel antagonist, or L-type Ca2+ channel antagonists (D600, 50 μM, or nifedipine, 10 μM) did not alter the dbcGMP effect. Ryanodine (10 μM) did not alter the effect of dbcGMP. Therefore, cGMP could play a part of role of an intracellular messenger in primary sensory neurons of the autonomic nervous system.  相似文献   

11.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

12.
Effects of Zn2+ and other polyvalent cations on glycine-induced currents in the freshly dissociated rat dorsal motor nucleus of the vagus neurons were investigated under voltage-clamp conditions by the use of the nystatin-perforated patch recording configuration. Glycine evoked a Cl current in a concentration-dependent manner with a half-maximum effective concentration (EC50) of 3.3×10−5 M. Strychnine inhibited the 3×10−5 M glycine-induced current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 6.8×10−7 M. At low concentrations (3×10−8 M–3×10−6 M), Zn2+ potentiated the current elicited by 3×10−5 M glycine. On the other hand, at concentrations higher than 10−5 M, Zn2+ inhibited the glycine response. The biphasic action of Zn2+ was mimicked by Ni2+, but La3+ and Co2+ had only potentiating effect. Zn2+ shifted the concentration–response curve for the glycine-induced current without changing the maximum response, and the EC50 values for the glycine response in the absence and presence of 10−6 M and 10−4 M Zn2+ were 3.3×10−5 M, 1.3×10−5 M and 1.3×10−4 M, respectively. These results suggest that the biphasic modulation of glycine response by Zn2+ results from changes in apparent glycine affinity.  相似文献   

13.
A culture system of the postnatal rat retina was established to investigate Ca2+ currents and synaptic transmission in identified neurons. Methods are described that allowed us to select retinal ganglion neurons (RGNs) in short term cultures (up to 48 h in vitro) and in long-term cultures (3 to 21 days in vitro). The specific aim of the present study was to identify channel specific components in whole-cell Ca2+ currents of RGNs and to clarify the potential use of the lanthanide Gd3+ as a selective Ca2+ channel blocker. About one third of freshly dissociated RGNs generated both low voltage activated Ca2+ currents (ICa(LVA)) and high voltage activated Ca2+ currents (ICa(HVA)). The remaining 2/3 of RGNs in short term culture and most RGNs in long-term culture displayed only ICa(HVA). The latter comprised at least three different components that were functionally rather similar, but could be separated pharmacologically. A significant portion (about 40%) of ICa(HVA) was irreversible blocked by the N channel antagonist ω-CgTx (5 μM). The L channel antagonist nifedipine (10 μM) eliminated about 25% of ICa(HVA). Thus, about 1/3 of the HVA Ca2+ or Ba2+ current remained unaffected by either ω-CgTx or nifedipine. ω-AgaTx (200 nM) completely failed to block HVA Ca2+ or Ba2+ currents in RGNs. Gd3+ exerted contrasting actions on LVA and HVA Ca2+ currents. While ICa(LVA) consistently increased in the presence of Gd3+ (0.32–3.2 μM), ICa(HVA) always decreased, especially when using higher concentrations of Gd3+ (10–32 μM). The blocking action of Gd3+ was not restricted to the ω-CgTx-sensitive HVA current component, but also concerned ω-CgTx- and nifedipine-resistant components. The decay of Ca2+ currents was accelerated in the presence of Gd3+. Even in RGNs lacking ICa(LVA), application of 3.2 μM Gd3+ significantly reduced the time constant of decay from an average of 64 ms to 36 ms (voltage steps from −90 to 0 mV; 10 mM [Ca2+]0; 26°C). This is in contrast to what had to be expected if an N-type HVA current component was selectively suppressed by Gd3+. Gd3+ diminished glutamatergic spontaneous synaptic activity in retinal cultures tested during the 3rd week in vitro. Both frequency and amplitude were reduced. Occasionally, the application was followed by a rebound increase of EPSC frequency. A stimulatory effect during application of Gd3+ has never been observed. These experiments indicate that RGNs express at least 4 different types of Ca2+ currents, that resemble in some aspects T, N and L channel currents. A significant component of the HVA Ca2+ current was resistant to the available HVA channel blockers suggesting the presence of a pharmacologically distinct type of HVA Ca2+ channel type in RGNs. Our experiments also show that Gd3+ is not suitable for isolation of HVA subcomponents in RGNs, but it can be used to distinguish between LVA and HVA Ca2+ currents, as these currents reacted to Gd3+ in an opposite way. The purely depressive effect of this lanthanide on spontaneous synaptic activity is consistent with the assumption that in retinal neurons LVA Ca2+ channels are not involved in the regulation of glutamate release.  相似文献   

14.
Previous studies resulted in conflicting conclusions that glutamate application either decreases or increases the activity of Ca2+ channels in hippocampal neurons. We studied whole-cell Ca2+ currents (ICa) in chick dorsal root ganglion neurons and rat hippocampal cells. For both cell types glutamate (1–30 μM) increased high-threshold Ca2+ current. It was independent of the charge carriers, Ca2+ or Ba2+. Low-threshold Ca2+ channel current and the fast sodium current were not changed with glutamate application. The effect developed within 1–2 min and then further facilitated after washout of the agonist. A second application of glutamate produced no additional increase in ICa. No changes in the time-course of whole-cell currents were observed, suggesting that glutamate recruits ‘sleepy’ Ca2+ channels. Whatever its mechanism, overlasting increase of ICa by glutamate may be important in neuronal plasticity.  相似文献   

15.
The afterhyperpolarization (AHP) of an action potential in the bullfrog sympathetic ganglion cell was highly sensitive to anions (a factor affecting Ca2+ release16) filled in a recording electrode; it was slower for citrate ion than for Cl. The AHP recorded with a ‘KCl-electrode’ was suppressed drastically by D-600 (Ca2+-antagonist6) and prolonged significantly by caffeine (promoting Ca2+ release4,9), while the AHP recorded with a ‘K3-citrate-electrode’ was affected only slightly by these agents. Thus, these results suggest that Ca2+ entry during an action potential is the main origin of Ca2+ for the AHP recorded with a ‘KCl-electrode’, and favour the idea that the intracellular release of Ca2+ by an action potential as well as the Ca2+ influx participates in the mechanism of the AHP recorded with a ‘K3-citrate-electrode’.  相似文献   

16.
The Ca2+ channel blocking action of synthetic ω-conotoxin (ωCTX) was studied on isolated frog dorsal root ganglion neurons using a ‘concentration clamp’ technique which enabled internal perfusion and rapid external solution change. At 100 nM, ωCTX showed a time-dependent depression of Ca2+ current (ICa). At higher concentrations, ωCTX exhibited a dose-dependent depression of ICa amplitude without changing the current-voltage relationship. Increases in external Ca2+ concentration partly overcame the inhibitory action of ωCTX on the ICa amplitude. At 10 μM ωCTX totally blocked ICa without effect on the Na+ current. It was likely that ωCTX had high selectivity for the Ca2+ channel.  相似文献   

17.
Summary Dantrolene has been known to affect intracellular Ca2+ concentration ([Ca2+]i) by inhibiting Ca2+ release from intracellular stores in cultured neurons. We were interested in examining this property of dantrolene in influencing the [Ca2+]i affected by the NMDA receptor ligands, KCl, L-type Ca2+ channel blocker nifedipine, and two other intracellular Ca2+-mobilizing agents caffeine and bradykinin. Effect of dantrolene on the spontaneous oscillation of [Ca2+]i was also examined. Dantrolene in M concentrations dose-dependently inhibited the increase in [Ca2+]i elicited by NMDA and KCl. AP-5, MK-801 (NMDA antagonists), and nifedipine respectively reduced the NMDA and KCl-induced increase in [Ca2+]i. Dantrolene, added to the buffer solution together with the antagonists or nifedipine, caused a further reduction in [Ca2+]i to a degree similar to that seen with dantrolene alone inhibiting the increase in [Ca2+]i caused by NMDA or KCl. At 30 M, dantrolene partially inhibited caffeine-induced increase in [Ca2+]i whereas it has no effect on the bradykinin-induced change in [Ca2+]i. The spontaneous oscillation of [Ca2+]i in frontal cortical neurons was reduced both in amplitude and in base line concentration in the presence of 10 M dantrolene. Our results indicate that dantrolene's mobilizing effects on intracellular Ca2+ stores operate independently from the influxed Ca2+ and that a component of the apparent increase in [Ca2+]i elicited by NMDA or KCl represents a dantrolene-sensitive Ca2+ release from intracellular stores. Results also suggest that dantrolene does not affect the IP3-gated release of intracellular Ca2+ and that the spontaneous Ca2+ oscillation is, at least partially, under the control of Ca2+ mobilization from internal stores.Abbreviations AP-5 (±)-2-amino-5-phosphonopentanoic acid - AMPA amino-3-hydroxy-5-methyl-isoxazole-4-propionate - BSS balanced salt solution - CNS central nervous system - CICR Ca2+-induced Ca2+ release - DCKA 5,7-dichlorokynurenate - DNasel deoxyribonuclease I - DMEM Dulbecco's Modified Eagle's Medium - EGTA ethylene glycol-bis(-aminoethyl ether)N,N,N,N,-tetraacetic acid - FCS fetal calf serum - fura-2-AM 1-(2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy-2-ethane-N,N,N,N-te-traacetic acid, pentaacetoxymethyl ester - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulfonic acid] - [Ca 2+] i intracellular free Ca2+ concentration - LTP long-term potantiation - MK-801 (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate  相似文献   

18.
The Ca2+-antagonistic action of bevantolol, aβ1-adrenoceptor antagonist, on high- and low-voltage activated Ca2+ currents (HVA- and LVA-ICa) was examined on neurons dissociated from rat brain. Bevantolol (10−6 to 10−4 M) inhibited concentration-dependently bothICa. The IC50 value of bevantolol for LVA-ICa was 4 × 10−5 M, while bevantolol at 10−4 M inhibited HVA-ICa by 28.5 ± 7.7%. The potency of bevantolol in inhibiting bothICa was greater than those of propranolol, labetalol and lidocaine, while the inhibitory action of bevantolol on voltage-activated Na+ current was weakest among them. Bevantolol may possess Ca2+-antagonistic action that is independent from local anesthetic action.  相似文献   

19.
The effect of regucalcin, a Ca2+-binding protein, on Ca2+-dependent protein kinase activity in the brain cytosol of rats with different ages (5 and 50 weeks old) was investigated. The addition of calmodulin (10 μg/ml) or dioctanoylglycerol (5 μg/ml) in the enzyme reaction mixture caused a significant increase in protein kinase activity in the presence of CaCl2 (1 mM), indicating that Ca2+ calmodulin or protein kinase C is present in the cytosol. Such an increase was completely prevented by the addition of regucalcin (10−7 M). Moreover, regucalcin (10−7 M) significantly inhibited cytosolic protein kinase activity without Ca2+/calmodulin or dioctanoylglycerol addition. Meanwhile, the presence of anti-regucalcin monoclonal antibody (10–50 ng/ml) in the enzyme reaction mixture caused a significant elevation of protein kinase activity, suggesting an inhibitory effect of endogenous regucalcin. Brain cytosolic protein kinase activity was significantly elevated by increasing age (50-week-old rats). Also, regucalcin (10−7 M) significantly decreased protein kinase activity without Ca2+ addition in the brain cytosol of aged rats. However, the effect of anti-regucalcin monoclonal antibody (50 ng/ml) in elevating protein kinase activity was not seen in the brain cytosol of aged rats. These results suggest that regucalcin has an inhibitory effect on Ca2+-dependent protein kinase activity in rat brain cytosol, and that the effect of endogenous regucalcin may be weakened in the brain cytosol of aged rats.  相似文献   

20.
Lactate production (Jlac), oxygen consumption rate (QO2), plasma membrane potentials (Em) and cytosolic free calcium levels [Ca2+]i were studied on symaptosomes isolated from rat brains, incubated in presence of high doses of nicardipine (90 μM), diltiazem (0.5 mM) and verapamil (0.25 mM), and submitted to depolarizing stimulation or inhibition of mitochondrial respiration. Nicardipine was able to completely prevent the veratridine-induced stimulation ofJlac, QO2andEm depolarization, whereas diltiazem and verapamil were less effective, although the concentrations used were 5 and 3 times higher, respectively, than nicardipine. Diltiazem, verapamil and nicardipine (9 μM) also prevented the veratridine-induced increase in [Ca2+]i, this effect being much less pronounced if the drugs were added after veratridine. Monensin (20 μM) was also able to increase [Ca2+]i but this effect was not affected by verapamil. Synaptosomes were also submitted to an inhibition of respiration of intrasynaptic mitochondria by incubation with rotenone (5 μM); in this condition of mimicked hypoxiaEm was more positive of about 11 mV; none of the drugs utilized modified this situation. The rotenone-induced 3-fold increase inJlac was barely modified by diltiazem and verapamil but it was completely abolished by nicardipine. The possible mechanism of the counteracting action of the drugs towards veratridine stimulation and rotenone inhibition and the involvement of Na+/Ca2+ exchanger in affecting [Ca2+]i are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号