首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Zn(2+) is a ubiquitous ambient air contaminant that is found as a constituent of airborne particulate matter (PM). Previous studies have associated Zn(2+) levels in PM with health effects in exposed populations and have shown proinflammatory properties of Zn(2+) exposure in vivo and in vitro. In the present study, we studied the mechanisms of epidermal growth factor receptor (EGFR) dimerization, phosphorylation, and kinase activity in A431 cells treated with Zn(2+). EGF, but not Zn(2+), induced dimerization of EGFR in A431 cells and membrane extracts. Like EGF, Zn(2+) induced phosphorylation of EGFR at tyrosines 845, 1068, and 1173. However, unlike EGF, Zn(2+) failed to induce detectable dimerization of EGFR. The EGFR kinase inhibitor PD153035 ablated all phosphorylation induced by EGF but none caused by Zn(2+). PD153035 abolished EGF-induced phosphorylation of the EGFR substrate Cbl, but had no effect on levels of phospho-Cbl caused by Zn(2+). Inhibition of EGFR kinase activity did, however, blunt Zn(2+)-induced phosphorylation of ERK. Exposure to Zn(2+), but not EGF, induced phosphorylation of the activating site of c-Src (tyrosine 416), and Zn(2+)-induced phosphorylation of EGFR at tyrosines 845 and 1068 was blocked by the c-Src kinase activity inhibitor PP2. In summary, Zn(2+) ions induce EGFR phosphorylation in a manner dependent on c-Src but not on EGFR dimerization or EGFR kinase activation, suggesting that Zn(2+) induces EGFR transactivation by c-Src.  相似文献   

2.
TGF-β抑制哮喘上皮细胞中EGFR/MAPK信号通路和细胞增殖   总被引:1,自引:0,他引:1  
目的评估转化生长因子β1(TGF-β1)在哮喘中调控上皮细胞修复的重要作用。方法通过将哮喘患者的上皮细胞与健康志愿者的上皮细胞相比较,评估TGF-β1对于表皮生长因子(EGF)诱导的增殖及其下游信号的影响。用溴代脱氧尿嘧啶核苷掺入法检测细胞增殖。结果通过将哮喘患者与健康志愿者的上皮细胞相比较,发现上皮细胞的基础增殖和EGF刺激后的增殖都明显减少,而且,ERK1/2磷酸化也减少了,这与EGFR磷酸化的减少相一致。TGF-β1的增加明显减少了EGF诱导的细胞增殖。哮喘细胞与正常细胞相比含有更多的TGF-β1。结论提示在支气管上皮细胞中,TGF-β抑制了EGFR磷酸化及其下游信号。  相似文献   

3.
Tsai PC  Hsieh CY  Chiu CC  Wang CK  Chang LS  Lin SR 《Toxicon》2012,60(5):734-743
Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. Epidermal growth factor (EGF) and its receptor, EGFR, play roles in cancer metastasis in various tumors. We use EGF as a metastatic inducer of MDA-MB-231 cells to investigate the effect of CTX III on cell migration. CTX III inhibited the EGF-induced activation of matrix metalloproteinase-9 (MMP-9), and further suppressed cell invasion and migration without obvious cellular cytotoxicity. CTX III suppressed EGF-induced nuclear factor-kappaB (NF-κB) nuclear translocation and also abrogated the EGF-induced phosphorylation of EGFR, phosphatidylinositol 3-kinase (PI3K)/Akt, and extracellular regulated kinase (ERK)1/2. In addition, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an up-stream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by EGF. Furthermore, the EGFR inhibitor AG1478 inhibited EGF-induced MMP-9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occur downstream of EGFR activation. These findings suggest that CTX III inhibited the EGF-induced invasion and migration of MDA-MB-231 cells via EGFR-dependent PI3K/Akt, ERK1/2, and NF-κB signaling, leading to the down-regulation of MMP-9 expression. These results provide a novel mechanism to explain the role of CTX III as a potent anti-metastatic agent in MDA-MB-231 cells.  相似文献   

4.
Han HJ  Yoon BC  Lee SH  Park SH  Park JY  Oh YJ  Lee YJ 《Planta medica》2002,68(11):971-974
Recent epidemiological studies have demonstrated that ginseng intake is associated with a reduced risk for environmentally related cancers. However, the effects of ginsenosides on the proliferation of renal proximal tubule cells have not yet elucidated. This study investigated the effect of total ginsenosides, protopanaxatriol (PT) saponin, and protopanaxadiol (PD) saponin fraction on epidermal growth factor (EGF)-induced renal cell proliferation and, furthermore, c-fos and c-jun gene expression. In the present study, total ginsenosides (10 -6 g/ml) completely blocked EGF-induced DNA synthesis and cell growth. In contrast, the PT and PD fractions partially blocked it. In addition, the EGF-induced increase of c-fos and c-jun gene expression was completely blocked by total ginsenosides and partially by PT and PD saponins. In conclusion, ginsenosides, in part, inhibit EGF-induced cell proliferation via decrease of c-fos and c-jun gene expression in primary cultured rabbit renal proximal tubular cells (PTCs). Abbreviations. EGF:epidermal growth factor PD:protopanaxadiol PT:protopanaxatriol PTCs:primary cultured renal proximal tubule cells  相似文献   

5.
1. Flavonoids display a wide range of pharmacological properties including anti-inflammatory. Anti-mutagenic, anti-carcinogenic and anti-cancer effects. Here, we evaluated the effects of eight flavonoids on the tumour cell proliferation, cellular protein phosphorylation, and matrix metalloproteinase (MMPs) secretion. 2. Of the flavonoids examined, luteolin (Lu) and quercetin (Qu) were the two most potent agents, and significantly inhibited A431 cell proliferation with IC50 values of 19 and 21 micronM, respectively. 3. The epidermal growth factor (EGF) (10 nM) promoted growth of A431 cells (+25+/-4.6%) and mediated epidermal growth factor receptor (EGFR) tyrosine kinase activity and autophosphorylation of EGFR were inhibited by Lu and Qu. At concentration of 20 micronM, both Lu and Qu markedly decreased the levels of phosphorylation of A431 cellular proteins, including EGFR. 4. A431 cells treated with Lu or Qu exhibited protuberant cytoplasmic blebs and progressive shrinkage morphology. Lu and Qu also time-dependently induced the appearance of a ladder pattern of DNA fragmentation, and this effect was abolished by EGF treatment. 5. The addition of EGF only marginally diminished the inhibitory effect of luteolin and quercetin on the growth rate of A431 cells, treatment of cellular proteins with EGF and luteolin or quercetin greatly reduced protein phosphorylation, indicating Lu and Qu may act effectively to inhibit a wide range of protein kinases, including EGFR tyrosine kinase. 6. EGF increased the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), while Lu and Qu appeared to suppress the secretion of these two MMPs in A431 cells. 7. Examination of the relationship between the chemical structure and inhibitory effects of eight flavonoids reveal that the double bond between C2 and C3 in ring C and the OH groups on C3' and C4' in ring B are critical for the biological activities. 8. This study demonstrates that the inhibitory effects of Lu and Qu, and the stimulatory effects of EGF, on tumour cell proliferation, cellular protein phosphorylation, and MMP secretion may be mediated at least partly through EGFR. This study supports the idea that Lu and Qu may have potential as anti-cancer and anti-metastasis agents.  相似文献   

6.
Naphtho[1,2-b]furan-4,5-dione (NFD), a bioactive component of Avicennia marina, has been demonstrated to display anti-cancer activity. Activation of epidermal growth factor receptor (EGFR)-induced signaling pathway has been correlated with cancer metastasis in various tumors, including breast carcinoma. We use EGF as a metastatic inducer of MDA-MB-231 cells to investigate the effect of NFD on cell migration and invasion. NFD suppressed EGF-mediated protein levels of c-Jun and c-Fos, and reduced MMP-9 expression and activity, concomitantly with a marked inhibition on cell migration and invasion without obvious cellular cytotoxicity. NFD abrogated EGF-induced phosphorylation of EGF receptor (EGFR) and phosphatidylinositol 3-kinase (PI3K)/Akt. The specific PI3K inhibitor, wortmannin, blocked significantly EGF-induced cell migration and invasion. Furthermore, the EGFR inhibitor AG1478 inhibited EGF-induced MMP-9 expression, cell migration and invasion, as well as the activation of PI3K/Akt, suggesting that PI3K/Akt activation occur downstream of EGFR activation. These findings suggest that NFD inhibited the EGF-induced invasion and migration of MDA-MB-231 cells via EGFR-dependent PI3K/Akt signaling, leading to the down-regulation of MMP-9 expression. These results provide a novel mechanism to explain the role of NFD as a potent anti-metastatic agent in MDA-MB-231 cells.  相似文献   

7.
We have previously shown that chronic alcohol consumption inhibits liver regeneration by impairing epidermal growth factor receptor (EGFR)-operated phospholipase C-(gamma1) (PLC-(gamma1)) activation and the resultant rise in intracellular [Ca(2+)](i). In hepatocytes, activation of PLC-(gamma1) by EGFR requires involvement of a pertussis toxin-sensitive inhibitory guanine nucleotide-binding regulatory protein (G(alphai)) as an intermediate. In the present study, we first identified the G(alphai) protein isoform associated with the activated EGFR, and then examined whether the toxic effect of alcohol on EGFR signaling and liver cell proliferation was exerted on this association. In cultured hepatocytes from control rats, EGF rapidly induced association between EGFR and G(alphai2) but not other G(alphai) isoforms. In hepatocytes from rats fed alcohol for 16 weeks, EGF failed to stimulate this association of G(alphai2) with the EGFR. The impairment of EGFR-G(alphai2) complex formation caused by alcohol was associated with a decreased level of G(alphai2) in the plasma membrane fraction (approximately 50% control). Pertussis toxin, an inhibitor of G(alphai) function, produced an analogous disruption of the association between G(alphai2) and the EGFR, as well as inhibiting EGF-induced DNA synthesis. It is concluded that, in hepatocytes, G(alphai2) is specific among G(alphai) isoforms in coupling activation of the EGFR to other signaling pathways that control cell proliferation. Impaired coupling of G(alphai2) of EGFR could contribute to the mechanism by which chronic alcohol exposure inhibits liver regeneration.  相似文献   

8.
9.
Astroglia are a principal target of long-term mu antiproliferative actions. The mitogen-activated protein (MAP) kinase known as extracellular signal-regulated kinase (ERK), is a key mediator of cell proliferation. In studies on the mechanism of short- and long-term mu opioid regulation of the ERK signaling pathway, we show that the mu opioid agonist [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), acting via the endogenous mu opioid receptor (MOR), induced sequential epidermal growth factor receptor (EGF) receptor (EGFR) Tyr phosphorylation, Ser phosphorylation, and down-regulation in immortalized rat cortical astrocytes. The short-term action of DAMGO resulted in the stimulation of ERK phosphorylation. 4(3-Chlorophenylamino)-6,7-dimethoxyquinazoline (Tyrphostin AG1478), a selective inhibitor of EGFR Tyr kinase activity, blocked EGFR and ERK activation by short-term DAMGO administration, implicating EGFR transactivation in its stimulation of ERK activity. Inhibitors of matrix metalloproteinases attenuated MOR-mediated ERK phosphorylation, suggesting that shedding of EGF-like ligands from the plasma membrane may be involved in the EGFR transactivation process. Prolonged DAMGO exposure induced EGFR internalization/down-regulation, did not activate ERK, and inhibited exogenous EGF-stimulated ERK phosphorylation. MOR-mediated EGFR down-regulation seems to be MAP kinase-dependent, because it was inhibited by the ERK kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126), and tyrphostin AG1478. The kappa opioid agonist (5alpha,7alpha,8beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl) benzeneacetamide (U69,593) induced Tyr and Ser phosphorylation of EGFR and activation of ERK. However, long-term application of U69,593 neither down-regulated EGFR nor inhibited EGF-induced ERK activation. Instead, it engendered a sustained activation of ERK. Collectively, our data suggest that long-term application of DAMGO initiates heterologous down-regulation of EGFR via a mechanism involving ERK in astrocytes.  相似文献   

10.
In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.  相似文献   

11.
11,11'-dideoxy-verticillin, a compound of the novel epidithiodioxopiprazine structural class, is isolated from the traditional Chinese medicinal herb Shiraia bambusicola. The present study demonstrated for the first time that 11,11'-dideoxy-verticillin has potent tyrosine kinase-inhibitory and anti-tumor activities. In the cell-free ELISA tyrosine kinase assay, 11,11'-dideoxy-verticillin significantly inhibited the activities of epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor-1/fms-like tyrosine kinase-1 (VEGFR-1/Flt-1) and human epidermal growth factor receptor-2 (HER2/ErbB-2), with relative specificity on EGFR and VEGFR-1 with IC50s of 0.136+/-0.109 and 1.645+/-0.885 nM, respectively. Exposure of 11,11'-dideoxy-verticillin for 1 h to EGFR-overexpressed MDA-MB-468 human breast carcinoma cells and HER2-overexpressed SK-OV-3 human ovarian adenocarcinoma cells resulted in obvious inhibition of EGF-induced phosphorylation of EGFR and HER2. In addition, 11,11'-dideoxy-verticillin also inhibited the EGF-induced phosphorylation of Erk1/2, but had no effect on the phosphorylation of AKT in both tumor cell lines. Moreover, 11,11'-dideoxy-verticillin has potent anti-tumor activity. In vitro cytotoxicity assay showed that 11,11'-dideoxy-verticillin potently inhibited the proliferation of four human breast tumor cell lines with an average IC50 value of 0.2 microM. In vivo, 11,11'-dideoxy-verticillin exhibited remarkable efficacy against mice sarcoma 180 and hepatoma 22 after daily i.p. administration of 0.5 or 0.75 mg/kg with inhibition rates ranging from 45.0 to 72.4%. Treated with 11,11'-dideoxy-verticillin at 0.5-2.0 microM for 36 h, MB-MB-468 cells exhibited significant apoptotic morphological changes. At low concentrations (0.0625-0.5 microM) for 24 h, 11,11'-dideoxy-verticillin induced a dose-dependent accumulation of MDA-MB-468 cells in the G2/M phase of the cell cycle. These results indicate that 11,11'-dideoxy-verticillin is a naturally derived growth factor receptor tyrosine kinase inhibitor with potent anti-tumor activity.  相似文献   

12.
We investigated the effects of α- and β-adrenergic agonists on epidermal growth factor (EGF)-stimulated extracellular-signal regulated kinase (ERK) isoforms in primary cultures of adult rat hepatocytes. Hepatocytes were isolated and cultured with EGF (20 ng/ml) and/or α(1)-, α(2)- and β(2)-adrenergic agonists. Phosphorylated ERK isoforms (ERK1; p44 mitogen-activated protein kinase (MAPK) and ERK2; p42 MAPK) were detected by Western blotting analysis using anti-phospho-ERK1/2 antibody. The results show that EGF induced a 2.5-fold increase in ERK2-, but not ERK1-, phosphorylation within 3 min. This EGF-induced ERK2 activation was abolished by treatment with the EGF-receptor kinase inhibitor AG1478 (10(-7) M) or the MEK (MAPK kinase) inhibitor PD98059 (10(-6) M). The α(2)-adrenergic and β(2)-adrenergic agonists, UK14304 (10(-6) M) and metaproterenol (10(-6) M), respectively, had no effect in the absence of EGF, but metaproterenol significantly potentiated EGF-induced ERK2 phosphorylation. Moreover, the cell-permeable cAMP analog 8-bromo cAMP (10(-7) M), also potentiated EGF-induced ERK2 phosphorylation. The effects of these analogs were antagonized by the protein kinase A (PKA) inhibitor H-89 (10(-7) M). These results suggest that direct or indirect activation of PKA represents a positive regulatory mechanism for EGF stimulation of ERK2 induction.  相似文献   

13.
14.
Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC50 values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC50, while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR Bmax and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM.  相似文献   

15.
The coordinated activity of estrogens and epidermal growth factor receptor (EGFR) family agonists represents the main determinant of breast cancer cell proliferation. Stromal cell-derived factor-1 (SDF-1) enhances extracellular signal-regulated kinases 1 and 2 (ERK1/2) activity via the transactivation of EGFR and 17beta-estradiol (E2) induces SDF-1 production to exert autocrine proliferative effects. On this basis, we evaluated whether the inhibition of the tyrosine kinase (TK) activity of EGFR may control different mitogenic stimuli in breast tumors using the EGFR-TK inhibitor gefitinib to antagonize the proliferation induced by E2 in T47D human breast cancer cells. EGF, E2, and SDF-1 induced a dose-dependent T47D cell proliferation, that being nonadditive suggested the activation of common intracellular pathways. Gefitinib treatment inhibited not only the EGF-dependent proliferation and ERK1/2 activation but also the effects of SDF-1 and E2, suggesting that these activities were mediated by EGFR transactivation. Indeed, both SDF-1 and E2 caused EGFR tyrosine phosphorylation. The molecular link between E2 and SDF-1 proliferative effects was identified because 1,1'-(1,4-phenylenebis(methylene))-bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist, inhibited SDF-1- and E2-dependent proliferation and EGFR and ERK1/2 phosphorylation. EGFR transactivation was dependent on c-Src activation. E2 treatment caused a powerful SDF-1 release from T47D cells. Finally, in SKBR3, E2-resistant cells, EGFR was constitutively activated, and AMD3100 reduced EGFR phosphorylation and cell proliferation, whereas HER2-neu was transactivated by SDF-1 in SKBR3 but not in T47D cells. In conclusion, we show that activation of CXCR4 transduces proliferative signals from the E2 receptor to EGFR, whose inhibition is able to revert breast cancer cell proliferation induced by multiple receptor activation.  相似文献   

16.
17.
We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOCA-salt hypertensive rats compared with those from sham-operated rats. AG1478, PD98059, and LY294002, inhibitors of EGF receptor (EGFR) tyrosine kinase, MAPK/extracellular signal-regulated kinase (ERK) kinase, and phosphatidylinositol 3-kinase (PI3K), respectively, inhibited the contraction and the activity of ERK1/2 that were elevated by EGF. Y27632 and GF109203X, inhibitors of Rho kinase and protein kinase C, respectively, attenuated EGF-induced contraction, with no diminution of ERK1/2 activity. Although EGF also elevated the activity of EGFR tyrosine kinase in both sham-operated and DOCA-salt hypertensive rats, the expression and the magnitude of activation did not differ between strips. These results strongly suggest that EGF induces contraction by the activation of ERK1/2, which is regulated by the PI3K pathway in the aortic smooth muscle of DOCA-salt hypertensive rats.  相似文献   

18.
19.
(E)-Ethyl 3,5-dimethyl-4-[(indolin-2-one-3-ylidene)methyl]-1H-pyrrole-2-carboxylate (B5) was one of the novel pyrrole-substituted indolinones synthesized in our research with the initial aim of developing selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs). However, B5 exhibited weak inhibitory potency against a variety of protein tyrosine kinases including EGFR, but potent kinase inhibition against several members of the cyclin-dependent kinase (CDK) family. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that B5 had approximately 500 times more potent antitumor activity than PD153035, a known standard EGFR-TKI, in a panel of ten epithelial cancer cell lines. B5 did not inhibit the phosphorylation of EGFR induced by EGF in vitro. DNA flow cytometric analysis revealed that B5 induced cell cycle arrest at G2/M phase and western blot analysis indicated that both CDK1 (Cdc2) and cyclin B1 proteins were decreased after B5 treatment. Our findings suggested the potential therapeutic applications of B5 in numerous cancers and a promising new template for further development of antitumor agents.  相似文献   

20.
Naringenin, the aglycone of naringin, has been reported to attenuate MUC5AC secretion by inhibiting activity of nuclear factor kappa B (NF-κB) via EGFR-PI3K-Akt/ERK MAPKinase signaling pathways. However, previous studies demonstrated that the MUC5AC promoter was located in two different regions: an activator protein-1 (AP-1) binding site and a NF-κB binding site. The current study comprehensively determined the involvement of MAPKs/AP-1 and IKKs/IκB/NF-κB in epidermal growth factor (EGF)-induced A549 cells, and sought to ascertain the signaling pathways of naringin imparted in suppression of EGF-induced MUC5AC secretion. The results showed that naringin of 100μM not only significantly decreased EGF-induced overexpressions of both MUC5AC mucin and mRNA in A549 cells, but also suppressed the phosphorylation of EGF receptor, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK), as well as nucleus NF-κB p65 and AP-1. Moreover, any of three MAPKs inhibitors (PD98059, SB203580, and SP600125) significantly inhibited EGF-induced MUC5AC secretion. And as compared to MG132, the inhibitor κB (IκB) phosphorylation inhibitor of SN50 was more effective in reducing EGF-induced MUC5AC secretion because of suppression of nucleus AP-1. Meanwhile, as compared to naringin, both SP600125 and azithromycin were less effective in suppressing EGF-induced secretion of MUC5AC because of the unchanged nucleus NF-κB p65. These results indicated that naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs/AP-1 and IKKs/IκB/NF-κB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号