首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Two common deficiencies of most conventional deformable models are the need to place the initial contour very close to the desired boundary and the incapability of capturing a highly winding boundary for sonographic boundary extraction. To remedy these two deficiencies, a new deformable model (namely, the cell-based dual snake model) is proposed in this paper. The basic idea is to apply the dual snake model in the cell-based deformation manner. While the dual snake model provides an effective mechanism allowing a distant initial contour, the cell-based deformation makes it possible to catch the winding characteristics of the desired boundary. The performance of the proposed cell-based dual snake model has been evaluated on synthetic images with simulated speckles and on the clinical ultrasound (US) images. The experimental results show that the mean distances from the derived to the desired boundary points are 0.9 +/- 0.42 pixels and 1.29 +/- 0.39 pixels for the synthetic and the clinical US images, respectively.  相似文献   

2.
Most deformable models require the initial contour to be placed close to the boundary of the object of interest for boundary extraction of ultrasound (US) images, which is impractical in many clinical applications. To allow a distant initial contour, a new dual-snake model promising high penetrability through the interference of the noises is proposed in this paper. The proposed dual-snake model features a new far-reaching external force, called the discrete gradient flow, a connected component-weighted image force, and an effective stability evaluation of two underlying snakes. The experimental results show that, with a distant initial contour, the mean distance from the derived boundary to the desired boundary is less than 1.4 pixels, and most snake elements are within 2.7 pixels of the desired boundaries for the synthetic images with CNR ≥ 1. For the clinical US images, the mean distance is less than 1.9 pixels, and most snake elements are within 3 pixels of the desired boundaries. (E-mail: chung@lotus.mc.ntu.edu.tw)  相似文献   

3.
Segmentation of a fetal head from three-dimensional (3-D) ultrasound images is a critical step in the quantitative measurement of fetal craniofacial structure. However, two main issues complicate segmentation, including fuzzy boundaries and large variations in pose and shape among different ultrasound images. In this article, we propose a new registration-based method for automatically segmenting the fetal head from 3-D ultrasound images. The proposed method first detects the eyes based on Gabor features to identify the pose of the fetus image. Then, a reference model, which is constructed from a fetal phantom and contains prior knowledge of head shape, is aligned to the image via feature-based registration. Finally, 3-D snake deformation is utilized to improve the boundary fitness between the model and image. Four clinically useful parameters including inter-orbital diameter (IOD), bilateral orbital diameter (BOD), occipital frontal diameter (OFD) and bilateral parietal diameter (BPD) are measured based on the results of the eye detection and head segmentation. Ultrasound volumes from 11 subjects were used for validation of the method accuracy. Experimental results showed that the proposed method was able to overcome the aforementioned difficulties and achieve good agreement between automatic and manual measurements.  相似文献   

4.
An early vision-based snake model for ultrasound image segmentation   总被引:10,自引:0,他引:10  
Due to the speckles and the ill-defined edges of the object of interest, the classic image-segmentation techniques are usually ineffective in segmenting ultrasound (US) images. In this paper, we present a new algorithm for segmenting general US images that is composed of two major techniques; namely, the early-vision model and the discrete-snake model. By simulating human early vision, the early-vision model can capture both grey-scale and textural edges while the speckle noise is suppressed. By performing deformation only on the peaks of the distance map, the discrete-snake model promises better noise immunity and more accurate convergence. Moreover, the constraint for most conventional snake models that the initial contour needs to be located very close to the actual boundary has been relaxed substantially. The performance of the proposed snake model has been shown to be comparable to manual delineation and superior to that of the gradient vector flow (GVF) snake model.  相似文献   

5.
Fetal abdominal contour extraction and measurement in ultrasound images   总被引:1,自引:0,他引:1  
A novel method is developed for the fetal abdominal contour extraction and measurement in ultrasound images. Fetal abdominal circumference (AC) is one of the standardized measurements in the antepartum ultrasound monitoring. Among several standardized measurements, AC is best correlated with fetal growth but is also the most difficult to be accurately measured. To overcome the difficulties in the abdominal contour extraction, the proposed method is a four-step procedure that integrates several image segmentation techniques. The proposed method is able to make the best use of the strength of different segmentation algorithms, while avoiding their deficiencies. An enhanced instantaneous coefficient of variation (ICOV) edge detector is first developed to detect edges of the abdominal contour and alleviate the effects of most speckle noise. Then, the Fuzzy C-Means clustering is employed to distinguish salient edges attributable to the abdominal contour from weak edges due to the other texture. Subsequently, the iterative Hough transform is applied to determine an elliptical contour and obtain an initial estimation of the AC. Finally, the gradient vector field (GVF) snake adapts the initial ellipse to the real edges of the abdominal contour. Quantitative validation of the proposed method on synthetic images under different imaging conditions achieves satisfactory segmentation accuracy (98.78%+/-0.16%). Experiments on 150 clinical images are carried out in three aspects: comparisons between inter-observer and inter-run variation, the fitness analysis between the automatically detected ellipse and the manual delineation, and the accuracy comparisons between automatic measurements and manual measurements in estimation of fetal weight (EFW). Experimental results show that the proposed method can provide consistent and accurate measurements. The reductions of the mean absolute difference and the standard deviation of EFW based on automatic measurements are about 1.2% and 2.1%, respectively, which indicate its potential in clinical antepartum monitoring application.  相似文献   

6.
Purpose A system for luminal contour segmentation in intravascular ultrasound images is proposed. Methods Moment-based texture features are used for clustering of the pixels in the input image. After the clustering, morphological smoothing and a boundary detection process are applied and the final image is obtained. Results The proposed method was applied to 15 images from different patients, and a correlation coefficient of 0.86 was obtained between the areas of lumen automatically and manually defined. Conclusion Moment-based texture features together with the radial feature are powerful tools for identification of the lumen region in intravascular ultrasound images. Morphological filtering was useful for improving the segmentation results.  相似文献   

7.
Most medical images have a poorer signal to noise ratio than scenes taken with a digital camera, which often leads to incorrect diagnosis. Speckles suppression from ultrasound images is one of the most important concerns in computer-aided diagnosis. This article proposes two novel, robust and efficient ultrasound images denoising techniques. The first technique is the enhanced ultrasound images denoising (EUID) technique, which estimates automatically the speckle noise amount in the ultrasound images by estimating important input parameters of the filter and then denoising the image using the sigma filter. The second technique is the ultrasound image denoising using neural network (UIDNN) that is based on the second-order difference of pixels with adaptive threshold value in order to identify random valued speckles from images to achieve high efficient image restoration. The performances of the proposed techniques are analyzed and compared with those of other image denoising techniques. The experimental results show that the proposed techniques are valuable tools for speckles suppression, being accurate, less tedious, and preventing typical human errors associated with manual tasks in addition to preserving the edges from the image. The EUID algorithm has nearly the same peak signal to noise ratio (PSNR) as Frost and speckle-reducing anisotropic diffusion 1, whereas it achieves higher gains, on average—0.4 dB higher PSNR—than the Lee, Kuan, and anisotropic diffusion filters. The UIDNN technique outperforms all the other techniques since it can determine the noisy pixels and perform filtering for these pixels only. Generally, when relatively high levels of noise are added, the proposed algorithms show better performances than the other conventional filters.  相似文献   

8.
In this work a new statistic deformable model for 3D segmentation of anatomical organs in medical images is proposed. A statistic discriminant snake performs a supervised learning of the object boundary in an image slice to segment the next slice of the image sequence. Each part of the object boundary is projected in a feature space generated by a bank of Gaussian filters. Then, clusters corresponding to different boundary pieces are constructed by means of linear discriminant analysis. Finally, a parametric classifier is generated from each contour in the image slice and embodied into the snake energy-minimization process to guide the snake deformation in the next image slice. The discriminant snake selects and classifies image features by the parametric classifier and deforms to minimize the dissimilarity between the learned and found image features. The new approach is of particular interest for segmenting 3D images with anisotropic spatial resolution, and for tracking temporal image sequences. In particular, several anatomical organs from different imaging modalities are segmented and the results compared to expert tracings.  相似文献   

9.
Precise segmentation of carotid artery (CA) structure is an important prerequisite for the medical assessment and detection of carotid plaques. For automatic segmentation of the media–adventitia boundary (MAB) and lumen–intima boundary (LIB) in 3-D ultrasound images of the CA, a U-shaped CSWin transformer (U-CSWT) is proposed. Both the encoder and decoder of the U-CSWT are composed of hierarchical CSWT modules, which can capture rich global context information in the 3-D image. Experiments were performed on a 3-D ultrasound image data set of the CA, and the results indicate that the U-CSWT performs better than other convolutional neural network (CNN)-based and CNN–transformer hybrid methods. The model yields Dice coefficients of 94.6 ± 3.0% and 90.8 ± 5.1% for the MAB and LIB in the common carotid artery (CCA) and 92.9 ± 4.9% and 89.6 ± 6.2% for MAB and LIB in the bifurcation, respectively. Our U-CSWT is expected to become an effective method for automatic segmentation of 3-D ultrasound images of CA.  相似文献   

10.
We present an algorithm for layer-specific edge detection in retinal optical coherence tomography images through a structured learning algorithm to reinforce traditional graph-based retinal layer segmentation. The proposed algorithm simultaneously identifies individual layers and their corresponding edges, resulting in the computation of layer-specific edges in 1 second. These edges augment classical dynamic programming based segmentation under layer deformation, shadow artifacts noise, and without heuristics or prior knowledge. We considered Duke’s online data set containing 110 B-scans of 10 diabetic macular edema subjects with 8 retinal layers annotated by two experts for experimentation, and achieved a mean distance error of 1.38 pixels whereas that of the state-of-the-art was 1.68 pixels.OCIS codes: (170.4500) Optical coherence tomography, (100.6950) Tomographic image processing, (170.6935) Tissue characterization, (170.1610) Clinical applications  相似文献   

11.
Segmentation of medical images can be achieved with the help of model-based algorithms. Reliable boundary detection is a crucial component to obtain robust and accurate segmentation results and to enable full automation. This is especially important if the anatomy being segmented is too variable to initialize a mean shape model such that all surface regions are close to the desired contours. Several boundary detection algorithms are widely used in the literature. Most use some trained image appearance model to characterize and detect the desired boundaries. Although parameters of the boundary detection can vary over the model surface and are trained on images, their performance (i.e., accuracy and reliability of boundary detection) can only be assessed as an integral part of the entire segmentation algorithm. In particular, assessment of boundary detection cannot be done locally and independently on model parameterization and internal energies controlling geometric model properties.In this paper, we propose a new method for the local assessment of boundary detection called Simulated Search. This method takes any boundary detection function and evaluates its performance for a single model landmark in terms of an estimated geometric boundary detection error. In consequence, boundary detection can be optimized per landmark during model training. We demonstrate the success of the method for cardiac image segmentation. In particular we show that the Simulated Search improves the capture range and the accuracy of the boundary detection compared to a traditional training scheme. We also illustrate how the Simulated Search can be used to identify suitable classes of features when addressing a new segmentation task. Finally, we show that the Simulated Search enables multi-modal heart segmentation using a single algorithmic framework. On computed tomography and magnetic resonance images, average segmentation errors (surface-to-surface distances) for the four chambers and the trunks of the large vessels are in the order of 0.8 mm. For 3D rotational X-ray angiography images of the left atrium and pulmonary veins, the average error is 1.3 mm. In all modalities, the locally optimized boundary detection enables fully automatic segmentation.  相似文献   

12.
The intima-media thickness (IMT) of a common carotid artery in an ultrasound image is considered an important indicator of the onset of atherosclerosis. However, it is challenging to segment the intima-media complex (IMC) directly in ultrasound images. This study proposes a fully automatic method to segment the IMC on longitudinal B-mode ultrasound images. Our method consists of two stages: (i) extraction of the region of interest with a continuous max-flow algorithm and region-of-interest reconstruction using a stacked sparse auto-encoder model, and (ii) IMC segmentation using a trained random forest classifier. The proposed method has been tested on three databases from three different imaging centres, comprising a total of 228 ultrasound images of the common carotid artery. On the three databases, our method yields mean absolute errors of 0.028 ± 0.016 mm, 0.579 ± 0.288 pixel and 0.582 ± 0.341 pixel; polyline distance (PD) measures of 0.026 ± 0.017 mm, 0.657 ± 0.275 pixel and 0.731 ± 0:282 pixel; Hausdorff distance measures of 0.249 ± 0.101 mm, 4.760 ± 1.085 pixels and 5.825 ± 2.059 pixels; and correlation coefficients of 95.19%, 93.79%, and 98.96%, respectively. These results indicate that the proposed method performs well in segmentation of the IMC and measurement of the IMT.  相似文献   

13.
In this work is reported a new method for automatic segmentation of the boundary of the prostate, in transurethral ultrasound images. The scheme is based on a robust automatic initialization of an active shape model (ASM) of the prostate, which is subsequently fitted to the boundary of the gland. The initialization of the ASM is based on pixel classification to estimate the prostate region in an ultrasound image, followed by automatic adjustment – using a multipopulation genetic algorithm (MPGA) – of the initial pose of the ASM to the binary image produced by the classifier. The initial pose is next adjusted to the gray level ultrasound image, using the MPGA. After automatic initialization, the ASM is adjusted to the gray level ultrasound image to produce the final prostate contour. The method provides fast and robust segmentation of the prostate boundary. Validation results on 22 ultrasound images are reported with 1.74 mm of mean boundary error and an estimated processing time of 66 s per image. Our automatic initialization method can be applied with the ASMs of different organs in various imaging modalities.  相似文献   

14.
Accurate measurement of structural features represented in medical images is important in clinical trials and patient diagnosis. A key factor for precision is spatial resolution, which in ultrasonic imaging is limited by transducer array arrangements, transmitting frequency, and data acquisition firmware. In this paper, a variation of pixel compounding is proposed to enhance ultrasound resolution using acquired cine loops. The technique operates on a sequence of ultrasound B-scan images acquired with random motion. Subpixel registration is estimated and a maximum a posteriori (MAP) approach with the shift information is used to reconstruct a high-resolution single image. A nonhomogeneous anisotropic diffusion algorithm follows from the estimation process and is implemented to enhance the high-resolution edges. Preliminary tests using simulations and phantom studies show promising results. Pixel compounding can be a powerful preprocessing tool to assure accurate segmentation, measurement, and analysis of ultrasound images.  相似文献   

15.
Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency.  相似文献   

16.
In this paper we present a method to automatically isolate relevant anatomical boundary positions in an image using only the structure of edges. The purpose of this method is to facilitate model-based segmentation algorithms which rely on accurate initialisation and assume that the correct anatomical boundary positions are close to the current model surface.The method is built around a weak parts-based shape model – the Boundary Fragment Model (BFM) – which represents an object by sections of its boundary. Following previous literature, we use the BFM in a boosted classifier framework to first automatically detect the object of interest. Extending previous work, we use the BFM to drive a classifier which isolates boundary candidates from spurious and irrelevant edge responses. The application of our algorithm leads to a labelled edge map which encodes the positions of (multiple) object boundaries.By way of illustrating what is a general solution, the task of identifying the endocardium and epicardium in three-dimensional ultrasound images is completely examined, including a detailed analysis of the parameters which impact on the model construction, the structure of the learned edge response classifier, and implementation concerns. For completeness, we also demonstrate how the output boundary positions can be used in a full model-based segmentation framework.  相似文献   

17.
Liao YY  Wu JC  Li CH  Yeh CK 《Ultrasonic imaging》2011,33(4):264-278
Texture analysis of breast ultrasound B-scans has been widely applied to the segmentation and classification of breast tumors. We present a parametric imaging method based on the texture features to preserve tumor edges and retain the texture information simultaneously. Four texture-feature parameters--homogeneity, contrast, energy and variance--were evaluated using the gray-level co-occurrence matrix. The local texture-feature parameter was assigned as the new pixel located at the center of the sliding window at each position. This process yielded the texture-feature parametric image as the map of texture-feature values. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated to show the quality improvement of the images. The contours outlined from 11 experienced physicians and the gradient vector flow (GVF) snake algorithm segmentations were adopted to verify the edge enhancement of texture-feature parametric images. In addition, the Fisher's linear discriminant analysis (FLDA) and receiver-operating-characteristic (ROC) curve were used to test the performance of breast tumor classifications between texture-feature parametric images and B-scan images. The results show that the variance images have higher CNR and SNR estimates than those in the B-scan images. There was a high agreement between the physician's manual contours and the GVF snake automatic segmentations in the variance images, and the mean area overlap was over 93%. The area under the ROC curve from the B-scan images had 0.81 and 95% confidence interval of 0.72-0.88, and the texture-feature parametric images had 0.90 and 95% confidence interval of 0.84-0.96. These findings indicate that the texture-feature parametric imaging method can be not only useful for determining the location of the lesion boundary but also as a tool to improve the accuracy of breast tumor classifications.  相似文献   

18.
Due to the serious speckle noise in synthetic aperture radar (SAR) image, segmentation of SAR images is still a challenging problem. In this paper, a novel region merging method based on perceptual hashing is proposed for SAR image segmentation. In the proposed method, perceptual hash algorithm (PHA) is utilized to calculate the degree of similarity between different regions during region merging in SAR image segmentation. After reducing the speckle noise by Lee filter which maintains the sharpness of SAR image, a set of different homogeneous regions is constructed based on multi-thresholding and treated as the input data of region merging. The new contribution of this paper is the combination of multi-thresholding for initial segmentation and perceptual hash method for the adaptive process of region merging, which preserves the texture feature of input images and reduces the time complexity of the proposed method. The experimental results on synthetic and real SAR images show that the proposed algorithm is faster and attains higher-quality segmentation results than the three recent state-of-the-art image segmentation methods.  相似文献   

19.
The interpretation of ultrasound images remains a difficult task and the opinion of different doctors is generally not unequivocal. Therefore, there is a growing interest in the field of computer-aided diagnosis. In the field of medical image processing, computer-aided diagnosis includes image enhancement to facilitate visual interpretation, automatic indication of affected areas, organs and other regions of medical interest, the performance of automatic measurements and image registration. In this article, we introduce a new algorithm for ultrasound image enhancement that employs a multivariate texture classifier based on the co-occurrence matrix, which, in combination with an adaptive texture smoothing filter, is used to enhance the visual difference between and improve boundary detection between healthy neonatal brain tissue and tissue affected by periventricular leukomalacia. For a quantitative comparison, we delineate the periventricular leukomalacia-affected regions with two different active contours before and after processing 10 images with the proposed technique and several speckle filters from the literature. The semi-automatic delineations thus obtained are compared with the manual delineations of a neonatologist. In all cases, the average delineation achieved with the proposed technique is closer to that of the manual expert delineation than when the images are processed with the other techniques.  相似文献   

20.
A new automatic model-based segmentation scheme that combines level set shape modeling and active appearance modeling (AAM) is presented. Since different MR image contrasts can yield complementary information, multi-contrast images can be incorporated into the active appearance modeling to improve segmentation performance. During active appearance modeling, the weighting of each contrast is optimized to account for the potentially varying contribution of each image while optimizing the model parameters that correspond to the shape and appearance eigen-images in order to minimize the difference between the multi-contrast test images and the ones synthesized from the shape and appearance modeling. As appearance-based modeling techniques are dependent on the initial alignment of training data, we compare (i) linear alignment of whole brain, (ii) linear alignment of a local volume of interest and (iii) non-linear alignment of a local volume of interest. The proposed segmentation scheme can be used to segment human hippocampi (HC) and amygdalae (AG), which have weak intensity contrast with their background in MRI. The experiments demonstrate that non-linear alignment of training data yields the best results and that multimodal segmentation using T1-weighted, T2-weighted and proton density-weighted images yields better segmentation results than any single contrast. In a four-fold cross validation with eighty young normal subjects, the method yields a mean Dice к of 0.87 with intraclass correlation coefficient (ICC) of 0.946 for HC and a mean Dice к of 0.81 with ICC of 0.924 for AG between manual and automatic labels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号