首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ObjectiveTo identify the role of triglyceride-rich lipoproteins (TGRLs) and apoE, a major apolipoprotein in TGRLs, in adipose tissue inflammation with high-fat diet (HFD)-induced obesity.MethodsMale apoE?/? and C57BL/6J wild-type (WT) mice fed HFD for 12 weeks were assessed for metabolic and inflammatory parameters. ApoE?/? and WT mice were orally gavaged with [3H]palmitic acid to examine the role of apoE in fat delivery to adipose tissue. VLDL from obese apoE?/? mice were intravenously injected into lean WT or apoE?/? mice to test potential contribution of TGRLs-derived fat delivery to inflammation in adipose tissue and the role of apoE.ResultsApoE?/? mice gained less body weight, and had less fat mass and lower triglyceride levels in skeletal muscle than WT. ApoE?/? mice on HFD had better insulin sensitivity than WT even when comparing body weight-matched mice. Compared to WT mice, apoE?/? mice on HFD had lower levels of inflammatory cytokines/chemokines and CD11c in adipose tissue, and lower levels of inflammatory markers in skeletal muscle. At 6 h after oral gavage with [3H]palmitic acid, incorporation of [3H]palmitic acid into adipose tissue and skeletal muscle was lower in apoE?/? mice. After repeated daily injection for 3 days, VLDL from obese apoE?/? mice induced inflammation in adipose tissue of recipient WT but not apoE?/? mice.ConclusionIn HFD-induced obesity, apoE plays an important role in inflammation in adipose tissue and skeletal muscle, likely by mediating TGRL-derived fat delivery to these tissues.  相似文献   

2.
Wang X  Yang Z  Xue B  Shi H 《Endocrinology》2011,152(3):836-846
Obesity is associated with a chronic inflammatory state characterized by adipose tissue macrophage infiltration and inflammation, which contributes to insulin resistance. The cholinergic antiinflammatory pathway, which acts through the macrophage α7-nicotinic acetylcholine receptor (α7nAChR), is important in innate immunity. Here we show that adipose tissue possesses a functional cholinergic signaling pathway. Activating this pathway by nicotine in genetically obese (db/db) and diet-induced obese mice significantly improves glucose homeostasis and insulin sensitivity without changes of body weight. This is associated with suppressed adipose tissue inflammation. In addition, macrophages from α7nAChR-/- [α7 knockout (α7KO)] mice have elevated proinflammatory cytokine production in response to free fatty acids and TNFα, known agents causing inflammation and insulin resistance. Nicotine significantly suppressed free fatty acid- and TNFα-induced cytokine production in wild type (WT), but not α7KO macrophages. These data suggest that α7nAChR is important in mediating the antiinflammatory effect of nicotine. Indeed, inactivating this pathway in α7KO mice results in significantly increased adipose tissue infiltration of classically activated M1 macrophages and inflammation in α7KO mice than their WT littermates. As a result, α7KO mice exhibit more severely impaired insulin sensitivity than WT mice without changes of body weight. These data suggest that the cholinergic antiinflammatory pathway plays an important role in obesity-induced inflammation and insulin resistance. Targeting this pathway may provide novel therapeutic benefits in the prevention and treatment of obesity-induced inflammation and insulin resistance.  相似文献   

3.

Aims/hypothesis

Obesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance.

Methods

We used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis.

Results

We report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity.

Conclusions/interpretation

In this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.  相似文献   

4.
Adipose tissue macrophages are important mediators of inflammation and insulin resistance in obesity. IFN-γ is a central regulator of macrophage function. The role of IFN-γ in regulating systemic inflammation and insulin resistance in obesity is unknown. We studied obese IFN-γ knockout mice to identify the role of IFN-γ in regulating inflammation and insulin sensitivity in obesity. IFN-γ-knockout C57Bl/6 mice and wild-type control litter mates were maintained on normal chow or a high fat diet for 13 weeks and then underwent insulin sensitivity testing then sacrifice and tissue collection. Flow cytometry, intracellular cytokine staining, and QRTPCR were used to define tissue lymphocyte phenotype and cytokine expression profiles. Adipocyte size was determined from whole adipose tissue explants examined under immunofluorescence microscopy. Diet-induced obesity induced systemic inflammation and insulin resistance, along with a pan-leukocyte adipose tissue infiltrate that includes macrophages, T-cells, and NK cells. Obese IFN-γ-knockout animals, compared with obese wild-type control animals, demonstrate modest improvements in insulin sensitivity, decreased adipocyte size, and an M2-shift in ATM phenotype and cytokine expression. These data suggest a role for IFN-γ in the regulation of inflammation and glucose homeostasis in obesity though multiple potential mechanisms, including effects on adipogenesis, cytokine expression, and macrophage phenotype.  相似文献   

5.
Infiltration of inflammatory macrophages into adipose tissues with the progression of obesity triggers insulin resistance and obesity-related metabolic diseases. We recently reported that macrophage-derived apoptosis inhibitor of macrophage (AIM) protein is increased in blood in line with obesity progression and is incorporated into adipocytes, thereby inducing lipolysis in adipose tissue. Here we show that such a response is required for the recruitment of adipose tissue macrophages. In vitro, AIM-dependent lipolysis induced an efflux of palmitic and stearic acids from 3T3-L1 adipocytes, thereby stimulating chemokine production in adipocytes via activation of toll-like receptor 4 (TLR4). In vivo administration of recombinant AIM to TLR4-deficient (TLR4(-/-)) mice resulted in induction of lipolysis without chemokine production in adipose tissues. Consistently, mRNA levels for the chemokines that affect macrophages were far lower in AIM-deficient (AIM(-/-)) than in wild-type (AIM(+/+)) obese adipose tissue. This reduction in chemokine production resulted in a marked prevention of inflammatory macrophage infiltration into adipose tissue in obese AIM(-/-) mice, although these mice showed more advanced obesity than AIM(+/+) mice on a high-fat diet. Diminished macrophage infiltration resulted in decreased inflammation locally and systemically in obese AIM(-/-) mice, thereby protecting them from insulin resistance and glucose intolerance. These results indicate that the increase in blood AIM is a critical event for the initiation of macrophage recruitment into adipose tissue, which is followed by insulin resistance. Thus, AIM suppression might be therapeutically applicable for the prevention of obesity-related metabolic disorders.  相似文献   

6.
Interactions between macrophages and adipocytes influence both metabolism and inflammation. Obesity-induced changes to macrophages and adipocytes lead to chronic inflammation and insulin resistance. This paper reviews the various functions of macrophages in lean and obese adipose tissue and how obesity alters adipose tissue macrophage phenotypes. Metabolic disease and insulin resistance shift the balance between numerous pro- and anti-inflammatory regulators of macrophages and create a feed-forward loop of increasing inflammatory macrophage activation and worsening adipocyte dysfunction. This ultimately leads to adipose tissue fibrosis and diabetes. The molecular mechanisms underlying these processes have therapeutic implications for obesity, metabolic syndrome, and diabetes.  相似文献   

7.
BackgroundProline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) plays a role in inflammatory disease. In diabetes, very little is known about PSTPIP2 until now. Hence, this study aimed to determine PSTPIP2 functional role in diabetes.MethodsDiabetes mouse model was constructed by feeding high fat diet (HFD). Intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test were examined the glucose and insulin tolerance. The expression of genes and proteins was detected by quantitative real time PCR, immunohistochemistry and western blotting. The pathological changes of epididymal adipose tissues were examined by hematoxylin-eosin staining. RAW264.7 macrophages were treated with GW9662 (PPARγ antagonist). Flow cytometry examined the proportion of M1/M2 macrophages.ResultsHFD enhanced the body weight, glucose and insulin tolerance, and inhibited PSTPIP2 expression in mice. PSTPIP2 overexpression alleviated glucose and insulin tolerance, reduced inflammation and macrophage accumulation in the epididymal adipose tissues of diabetic mice. The expression of iNOS and TNF-α was increased, the expression of IL-10 and Arg-1 was decreased in diabetic mice, which was abrogated by PSTPIP2 overexpression. In vitro, PSTPIP2 overexpression reduced the proportions of iNOS-positive cells and enhanced the proportions of CD206-positive cells in RAW264.7 cells. PPARγ and p-STAT6 were up-regulated, STAT6 was down-regulated in RAW264.7 cells. GW9662 impaired PSTPIP2 overexpression-mediated up-regulation of Arg-1, YM-1 and FIZZ1 in RAW264.7 cells.ConclusionPSTPIP2 alleviates obesity associated adipose tissue inflammation and insulin resistance in diabetic mice through promoting M2 macrophage polarization via activation of PPARγ, suggesting that PSTPIP2 is a prospective target for diabetes treatment.  相似文献   

8.
Objectiveβ-secretase/β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPβ (sAPPβ), contribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells.Materials/MethodsStudies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1−/−mice and mice treated with sAPPβ and adipose tissue and plasma from obese and type 2 diabetic patients.ResultsWe show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-Activated Receptor γ Co-activator 1α (PGC-1α) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1α down-regulation, and fatty acid oxidation were mimicked by soluble APPβ in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1α mRNA levels and by an increase in sAPPβ plasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPPβ administration to mice reduced PGC-1α levels and increased inflammation in skeletal muscle and decreased insulin sensitivity.ConclusionsCollectively, these findings indicate that the BACE1 product sAPPβ is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver.  相似文献   

9.
Chronic inflammation is now recognized as a key step in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes mellitus. This low-grade inflammation is mediated by the inflammatory (classical) activation of recruited and resident macrophages that populate metabolic tissues, including adipose tissue and liver. These findings have led to the concept that infiltration by and activation of macrophages in adipose tissue are causally linked to obesity-induced insulin resistance. Studies have shown, however, that alternatively activated macrophages taking residence in adipose tissue and liver perform beneficial functions in obesity-induced metabolic disease. Alternatively activated macrophages reduce insulin resistance in obese mice by attenuating tissue inflammation and increasing oxidative metabolism in liver and skeletal muscle. The discovery that distinct subsets of macrophages are involved in the promotion or attenuation of insulin resistance suggests that pathways controlling macrophage activation can potentially be targeted to treat these comorbidities of obesity. Thus, this Review focuses on the stimuli and mechanisms that control classical and alternative activation of tissue macrophages, and how these macrophage activation programs modulate insulin action in peripheral tissues. The functional importance of macrophage activation is further discussed in the context of host defense to highlight the crosstalk between innate immunity and metabolism.  相似文献   

10.
《Atherosclerosis》2014,232(2):390-396
ObjectiveIt is generally assumed that hepatic inflammation in obesity is linked to the pathogenesis of insulin resistance. Several recent studies have shed doubt on this view, which questions the causality of this association. This study focuses on Kupffer cell-mediated hepatic inflammation as a possible driver of insulin resistance in the absence and presence of obesity.MethodsWe used male mice deficient for the low-density lipoprotein receptor (Ldlr−/−) and susceptible to cholesterol-induced hepatic inflammation. Whole body and hepatic insulin resistance was measured in mice fed 4 diets for 2 and 15 weeks, i.e., chow, high-fat (HF), HF-cholesterol (HFC; 0.2% cholesterol) and HF without cholesterol (HFnC). Biochemical parameters in plasma and liver were measured and inflammation was determined using immunohistochemistry and RT-PCR.ResultsAt 2 weeks, we did not find significant metabolic effects in either diet group, except for the mice fed a HFC diet which showed pronounced hepatic inflammation (p < 0.05) but normal insulin sensitivity. At 15 weeks, a significant increase in insulin levels, HOMA-IR, and hepatic insulin resistance was observed in mice fed a HFC, HFnC, and HF diet compared to chow-fed mice (p < 0.05). Regardless of the level of hepatic inflammation (HFC > HF, HFnC; p < 0.05) insulin resistance in mice fed HFC was no worse compared to mice on a HFnC and HF diet.ConclusionThese data show that cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male Ldlr−/− mice. This study suggests that Kupffer cell-driven hepatic inflammation is a consequence, not a cause, of metabolic dysfunction in obesity.  相似文献   

11.
ObjectiveNonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide; yet, the pathogenesis of the disorder is not completely understood. The nicotinic acetylcholine receptor α7 subunit (α7nAChR) plays an indispensable role in the vagus nerve-regulated cholinergic anti-inflammatory pathway.MethodsIn the present study, we investigated the key role of α7nAChR in NAFLD development. Male wild-type (WT) and α7nAChR knockout (α7nAChR−/−) mice were fed a normal chow or a high-fat diet (HFD) for 16 weeks to induce NAFLD.ResultsWe found that both the mRNA and protein levels of α7nAChR in the liver tissue of NAFLD mice were significantly higher than those in mice fed normal chow. There were no differences in food intake, body weight, hepatic cholesterol and triglyceride contents, and insulin sensitivity between WT and α7nAChR−/− mice under normal condition. When the WT and α7nAChR−/− mice were challenged with HFD, the body weight of α7nAChR−/− mice became higher than that of WT mice. The oxygen consumption and energy expenditure in HFD-fed α7nAChR−/− mice were significantly lower than that in HFD-fed WT mice. The HFD-fed α7nAChR−/− mice also showed more aggravated hepatic lipid accumulation, steatosis and oxidative stress than HFD-fed WT mice. Macrophage infiltration; mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β; and liver fibrosis were significantly accelerated in HFD-fed α7nAChR−/− mice compared to that in HFD-fed WT mice. In addition, the bolus insulin injection-activated insulin signaling pathway, which was reflected by the phosphorylation of insulin receptor at Tyr1162/Tyr1163 site (p-IRTyr1162/Tyr1163), insulin receptor substrate-1 at Tyr612 site (p-IRS-1Tyr612) and Akt at Ser473 (p-AktSer473), was significantly compromised in liver tissues of HFD-fed α7nAChR−/− mice relative to HFD-fed WT mice. Finally, pharmacologically activation of α7nAChR in HFD-fed mice, with a selective agonist PNU-282987, remarkably ameliorated the hepatic steatosis, inflammatory cell infiltration and fibrosis.ConclusionIn conclusion, our results demonstrate that activation of α7nAChR improves energy homeostasis and inhibits inflammation in nonalcoholic fatty liver disease.  相似文献   

12.

Objectives

High-fat diet (HFD) feeding in mice is characterized by accumulation of αβ T cells in adipose tissue. However, the contribution of αβ T cells to obesity-induced inflammation of skeletal muscle, a major organ of glucose uptake, is unknown. This study was undertaken to evaluate the effect of αβ T cells on insulin sensitivity and inflammatory state of skeletal muscle and adipose tissue in obesity. Furthermore, we investigated whether CD4+IFNγ+ (TH1) cells are involved in skeletal muscle and adipose tissue metabolic dysfunction that accompanies obesity.

Methods

Mice lacking αβ T cells (T cell receptor beta chain-deficient [TCRb−/−] mice) were fed HFD for 12 weeks. Obesity-induced skeletal muscle and adipose tissue inflammation was assessed by flow cytometry and quantitative RT-PCR. To investigate the effect of TH1 cells on skeletal muscle and adipose tissue inflammation and metabolic functions, we injected 5 × 105 TH1 cells or PBS weekly over 12 weeks into HFD-fed TCRb−/− mice. We also cultured C2C12 myofibers and 3T3-L1 adipocytes with TH1-conditioned medium.

Results

We showed that similar to adipose tissue, skeletal muscle of obese mice have higher αβ T cell content, including TH1 cells. TCRb−/− mice were protected against obesity-induced hyperglycemia and insulin resistance. We also demonstrated suppressed macrophage infiltration and reduced inflammatory cytokine expression in skeletal muscle and adipose tissue of TCRb−/− mice on HFD compared to wild-type obese controls. Adoptive transfer of TH1 cells into HFD-fed TCRb−/− mice resulted in increased skeletal muscle and adipose tissue inflammation and impaired glucose metabolism. TH1 cells directly impaired functions of C2C12 myotubes and 3T3-L1 adipocytes in vitro.

Conclusions

We conclude that reduced adipose tissue and skeletal muscle inflammation in obese TCRb−/− mice is partially attributable to the absence of TH1 cells. Our results suggest an important role of TH1 cells in regulating inflammation and insulin resistance in obesity.  相似文献   

13.
BackgroundLate gestational sleep fragmentation (SF) is highly prevalent particularly in obese women, and induces metabolic dysfunction in adult offspring mice. SF induces activation of the integrated stress response (ISR), which might be involved in metabolic disorders. We hypothesized that adult offspring of double mutant mice (DM) involving the critical ISR genes CHOP and GADD34 would be protected from developing obesity and insulin resistance following SF.MethodsTime-pregnant CHOP/GADD34 DM and wild type (WT) mice were randomly assigned to sleep control (SC) or SF conditions during the last 5 days of gestation. At 24-weeks of age, body weight, fat mass, and HOMA-IR were assessed in the offspring. Tregs lymphocytes, Lyc6chigh, M1 and M2 macrophages were examined in visceral white adipose tissues (vWAT) using flow cytometry. The effects of plasma exosomes on adipocyte cell line proliferation, differentiation and insulin sensitivity were also evaluated.ResultsSF-WT male showed significant increases in body weight, vWAT mass and HOMA-IR compared to SC-WT mice, while SF had no effect in SF-DM mice. Inflammatory macrophages (Ly-6chigh) and the ratio of M1/M2 macrophages were increased while FoxP3 + Tregs counts were decreased in SF-WT but not in SF-DM mice. Exosomes from SF-WT, but not from the SF-DM offspring increased pre-adipocyte proliferation and differentiation, and decreased in vitro adipocyte insulin sensitivity.ConclusionActivation of the ISR during late gestation, as induced by late gestational SF, appears to underlie some of the transgenerational modifications in metabolic genes ultimately contributing to a metabolic syndrome phenotype in adult offspring.  相似文献   

14.
ObjectiveDespite the clinical prevalence of obesity, only recently has the importance of adipose tissue microenvironment been addressed at a molecular level. Here, I focused on the fat-derived cytokine adiponectin as a model system to understand the mechanism underlying adipose tissue vascularity, perfusion, inflammation, and systemic metabolic function.Materials/MethodsWild type, adiponectin-deficient, and adiponectin transgenic-overexpressing mice were maintained on chow diet or high fat/high sucrose diet for 32 weeks. Vascularization of adipose tissue was examined by confocal microscopy and perfusion was determined by recovery of injected microspheres. Adipose tissue inflammation and systemic metabolic function were also assessed.ResultsModest over-expression of adiponectin led to a marked increase in adipose tissue vascularity and perfusion, and this was associated with diminished hypoxia and an increase in vascular endothelial growth factor-A (VEGF-A) expression in the obese mice. Adiponectin over-expression in diet-induced obese mice also led to the virtual absence of macrophage infiltration and the elimination of crown-like structures. Adiponectin transgenic mice also displayed a remarkable sensitivity to insulin and diminished hepatic steatosis. Under the conditions of these experiments, adiponectin deficiency did not diminish adipose tissue perfusion or worsen metabolic function compared to wild type mice fed the high fat/high sucrose diet.ConclusionThese data demonstrate that increased circulating adiponectin levels, and the obese environment, are associated with increased adipose tissue vascularization and perfusion, and improved metabolic function under conditions of long term diet-induced obesity.  相似文献   

15.
AimsWe analyze how the inflammatory state in adipose tissue caused by a condition of chronically positive energy balance can lead to insulin resistance first in adipose tissue, then in all insulin-sensitive tissues.Data synthesisChronic nutrient overload causes an increase in adipose depots that, if adipose tissue expandability is low, are characterized by an increased presence of hypertrophic adipocytes. This adipocyte hypertrophy is a possible stress condition for the endoplasmic reticulum (ER) that would lead to a proinflammatory state in adipose tissue. In this condition, ER stress would activate metabolic pathways that trigger insulin resistance, release of macrophage chemoattractant proteins, and in chronic inflammation, the death of the hypertrophic adipocyte. The infiltrated macrophages in turn release inflammatory proteins causing further recruitment of macrophages to adipose tissue and the release of inflammatory cytokines. Following these events, insulin resistance becomes extended to all adipose tissue. Insulin-resistant adipocytes, characterized by low liposynthetic capacity and high lipolytic capacity, cause increased release of free fatty acids (FFA). FFA released by lipolitic adipocytes may also activate Toll-like receptors 4 and then chemokines and cytokines release amplifying insulin resistance, lipolysis and inflammation in all adipose tissue. Moreover, increased circulating FFA levels, reduced circulating adiponectin levels and leptin resistance lead to decreased lipid oxidation in non-adipose tissues, thereby triggering ectopic accumulation of lipids, lipotoxicity and insulin resistance.ConclusionAll the conditions that increase circulating fatty acids and cause lipid overloading (obesity, lipoatrophy, lipodystrophy, catabolic states, etc.) induce a lipotoxic state in non-adipose tissues that gives rise to insulin resistance.  相似文献   

16.
Obesity and insulin resistance, the key features of metabolic syndrome, are closely associated with a state of chronic, low-grade inflammation characterized by abnormal macrophage infiltration into adipose tissues. Although it has been reported that chemokines promote leukocyte migration by activating class IB phosphoinositide-3 kinase (PI3Kγ) in inflammatory states, little is known about the role of PI3Kγ in obesity-induced macrophage infiltration into tissues, systemic inflammation, and the development of insulin resistance. In the present study, we used murine models of both diet-induced and genetically induced obesity to examine the role of PI3Kγ in the accumulation of tissue macrophages and the development of obesity-induced insulin resistance. Mice lacking p110γ (Pik3cg(-/-)), the catalytic subunit of PI3Kγ, exhibited improved systemic insulin sensitivity with enhanced insulin signaling in the tissues of obese animals. In adipose tissues and livers of obese Pik3cg(-/-) mice, the numbers of infiltrated proinflammatory macrophages were markedly reduced, leading to suppression of inflammatory reactions in these tissues. Furthermore, bone marrow-specific deletion and pharmacological blockade of PI3Kγ also ameliorated obesity-induced macrophage infiltration and insulin resistance. These data suggest that PI3Kγ plays a crucial role in the development of both obesity-induced inflammation and systemic insulin resistance and that PI3Kγ can be a therapeutic target for type 2 diabetes.  相似文献   

17.
Obesity is associated with a chronic low-grade inflammation characterized by macrophage infiltration of adipose tissue (AT) that may underlie the development of insulin resistance and type 2 diabetes. Osteopontin (OPN) is a multifunctional protein involved in various inflammatory processes, cell migration, and tissue remodeling. Because these processes occur in the AT of obese patients, we studied in detail the regulation of OPN expression in human and murine obesity. The study included 20 morbidly obese patients and 20 age- and sex-matched control subjects, as well as two models (diet-induced and genetic) of murine obesity. In high-fat diet-induced and genetically obese mice, OPN expression was drastically up-regulated in AT (40 and 80-fold, respectively) but remained largely unaltered in liver (<2-fold). Moreover, OPN plasma concentrations remained unchanged in both murine models of obesity, suggesting a particular local but not systemic importance for OPN. OPN expression was strongly elevated also in the AT of obese patients compared with lean subjects in both omental and sc AT. In addition, we detected three OPN isoforms to be expressed in human AT and, strikingly, an obesity induced alteration of the OPN isoform expression pattern. Analysis of AT cellular fractions revealed that OPN is exceptionally highly expressed in AT macrophages in humans and mice. Moreover, OPN expression in AT macrophages was strongly up-regulated by obesity. In conclusion, our data point toward a specific local role of OPN in obese AT. Therefore, OPN could be a critical regulator in obesity induced AT inflammation and insulin resistance.  相似文献   

18.
Ellacott KL  Murphy JG  Marks DL  Cone RD 《Endocrinology》2007,148(12):6186-6194
Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, hypertension, and dyslipidemia, is associated with the development of obesity in humans as well as rodent models. White adipose tissue (WAT) inflammation, caused in part by macrophage infiltration, and fat accumulation in the liver are both linked to development of the metabolic syndrome. Despite large increases in body fat, melanocortin 3-receptor (MC3-R)-deficient mice do not get fatty liver disease or severe insulin resistance. This is in contrast to obese melanocortin 4-receptor (MC4-R)-deficient mice and diet-induced obese (DIO) mice, which show increased adiposity, fatty liver disease, and insulin resistance. We hypothesized that defects in the inflammatory response to obesity may underlie the protection from metabolic syndrome seen in MC3-R null mice. MC4-R mice fed a chow diet show increased proinflammatory gene expression and macrophage infiltration in WAT, as do wild-type (WT) DIO mice. In contrast, MC3-R-deficient mice fed a normal chow diet show neither of these inflammatory changes, despite their elevated adiposity and a comparable degree of adipocyte hypertrophy to the MC4-R null and DIO mice. Furthermore, even when challenged with high-fat chow for 4 wk, a period of time shown to induce an inflammatory response in WAT of WT animals, MC3-R nulls showed an attenuated up-regulation in both monocyte chemoattractant protein-1 (MCP-1) and TNFalpha mRNA in WAT compared with WT high-fat-fed animals.  相似文献   

19.
20.
ObjectiveCCR2 inhibition has produced promising experimental and clinical anti-hyperglycemic effects. These results support the thesis that insulin resistance and Type 2 diabetes (T2D) are associated with chronic unresolved inflammation. The aim of this study was to provide a broad analysis of the various physiological changes occurring in mouse models of T2D in connection with pharmacological CCR2 inhibition.Materials/MethodsA mouse-active chemical analogue of the clinical candidate CCX140-B was tested in diet-induced obese (DIO) mice and db/db mice. Measurements included: adipose tissue inflammatory macrophage counts; peripheral blood glucose levels at steady-state and after glucose and insulin challenges; peripheral blood insulin and adiponectin levels; 24-h urine output and urinary glucose levels; pancreatic islet number and size; hepatic triglyceride and glycogen content; and hepatic glucose-6-phosphatase levels.ResultsIn DIO mice, the CCR2 antagonist completely blocked the recruitment of inflammatory macrophages to visceral adipose tissue. The mice exhibited reduced hyperglycemia and insulinemia, improved insulin sensitivity, increased circulating adiponectin levels, decreased pancreatic islet size and increased islet number. It also reduced urine output, glucose excretion, hepatic glycogen and triglyceride content and glucose 6-phosphatase levels. Similar effects were observed in the db/db diabetic mice.ConclusionsThese data indicate that pharmacological inhibition of CCR2 in models of T2D can reduce inflammation in adipose tissue, alter hepatic metabolism and ameliorate multiple diabetic parameters. These mechanisms may contribute to the promising anti-diabetic effects seen in humans with at least one CCR2 antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号