首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
OBJECTIVES: An endothelial cell (EC)-specific angiogenesis assay was developed to functionally characterize angiogenic properties of 2 distinct putative endothelial progenitor cells (EPCs): early EPCs and late outgrowth endothelial cells (OECs). BACKGROUND: Endothelial progenitor cells promote revascularization of ischemic tissue. However, the nature of different EPCs and their role in angiogenesis remains debated. METHODS: Tubulogenesis was assessed by immunohistochemistry in co-cultures of differentiated ECs (including human umbilical vein, coronary artery, and microvascular ECs) or non-ECs with monolayers of human fibroblasts (MRC5). Using adaptations of the co-culture assay, early EPCs and OECs, isolated from peripheral blood mononuclear cells, were assessed by 3-dimensional immunofluorescence microscopy for their capacity for: 1) independent tubulogenesis; 2) incorporation into pre-existing vascular networks; and 3) paracrine angiogenic effects using transwell cultures. RESULTS: Branched interconnecting EC-specific tubules formed with all differentiated ECs after 72 h. Proangiogenic and antiangiogenic agents modulated tubulogenesis appropriately (vascular endothelial growth factor 10 ng: +142 +/- 13%, 1 microM anti-vascular endothelial growth factor: -44 +/- 7% vs. control, p < 0.001). In contrast, early EPCs, along with nonendothelial cell types, failed to independently form tubules or incorporate into differentiated EC tubules. Nevertheless, early EPCs indirectly augmented tubulogenesis by differentiated ECs even when physically separated by transwells (+115 +/- 4% vs. control; p < 0.001). By contrast, OECs independently formed tubules and incorporated into differentiated EC tubules but exerted no significant paracrine angiogenic effects. CONCLUSIONS: A novel EC-specific tubulogenesis assay highlights strikingly different angiogenic properties of different EPCs: late OECs directly participate in tubulogenesis, whereas early EPCs augment angiogenesis in a paracrine fashion, with implications for optimizing cell therapies for neovascularization.  相似文献   

2.
Infantile hemangiomas are composed of endothelial cells (ECs), endothelial progenitor cells (EPCs), as well as perivascular and hematopoietic cells. Our hypothesis is that hemangioma-derived EPCs (HemEPCs) differentiate into the mature ECs that comprise the major compartment of the tumor. To test this, we isolated EPCs (CD133(+)/Ulex europeus- I(+)) and mature ECs (CD133(-)/Ulex europeus-I(+)) from proliferating hemangiomas and used a previously described property of hemangioma-derived ECs (HemECs), enhanced migratory activity in response to the angiogenesis inhibitor endostatin, to determine if HemEPCs share this abnormal behavior. Umbilical cord blood-derived EPCs (cbEPCs) were analyzed in parallel as a normal control. Our results show that HemEPCs, HemECs, and cbEPCs exhibit increased adhesion, migration, and proliferation in response to endostatin. This angiogenic response to endostatin was consistently expressed by HemEPCs over several weeks in culture, whereas HemECs and cbEPCs shifted toward the mature endothelial response to endostatin. Similar mRNA-expression patterns among HemEPCs, HemECs, and cbEPCs, revealed by microarray analyses, provided further indication of an EPC phenotype. This is the first demonstration that human EPCs, isolated from blood or from a proliferating hemangioma, are stimulated by an angiogenesis inhibitor. These findings suggest that EPCs respond differently from mature ECs when exposed to angiogenic or antiangiogenic signals.  相似文献   

3.
Vascularization, a hallmark of tumorigenesis, is classically thought to occur exclusively through angiogenesis (i.e. endothelial sprouting). However, there is a growing body of evidence that endothelial progenitor cells (EPCs) and proangiogenic hematopoietic cells (HCs) are able to support the vascularization of tumors and may therefore play a synergistic role with angiogenesis. An additional cell type being studied in the field of tumor vascularization is the circulating endothelial cell (CEC), whose presence in elevated numbers reflects vascular injury. Levels of EPCs and CECs are reported to correlate with tumor stage and have been evaluated as biomarkers of the efficacy of anticancer/antiangiogenic treatments. Furthermore, because EPCs and subtypes of proangiogenic HCs are actively participating in capillary growth, these cells are attractive potential vehicles for delivering therapeutic molecules. The current paper provides an update on the biology of CECs, EPCs and proangiogenic HCs, and explores the utility of these cell populations for clinical oncology.  相似文献   

4.
The mechanisms by which bone marrow (BM)-derived stem cells might contribute to angiogenesis and the origin of neovascular endothelial cells (ECs) are controversial. Neovascular ECs have been proposed to originate from VEGF receptor 2-expressing (VEGFR-2+) stem cells mobilized from the BM by VEGF or tumors, and it is thought that angiogenesis and tumor growth may depend on such endothelial precursors or progenitors. We studied the mobilization of BM cells to circulation by inoculating mice with VEGF polypeptides, adenoviral vectors expressing VEGF, or tumors. We induced angiogenesis by syngeneic melanomas, APCmin adenomas, adenoviral VEGF delivery, or matrigel plugs in four different genetically tagged universal or endothelial cell-specific chimeric mouse models, and subsequently analyzed the contribution of BM-derived cells to endothelium in a wide range of time points. To study the existence of circulating ECs in a nonmyeloablative setting, pairs of genetically marked parabiotic mice with a shared anastomosed circulatory system were created. We did not observe specific mobilization of VEGFR-2+ cells to circulation by VEGF or tumors. During angiogenesis, abundant BM-derived perivascular cells were recruited close to blood vessel wall ECs but did not form part of the endothelium. No circulation-derived vascular ECs were observed in the parabiosis experiments. Our results show that no BM-derived VEGFR-2+ or other EC precursors contribute to vascular endothelium and that cancer growth does not require BM-derived endothelial progenitors. Endothelial differentiation is not a typical in vivo function of normal BM-derived stem cells in adults, and it has to be an extremely rare event if it occurs at all.  相似文献   

5.
Yoder MC  Mead LE  Prater D  Krier TR  Mroueh KN  Li F  Krasich R  Temm CJ  Prchal JT  Ingram DA 《Blood》2007,109(5):1801-1809
The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration.  相似文献   

6.
The isolation of endothelial progenitor cells (EPCs) derived from bone marrow (BM) was an outstanding event in the recognition of 'de novo vessel formation' in adults occurring as physiological and pathological responses. The finding that EPCs home to sites of neovascularization and differentiate into endothelial cells (ECs) in situ is consistent with 'vasculogenesis', a critical paradigm well described for embryonic neovascularization, but proposed recently in adults in which a reservoir of stem or progenitor cells contributes to vascular organogenesis. EPCs have also been considered as therapeutic agents to supply the potent origin of neovascularization under pathological conditions. This review provides an update of EPC biology as well as highlighting their potential use for therapeutic regeneration.  相似文献   

7.
Functional abnormalities of the endothelial system may be caused by allogeneic hematopoietic stem cell transplantation (HSCT). The aim of this study is to explore the possibility that endothelial progenitor cells (EPCs) can be used in endothelial repair post-HSCT. EPCs were isolated from mouse bone marrow by density centrifugation and differential adherence. Numbers of endothelial cells (ECs) (CD31+CD133CD45), EPCs (CD31+CD133+–CD45low/−) and carboxyfluorescein succinimidyl ester (CFSE)-positive cells in peripheral blood, spleen and bone marrow were determined at various time points by flow cytometry. The distribution of labeled EPCs was observed by fluorescence microscopy; morphological alterations of tissues were assessed by light microscopy and transmission electron microscopy. In the irradiated group, the numbers of circulating ECs and EPCs were elevated after pre-conditioning, reaching peaks at days 3 and 5; the counts remained high for about 5 days. In addition, CFSE-labeled cells were visualized in tissue and bone marrow. In conclusion, these results suggest the following: (a) the EPCs derived from mouse bone marrow mononuclear cells express phenotypes characteristic of normal EPCs, (b) irradiation during preconditioning damaged the endothelium, which initiated mobilization of EPCs, and (c) injury to the endothelium also caused extrinsic EPCs home to the damaged tissue.  相似文献   

8.
Transplanted human bone marrow contributes to vascular endothelium   总被引:6,自引:0,他引:6       下载免费PDF全文
Recent evidence indicates that bone marrow is a source of endothelial progenitor cells that are mobilized into the peripheral blood in response to cytokines or tissue injury. Previously, we showed that functional endothelial cells (ECs) can be clonally derived from phenotypically defined hematopoietic stem cells. To determine the EC potential of human bone marrow and peripheral blood stem cells, blood vessels in sex-mismatched transplant recipients were evaluated. EC outcomes were identified by using a combination of immunohistochemistry and XY interphase FISH. Donor-derived ECs were detected in the skin and gut of transplant recipients with a mean frequency of 2% and could readily be distinguished from CD45-expressing hematopoietic stem cells. None of the >4,000 ECs examined had more than two sex chromosomes, consistent with an absence of cell fusion. Y chromosome signals were not detected in sex-matched female recipients, excluding the vertical transmission of male cells. None of the recipients evaluated before hematopoietic engraftment demonstrated donor-derived ECs, indicating a close linkage between the recovery of hematopoiesis and EC outcomes. Transplantable bone marrow-derived endothelial progenitor cells may represent novel therapeutic targets for hematopoietic and vascular disease.  相似文献   

9.
We investigated the role of c-Kit and the membrane-bound ligand (mbKitL) in endothelial progenitor cell (EPC) recruitment by microvascular endothelial cells (ECs). We demonstrated that inflammatory activation induced the expression of the mbKitL on ECs both in vitro and in vivo, and that recruitment of EPCs depended on c-Kit/mbKitL interaction. Depletion of endogenous c-Kit or inhibition of c-Kit enzymatic activity by imatinib mesylate prevented adhesion of EPCs to activated ECs both in vitro and in vivo, indicating that a functional c-Kit on EPCs is essential. We also demonstrate that Akt was the downstream molecule regulating cell adhesion. A potential role of the c-Kit/mbKitL interaction in pathological settings is sustained by the expression of the mbKitL on ECs lining intraplaque neovessels. Thus, our results provide new insights into the mechanisms underlying EPC recruitment and the bases for novel strategies to hinder pathological angiogenesis.  相似文献   

10.
Endothelial and endothelial progenitor cells (ECs and EPCs) play a fundamental role in angiogenesis that is essential for numerous physiological and pathological processes. The phosphatase and tensin homolog (PTEN)/ phosphoinositide 3-kinase (PI3K) pathway has been implicated in angiogenesis, but the mechanism in the regulation of this pathway in ECs and EPCs is poorly understood. Here we show that ARIA (apoptosis regulator through modulating IAP expression), a transmembrane protein that we recently identified, regulates the PTEN/PI3K pathway in ECs and EPCs and controls developmental and postnatal angiogenesis in vivo. We found that ARIA is abundantly expressed in EPCs and regulates their angiogenic functions by modulating PI3K/Akt/endothelial nitric oxide synthase (eNOS) signaling. Genetic deletion of ARIA caused nonfatal bleeding during embryogenesis, in association with increased small vessel density and altered expression of various vascular growth factors including angiopoietins and VEGF receptors. Postnatal neovascularization induced by critical limb ischemia was substantially enhanced in ARIA-null mice, in conjunction with more bone marrow (BM)-derived ECs detected in ischemic muscles. Administration of PI3K or NO synthase inhibitor completely abolished the enhanced neovascularization in ARIA(-/-) mice. Mechanistically, we identified that ARIA interacts with PTEN at the intracellular domain independently of the PTEN phosphorylation in its C-terminal tail. Overexpressed ARIA increased PTEN in the membrane fraction, whereas ARIA-silencing reduced the membrane-associated PTEN, resulting in modified PI3K/Akt signaling. Taken together, our findings establish a previously undescribed mode of regulation of the PTEN/PI3K/Akt pathway by ARIA, and reveal a unique mechanism in the control of angiogenesis. These functions of ARIA might offer a unique therapeutic potential.  相似文献   

11.
Lee YJ  Lee HJ  Choi SH  Jin YB  An HJ  Kang JH  Yoon SS  Lee YS 《Angiogenesis》2012,15(2):229-242
Endothelial cell function is critical for angiogenic balance in both physiological and pathological conditions, such as wound healing and cancer, respectively. We report here that soluble heat shock protein beta-1 (HSPB1) is released primarily from endothelial cells (ECs), and plays a key role in regulating angiogenic balance via direct interaction with vascular endothelial growth factor (VEGF). VEGF-mediated phosphorylation of intracellular HSPB1 inhibited the secretion of HSPB1 and their binding activity in ECs. Interestingly, co-culture of tumor ECs with tumor cells decreased HSPB1 secretion from tumor ECs, suggesting that inhibition of HSPB1 secretion allows VEGF to promote angiogenesis. Additionally, neutralization of HSPB1 in a primary mouse sarcoma model promoted tumor growth, indicating the anti-angiogenic role of soluble HSPB1. Overexpression of HSPB1 by HSPB1 adenovirus was sufficient to suppress lung metastases of CT26 colon carcinoma in vivo, while neutralization of HSPB1 promoted in vivo wound healing. While VEGF-induced regulation of angiogenesis has been studied extensively, these findings illustrate the key contribution of HSPB1-VEGF interactions in the balance between physiological and pathological angiogenesis.  相似文献   

12.
Endothelial progenitor cells in infantile hemangioma   总被引:24,自引:1,他引:24       下载免费PDF全文
Yu Y  Flint AF  Mulliken JB  Wu JK  Bischoff J 《Blood》2004,103(4):1373-1375
Infantile hemangioma is an endothelial tumor that grows rapidly after birth but slowly regresses during early childhood. Initial proliferation of hemangioma is characterized by clonal expansion of endothelial cells (ECs) and neovascularization. Here, we demonstrated mRNA encoding CD133-2, an important marker for endothelial progenitor cells (EPCs), predominantly in proliferating but not involuting or involuted hemangioma. Progenitor cells coexpressing CD133 and CD34 were detected by flow cytometry in 11 of 12 proliferating hemangioma specimens from children 3 to 24 months of age. Furthermore, in 4 proliferating hemangiomas, we showed that 0.14% to 1.6% of CD45(-) nucleated cells were EPCs that coexpressed CD133 and the EC marker KDR. This finding is consistent with the presence of KDR(+) immature ECs in proliferating hemangioma. Our results suggest that EPCs contribute to the early growth of hemangioma. To our knowledge, this is the first study to show direct evidence of EPCs in a human vascular tumor.  相似文献   

13.
14.
Engraftment of hematopoietic stem cells (HSCs) is a pre-requisite for the success of hematopoietic stem cell transplantation (HSCT). Fetal blood cell (FBC)-derived endothelial progenitor cells (EPCs) are known to facilitate HSC reconstitution in the early phase. However, longer term effects on HSCs remain unclear. The purpose of this study was to evaluate the effect of EPCs on the quality of transplanted hematopoietic stem cells in mouse HSCT model. BALB/c mice were randomly divided into four groups, namely, control, total body irradiation only, HSCT, and HSCT + EPCs (with infusion of 5?×?105 EPCs). Mice was sacrificed on days 7, 14, 21, and 28 post-HSCT for the analysis of the bone marrow pathology by H&E staining, measurement of c-kit+sca-1+, c-kit+, apoptosis, and necrosis by flow cytometry as well as colony formation assay. Secondary transplantation involved the injection of transplanted BALB/c-derived HSCs into new TBI-treated BALB/c mice. Compared with HSCT, EPCs infusion promoted the differentiation and reduced apoptosis of transplanted HSCs, possibly through promotion of vascular repair of the bone marrow microenvironment via differentiation into the bone marrow endothelial cells. Significantly, EPCs’ effect on HSCs was maintained for a long period as demonstrated using a secondary transplantation approach. These data revealed EPCs improved the quality and quantity of transplanted HSCs and maintained their effects over the longer term, suggesting a novel approach to improve HSCT efficiency and outcomes.  相似文献   

15.
Recent discoveries of molecular markers for arterial, venous, and lymphatic endothelial cells (ECs) made it possible to investigate mechanisms of the vascular diversification at the cellular level. Recently, these three EC types have been successfully induced from mouse embryonic stem cells. Molecular and cellular dissection of EC diversification processes in vitro using embryonic stem cell system would provide novel insights into vascular development and materials for cell therapy as well as gene therapy and novel drugs. Further investigation of tissue-specific vascular diversification in detail would be important for future vascular biology and medicine.  相似文献   

16.
Myocardial infarction (MI) is associated with the increase inplasma levels of inflammatory and haematopoietic cytokines andmobilization of a heterogenous population of cells which consistspredominantly of committed lineages (monocytes, polymorphonucleargranulocytes, and lymphocytes), as well as numerous types ofstem/progenitor cells [endothelial progenitor cells (EPCs),haematopoietic stem cells (HSCs), and mesenchymal stem cells(MSCs)]. The number of circulating EPCs may have a prognosticvalue; however, this concept remains to be proved in large prospectivestudies.1,2 The number of circulating EPCs and mature endothelialcells (ECs) supposedly reflects the vascular endothelial injuryand the repair mechanisms activated to restore the endothelialintegrity. The article by Ferrario et al.3 investigates the haemoglobin-independentincrease of the  相似文献   

17.

Background

The possibility that allogeneic hematopoietic stem cell transplantation performed across the ABO blood group-barrier is associated with an increase of graft-versus-host disease, in particular endothelial damage, has not been elucidated so far. For this reason, we investigated the level of endothelial cell chimerism after allogeneic hematopoietic stem cell transplantation in order to delineate the role of hematopoietic stem cells in endothelial replacement.

Design and Methods

The frequency of donor-derived endothelial cells was analyzed in 52 hematopoietic stem cell transplant recipients, in 22 normal skin biopsies, in 12 skin samples affected by graft-versus-host disease, various tissues from five autopsies and four secondary solid tumors by ABH immunohistochemistry, XY fluorescence in situ hybridization and short tandem repeat analysis of laser captured endothelial cells.

Results

Skin biopsies from two patients transplanted with minor ABO-incompatible grafts (i.e. O in A) showed 3.3% and 0.9% H antigen-positive donor-derived endothelial cells by ABH immunohistochemistry. Tumor biopsies from two recipients showed 1.2% and 2.5% donor-derived endothelial cells by combined immunohistochemistry/ fluorescence in situ hybridization. All other skin samples, heart, liver, bone-marrow, and tumor tissues failed to reveal donor-type endothelial cells up to several years after ABO-incompatible hematopoietic stem cell transplantation.

Conclusions

Endothelial cell replacement by bone marrow-derived donor cells after allogeneic hematopoietic stem cell transplantation is a rare event. It does not seem to represent a major mechanism of physiological in vivo blood vessel formation, tumor neoangiogenesis, vascular repair after graft-versus-host disease episodes or acceptance of ABO-incompatible grafts.  相似文献   

18.
Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by endothelial cells (ECs) to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms.  相似文献   

19.
Stratman AN  Davis MJ  Davis GE 《Blood》2011,117(14):3709-3719
Here, we demonstrate a novel, direct-acting, and synergistic role for 3 hematopoietic stem cell cytokines: stem cell factor, interleukin-3, and stromal derived factor-1α, in controlling human endothelial cell (EC) tube morphogenesis, sprouting, and pericyte-induced tube maturation under defined serum-free conditions in 3-dimensional matrices. Angiogenic cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) alone or VEGF/FGF combinations do not support these responses. In contrast, VEGF and FGF prime EC responses to hematopoietic cytokines via up-regulation of c-Kit, IL-3Rα, and C-X-C chemokine receptor type 4 from either human ECs or embryonic quail vessel explants. In support of these findings, EC Runx1 is demonstrated to be critical in coordinating vascular morphogenic responses by controlling hematopoietic cytokine receptor expression. Combined blockade of hematopoietic cytokines or their receptors in vivo leads to blockade of developmental vascularization in quail embryos manifested by vascular hemorrhage and disrupted vascular remodeling events in multiple tissue beds. This work demonstrates a unique role for hematopoietic stem cell cytokines in vascular tube morphogenesis and sprouting and further demonstrates a novel upstream priming role for VEGF and FGF to facilitate the action of promorphogenic hematopoietic cytokines.  相似文献   

20.
Angiogenesis is an important event for embryonic organogenesis as well as for tissue repair in the adult. Here we show that hematopoietic stem cells (HSCs) are essential for angiogenesis during embryogenesis. To investigate the role of HSCs in endothelial cell (EC) development, we analyzed AML1-deficient embryos, which lack definitive hematopoiesis.These embryos showed defective angiogenesis in the head, pericardium, and fetal liver. Para-aortic splanchnopleural (P-Sp) explant cultures on stromal cells (P-Sp cultures) did not generate definitive hematopoietic cells and showed defective angiogenesis in the AML1-null embryo. Disrupted angiogenesis in P-Sp cultures from AML1-null embryos was rescued by addition of HSCs. HSCsspecifically produce angiopoietin-1 (Ang1).Thus HSCs,which expressAng1, directly promoted migration of ECs.These findings suggest that HSCs alone prepare the hematopoietic microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号