首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Endogenous vasopressin and baroreflex mechanisms   总被引:5,自引:0,他引:5  
This article reviews the anatomical and functional evidence for ascending pathways from specific brain regions to the PVN and SON which could influence AVP release. The majority of evidence favours the main projection being from a region in the caudal VLM which may coincide with the noradrenergic neurons of the A1 cell group. However, the transmitter(s) involved have yet to be identified, and whether the pathway is excitatory and/or inhibitory remains to be fully resolved. Anatomical and functional evidence is reviewed for descending projections from the SON and PVN to specific brain regions involved in cardiovascular control, and their possible involvement in baroreflex mechanisms is discussed. However, there is little unequivocal evidence that AVP is the main neurotransmitter utilized by descending projections from PVN to NTS and DMX. While, in some situations, circulating endogenous AVP exerts cardiovascular effects, details of its putative influences on baroreflex mechanisms are lacking.  相似文献   

2.
Defining how arginine vasopressin (AVP) acts centrally to regulate homeostasis and behavior is problematic, as AVP is made in multiple nuclei in the hypothalamus (i.e., paraventricular [PVN], supraoptic [SON], and suprachiasmatic [SCN]) and extended amygdala (i.e., bed nucleus of the stria terminalis [BNST] and medial amygdala [MeA]), and these groups of neurons have extensive projections throughout the brain. To understand the function of AVP, it is essential to know the site of origin of various projections. In mice, we used gonadectomy to eliminate gonadal steroid hormone–dependent expression of AVP in the BNST and MeA and electrolytic lesions to eliminate the SCN, effectively eliminating those AVP‐immunoreactive projections; we also quantified AVP‐immunoreactive fiber density in gonadectomized and sham‐operated male and female mice to examine sex differences in AVP innervation. Our results suggest that the BNST/MeA AVP system innervates regions containing major modulatory neurotransmitters (e.g., serotonin and dopamine) and thus may be involved in regulating behavioral state. Furthermore, this system may be biased toward the regulation of male behavior, given the numerous regions in which males have a denser AVP‐immunoreactive innervation than females. AVP from the SCN is found in regions important for the regulation of hormone output and behavior. Innervation from the PVN and SON is found in brain regions that likely work in concert with the well‐known peripheral AVP actions of controlling homeostasis and stress response; female‐biased sex differences in this system may be related to the heightened stress response observed in females. J. Comp. Neurol. 521:2321–2358, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
4.
Upon return from spaceflight or resumption of normal posture after bed rest, individuals often exhibit cardiovascular deconditioning. Although the mechanisms responsible for cardiovascular deconditioning have yet to be fully elucidated, alterations within the central nervous system have been postulated to be involved. The paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus are important brain regions in control of sympathetic outflow and body fluid homeostasis. Nitric oxide (NO) modulates the activity of PVN and SON neurons, and alterations in NO transmission within these brain regions may contribute to symptoms of cardiovascular deconditioning. The purpose of the present study was to examine nitric oxide synthase (NOS) activity and expression in the PVN and SON of control and hindlimb unloaded (HU) rats, an animal model of cardiovascular deconditioning. The number of neurons exhibiting NOS activity as assessed by NADPH-diaphorase staining was significantly greater in the PVN but not SON of HU rats. Western blot analysis revealed that neuronal NOS (nNOS) but not endothelial NOS (eNOS) protein expression was higher in the PVN of HU rats. In the SON, there was a strong trend for an increase in nNOS (p=0.052) and a significant increase in eNOS expression in HU rats. Our results suggest that increased nNOS in the PVN contributes to autonomic and humoral alterations following cardiovascular deconditioning. In contrast, the functional significance of increases in nNOS and eNOS protein in the SON may be related to alterations in vasopressin release observed previously in HU rats.  相似文献   

5.
Vasopressinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei express oestrogen receptor (ER)β and receive afferent projections from osmosensitive neurones that express ERα. However, which subtype of these receptors mediates the effects of oestradiol on vasopressin (AVP) secretion induced by hydromineral challenge has not yet been demonstrated in vivo. Moreover, AVP secretion induced by hyperosmolality is known to involve activation of TRPV1 (transient receptor potential vanilloid, member 1) in magnocellular neurones, although whether oestradiol modulates expression of this receptor is unknown. Thus, the present study aimed to clarify the mechanisms involved in the modulation exerted by oestradiol on AVP secretion, specifically investigating the involvement of ERβ, ERα and TRPV1 receptors in response to water deprivation (WD). We observed that treatment with an ERβ agonist potentiated AVP secretion and vasopressinergic neuronal activation induced by WD. This increase in AVP secretion induced by WD was reversed by an ERβ antagonist. By contrast to ERβ, the ERα agonist did not alter plasma AVP concentrations or activation of AVP neurones in the SON and PVN. Additionally, Fos expression in the subfornical organ was not altered by the ERα agonist. TRPV1 mRNA expression was increased by WD in the SON, although this response was not altered by any treatment. The results of the present study suggest that ERβ mediates the effects of oestradiol on AVP secretion in response to WD, indicating that the effects of oestradiol occur directly in AVP neurones without affecting TRPV1.  相似文献   

6.
In male rats, lesions of the paraventricular nucleus (PVN) of the hypothalamus attenuate, but do not abolish, adrenocorticotropin (ACTH) secretion in response to acute alcohol injection. As the PVN is the major source of corticotropin-releasing factor (CRF) in the median eminence, this observation suggests that extra-PVN brain regions, and/or ACTH secretagogues other than CRF (e.g. arginine vasopressin (AVP)), mediate ACTH stimulation by alcohol. This hypothesis was tested by examining the effect of AVP immunoneutralization in PVN-lesioned (PVNx) rats. Removal of endogenous AVP diminished alcohol-evoked ACTH secretion in both sham-operated and PVNx animals, indicating that AVP from outside the PVN partially mediates the hypothalamic-pituitary-adrenal (HPA) axis response to alcohol. This led us to determine whether alcohol might also regulate AVP steady-state gene expression in the supraoptic nucleus (SON) and PVN, and/or CRF mRNA in the PVN and the central nucleus of the amygdala (AMY). In the magnocellular portion of the PVN, sham-operated animals showed significantly increased PVN levels of both CRF and AVP mRNAs 3 h after alcohol. In the SON, alcohol administration tended to decrease AVP gene expression in PVNx rats, while the drug increased AVP mRNA levels in the SON of sham-operated rats. AMY levels of CRF mRNA were unaffected by these manipulations. Finally, since the regulation of alcohol-induced AVP mRNA levels in the SON appeared to depend on the presence of the PVN, we measured peripheral levels of AVP in both sham-operated and PVNx animals after injection of vehicle or alcohol. Although AVP decreased in all groups, alcohol depressed AVP secretion to a greater extent in PVNx animals, suggesting that AVP systems are more sensitive to inhibition in the absence of the PVN. Our results demonstrate that although AVP of PVN origin may participate in regulating the stimulatory effect to AVP on ACTH secretion, AVP from areas other than the PVN also plays a role. Additionally, regulation of both AVP gene expression in the SON and secretion in the systemic circulation are altered in rats bearing lesions of the PVN.  相似文献   

7.
Blood pressure and heart rate reflexly increase during static muscle contraction in anesthetized cats. Previous studies have demonstrated that vasopressin (AVP) and oxytocin (OT) may act as neuromodulators to regulate cardiovascular responses elicited by contraction of skeletal muscle. In this study, we tested the hypothesis that neurons containing AVP and OT in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus are activated during static muscle contraction. A laminectomy was performed to expose the spinal cord and the peripheral cut ends of L7 and S1 ventral roots were stimulated electrically to induce muscle contraction. Hypothalamic neurons activated during the muscle contraction were identified by Fos-like immunoreactivity (FLI). Static muscle contraction significantly increased FLI in the PVN and SON, compared with sham-opeated cats. Double-staining of neurons in the PVN for AVP and OT showed that 22±4% of the AVP and 26±3% of the OT neurons in the PVN expressed FLI. In contrast, only 4±1% of the AVP and 3±1% of the OT neurons in the PVN were labeled with FLI in sham-operated animals. These results indicate that neurons in the PVN and SON of the hypothalamus were activated during static muscle contraction. Furthermore, as FLI was present in AVP and OT neurons, this suggests these neurons may constitute a part of the neural pathway involved in cardiovascular regulation during static muscle contraction.  相似文献   

8.
R Landgraf  M Ludwig 《Brain research》1991,558(2):191-196
The combination of microdialysis and a highly sensitive radioimmunoassay was used in order to monitor the in vivo release of arginine vasopressin (AVP) within hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei of the rat brain. A dialysis probe was inserted into the SON or PVN area and microdialysis was performed in conscious or urethane-anesthetized animals before, during and after hypertonic artificial cerebrospinal fluid (aCSF, with 1 M NaCl) was delivered via the probe. The recovery of AVP in vitro was 1.60%, that of [3H]OH in vitro 14.2% and in vivo 8.44% (SON) and 9.26% (PVN), respectively. AVP was consistently detected in both SON and PVN dialysates; basal levels averaged 0.87 +/- 0.22 pg/30-min dialysate (SON, n = 51) and 0.80 +/- 0.24 pg/30-min dialysate (PVN, n = 6), respectively. Hypertonic aCSF given over a period of 30 min, 60 min or 90 min, resulted in an increased AVP release within the SON which, however, reached its peak (to 8.86-10.27 pg/sample; P less than 0.001 as compared to basal) only in the poststimulation period, i.e. after replacement of hypertonic with isotonic aCSF. An identical osmotic stimulus given 150-210 min after the first one produced similar, though slightly declined, changes in AVP release. In the PVN, AVP release patterns prior to and in response to the first hypertonic pulse were similar to those in the SON; a possible functional difference between the two nuclei is indicated by the lack of a rebound increase in AVP release following the second stimulation. The physiological significance of intranuclearly released AVP remains to be shown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The paraventricular (PVN) and supraoptic nucleus (SON) demonstrate a striking stability with respect to cell numbers during aging and Alzheimer’s disease (AD). Vasopressin (AVP) neurons even become activated during aging as judged from several parameters for neuronal activity, such as increased AVP plasma levels, enlarged nucleolar as well as cell size and an increased size of the Golgi apparatus in AVP-neurons. The activation possibly occurs as compensation for an age-related loss of AVP-receptors in the kidney. As a specific marker for AVP synthesis, we used quantitative in situ hybridization and estimated total amounts of AVP-mRNA in the entire SON and PVN of 14 control subjects and 14 AD patients that were matched for age, fixation time, postmortem delay and storage time of the tissue in paraffin. Following quantification, no differences were observed in total amounts of AVP-mRNA in the SON or PVN between young and old controls or between young and old AD patients, nor between the entire group of controls and AD patients. A significant negative correlation was found between the volume of the AVP-mRNA signal in the AD SON and age while the total amount of mRNA remained the same. This suggests a redistribution of cells or cell compartments in aging. A significant positive relation in both SON and PVN of AD patients was found between storage time of the paraffin-embedded tissue and the total amount of AVP-mRNA. A significant positive relation was present in the PVN, but not SON between pH of the cerebrospinal fluid, which is a marker for agonal state and the total amount of AVP mRNA. The present unchanged AVP-mRNA levels in SON and PVN confirm earlier observations on the stability of cell numbers in these nuclei in aging and AD. Although on the basis of other parameters, AVP-mRNA upregulation was expected, gradual, chronic stimulation over prolonged periods of time may, possibly, induce alternative mechanisms of regulation such as changes in translatability or in mRNA stability.  相似文献   

10.
The present study examines the relative levels of vasopressin (AVP) mRNA within the paraventricular (PVN), supraoptic (SON), and suprachiasmatic (SCN) nuclei of the rat hypothalamus, and details the rates at which these levels change over the course of a 6 d salt-loading regimen. The quantitation of vasopressin mRNA was achieved by using three different procedures: (1) cell-free translation in rabbit reticulocyte lysate or (2) Northern analysis of poly(A)RNAs isolated from micro-punch dissected SON, PVN, and SCN, and (3) in situ hybridization histochemistry. The former involved the quantitative immunoprecipitation of the neurophysin precursors containing arginine8-vasopressin (AVP) or oxytocin, and the latter two techniques employed a radiolabeled synthetic oligodeoxynucleotide complementary to the 3' region of the AVP mRNA. Both the cell-free studies and the Northern gel analyses detected a sevenfold increase of AVP mRNA in the SON, a fivefold increase in the PVN, and no significant change in the SCN following 6 d of salt-loading. After the initiation of salt-drinking, these increases were shown to occur between 24 and 48 hr in the SON and between 48 and 72 hr in the PVN. The in situ hybridization studies revealed the anatomically correct hybridization of either 32P- or 3H-labeled AVP oligonucleotide to magnocellular perikarya within both the SON and PVN. Autoradiographic grains could be shown to be confined to the cytoplasm of these cells, and could be co-localized with immunoreactivity directed against the carboxy terminus of the AVP percursor. Comparison of x-ray level autoradiograms of control and 6 day salt-loaded SON revealed up to a sevenfold increase in specific signal in the salt-loaded sections. It is concluded that the response of AVP mRNA to osmotic stimuli in the three hypothalamic nuclei is heterogeneous, and that this heterogeneity can be explained by separating AVP neurons into two systems: one responsible for eliciting the antidiuretic actions of AVP via plasma AVP levels, and the other involved in CNS activities not directly involved with antidiuresis.  相似文献   

11.
Arginine vasopressin (AVP) and oxytocin (OXT), produced in the hypothalamic paraventricular (PVN) and supraoptic nucleus (SON), are considered to be involved in the pathophysiology of major depressive disorder (MDD). The objective of this study was to determine, for the first time, the relationship between AVP and OXT gene expression and depressive state in Alzheimer's disease (AD). Post-mortem brain tissue was obtained from six control subjects, and from a prospectively studied cohort of 23 AD patients, using the DSM-IIIR and the Cornell Scale for Depression in Dementia to determine depression diagnosis and severity. The amount of AVP and OXT mRNA was determined by in situ hybridisation. AD patients did not differ from controls with respect to the amount of AVP or OXT mRNA in the PVN or SON. Also, no differences were found between depressed and nondepressed AD patients and no relationship was found between the depression severity and AVP or OXT mRNA expression. The results indicate that AVP and OXT gene expression in the PVN and SON is unchanged in depressed AD patients compared to nondepressed AD patients. This is in contrast with the enhanced AVP gene expression in MDD, suggesting a difference in pathophysiology between MDD and depression in AD.  相似文献   

12.
Atrial natriuretic peptide (ANP), first discovered in the heart, has been also detected in various brain regions involved in the control of cardiovascular function and water and sodium balance. The anteroventral region of the third ventricle (AV3V) and the subfornical organ (SFO) have ANP-immunoreactive projections towards the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Extracellular fluid (ECF) hyperosmolality stimulates the secretion of oxytocin (OT) which induces ANP release by the atrium. On the other hand, passive immunoneutralization of ANP reduces OT secretion in response to ECF hypertonicity. Previous studies have shown the co-localization of ANP and OT in PVN and SON neurons and in the periventricular region, as well as the presence of ANPergic and oxytocinergic neurons in the median eminence. The aim of the present study was to investigate the OT and ANP content in the SON and PVN of the hypothalamus and in the posterior pituitary (PP) after an osmotic stimulus that induces OT secretion. The results showed that intracerebroventricular microinjection of normal rabbit serum (NRS) or of ANP antiserum followed or not by an intraperitoneal injection of isotonic saline did not alter OT secretion or OT content in the PVN, SON, and PP; passive ANP immunoneutralization reduced the basal content of ANP in the PVN, SON, and PP of animals in a situation of isotonicity; the ANP antiserum inhibited the increase of OT secretion and content of OT and ANP in the PVN, SON and PP induced by the osmotic stimulus. Thus, the increase in plasma OT and oxytocinergic neurons of the hypothalamus-posterior pituitary system in response to hypertonicity depends on the action of endogenous ANP, i.e., ECF hypertonicity must activate ANPergic neurons which directly or indirectly stimulate OT release.  相似文献   

13.
14.
15.
16.
The aim of this study was to examine the involvement of the hypothalamic oxytocin (OXT) and vasopressin (AVP) neurons in acute phase reaction using quantitative dual-labeled immunostaining with Fos and either OXT and AVP in several hypothalamic regions. Administration of low dose (5 μg/kg) and high dose (125 μg/kg) of LPS induced intense nuclear Fos immunoreactivity in many OXT and AVP neurons in all the observed hypothalamic regions. The percentage of Fos-positive nuclei in OXT magnocellular neurons was higher than that of AVP magnocellular neurons in the supraoptic nucleus (SON), the magnocellular neurons in the paraventricular nucleus (magPVN), rostral SON (rSON), and nucleus circularis (NC), whose axons terminate at the posterior pituitary for peripheral release. The percentage of Fos-positive nuclei in AVP parvocellular neurons in the paraventricular nucleus (parPVN) was higher than that of OXT parvocellular neurons, whose axons terminate within the brain for central release. Moreover, the percentage of Fos-positive nuclei in AVP magnocellular neurons of the SON and rSON was significantly higher than that of the magPVN and NC when animals were given LPS via intraperitoneal (i.p.)-injection. This regional heterogeneity was not observed in OXT magnocellular neurons of i.p.-injected rats or in either OXT or AVP magnocellular neurons of intravenous (i.v.)-injected rats. The present data suggest that LPS-induced peripheral release of AVP and OXT is due to the activation of the magnocellular neurons in the SON, magPVN, NC, and rSON, and the central release of those hormones is in part derived from the activation of parvocellular neurons in the PVN. It is also suggested that the activation of AVP magnocellular neurons is heterogeneous among the four hypothalamic regions, but that of OXT magnocellular neurons is homogenous among these brain regions in response to LPS administration.  相似文献   

17.
BACKGROUND: Elevated arginine vasopressin (AVP) plasma levels have been observed in major depression, particularly in relation to the melancholic subtype. Two hypothalamic structures produce plasma vasopressin: the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). The aim of this study was to establish which structure is responsible for the increased vasopressin plasma levels in depression. METHODS: Using in situ hybridization, we determined the amount of vasopressin messenger ribonucleic acid (mRNA) in the PVN and SON in postmortem brain tissue of nine depressed subjects (six with the melancholic subtype) and eight control subjects. RESULTS: In the SON, a 60% increase of vasopressin mRNA expression was found in depressed compared with control subjects. In the melancholic subgroup, AVP mRNA expression was significantly increased in both the SON and the PVN compared with control subjects. CONCLUSIONS: We found increased AVP gene expression in the SON in depressed subjects. This might partly explain the observed increased vasopressin levels in depression.  相似文献   

18.
The distribution and area of label for arginine vasopressin (AVP) mRNA or peptides were studied in rats exposed to cold or novel environments. In situ hybridization histochemistry was employed to detect AVP mRNA in hypothalamic frozen sections with a 45-mer photobiotinylated oligonucleotide probe. The storage of the peptide in both the hypothalamus and the pituitary was determined by immunohistochemistry. Label for mRNA or peptide was then quantified by the Cue-3 color image analysis system. Exposure to 4°C for 30 min caused a 3.5-fold increase in the label for AVP mRNA in the paraventricular nucleus (PVN) compared with that of control rats. This was correlated with a 2-fold elevation in serum ACTH. In addition, rats exposed to 30 min of a novel, thermoneutral (24°C) environment showed a 1.2- to -2.3-fold enhancement of the label for AVP mRNA in the PVN. In contrast, no changes were seen in the supraoptic nucleus (SON) following exposure to either cold or novel environments. Furthermore, neither stress caused significant changes in the storage of AVP peptide in the PVN, SON, median eminence, and posterior lobe of pituitary. This in vivo study demonstrates that PVN and SON neurons respond differentially to cold and novel environment exposures. The elevation of serum ACTH is correlated with the increased level of label for AVP mRNA in the rat hypothalamus, which suggests that AVP may play a role in the regulation of pituitary—adrenal responses to cold and novel environment stresses.  相似文献   

19.
The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB1) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB1 receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality.  相似文献   

20.
A Tokunaga  K Ono  T Ono  M Ogawa 《Brain research》1992,597(1):170-175
Immunohistochemistry for rat liver ferritin (FRT) revealed an intensive labeling in some structures of the rat brain. In the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei, almost all neurosecretory neurons with vasopressin (AVP)-like immunoreactivity were immunostained with FRT. After water deprivation, a marked enlargement of cell body and an immunoreactivity to transferrin receptors were found in AVP-, FRT- and double (AVP+FRT)-labeled neurons in the SON and PVN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号