首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum-induced chronic myelopathy in rabbits   总被引:1,自引:0,他引:1  
Young adult New Zealand white rabbits, inoculated intracisternally once monthly with 100 micrograms AlCl3, developed progressive hyperreflexia, hypertonia, gait impairment, weight loss, muscle wasting and abnormal righting reflexes over the course of 8 months. No overt encephalopathic features were present. In spinal motor neuron perikarya, dendrites and axonal processes, argentophilic globular inclusions were extensive. Additionally, neurofibrillary tangle-like argentophilic inclusions were consistently present in the gigantocellularis, reticularis, raphe and trapezoid nuclei, but rarely present in the dorsal and ventral subiculum, parasubiculum and anterior thalamus, and never found in the cerebral cortex, substantia nigra, locus ceruleus, or cerebellum. All neuronal inclusions were immunoreactive with monoclonal antibodies recognizing phosphorylated and nonphosphorylated high and intermediate weight neurofilament proteins (SMI 31, SMI 32). Also, some spinal motor neuron inclusions were immunoreactive with a monoclonal antibody recognizing an 'age-related' phosphorylation state of neurofilament (SMI 34). Ultrastructurally, the inclusions consisted of straight or interwoven skeins of 10 nm filaments. This study demonstrates unique variability in the phosphorylation state of aluminum-induced neurofilamentous inclusions in a predominantly motor system degeneration induced by chronic low dose AlCl3.  相似文献   

2.
Repeated monthly intracisternal inoculations of N-butyl benzenesulfonamide induced a chronic, slowly progressive myelopathy in young adult New Zealand white rabbits that was manifested by hyperreflexia, spasticity, hypertonia, gait impairment and altered tonic immobility responses. The neuropathological features consisted of scattered neuroaxonal spheroids, fusiform distention of the intramedullary portions of the spinal cord ventral roots and, as defined by microtubule-associated protein-2 (MAP 2) immunoreactivity, an initial distention and subsequent loss of dendritic processes in neurons of the nucleus motoris lateralis with the perikaryon of these cells remaining intact. A similar chronic progressive myelopathy was induced by repeated low dose intracisternal inoculations of aluminum chloride in New Zealand white rabbits. However, the neuropathological changes were more extensive and consisted of dendritic, axonal and perikaryal inclusions of phosphorylated and nonphosphorylated neurofilament localized to spinal motor neurons in the nucleus motoris medialis, substantia grisea intermedia and select brainstem nuclei with only minimal involvement of the nucleus motoris lateralis. The co-administration of these two neurotoxins over the course of 8 months induced striking behavioral changes as well as a fulminant myelopathy. This was accompanied by a loss of neuronal perikarya in the nucleus motoris accompanied by a loss of neuronal perikarya in the nucleus motoris lateralis and topographically extensive neocortical neurofilamentous degeneration. These features suggest that potentiation occurs when the two toxins are co-administered, a view supported by an estimation of the co-neurotoxicity coefficient (CNC greater than 1). Our results have implications for understanding human neurodegenerative disorders in which potentiation of insults may occur, producing a clinical and neuropathological disease state not expected from either agent alone.  相似文献   

3.
Because transgenic mice expressing an altered stoichiometry of neurofilament proteins develop a motor neuron degeneration associated with neurofilamentous aggregate formation similar to that found in amyotrophic lateral sclerosis (ALS), we studied the expression of intermediate filament proteins in sporadic ALS. Archival cervical spinal cord paraffin-embedded sections from 11 disease and 11 control cases were studied by either in situ hybridization using 35S-labeled riboprobes or immunohistochemically using specific antibodies for the individual neurofilament subunit proteins, alpha-internexin, nestin, peripherin, vimentin, beta-actin, or Talpha1-tubulin. Median NFL, alpha-internexin, and peripherin steady-state mRNA levels were significantly reduced in the lateral motor neuron cell column (p < 0.05) of ALS cases, while neither NFM nor NFH mRNA levels were altered. ALS cases demonstrated an elevation of beta-actin mRNA levels (p < 0.01) with no increase in Talpha1-tubulin mRNA levels. No motor neuronal expression of nestin or vimentin was observed. Ubiquitin-immunoreactive perikaryal aggregates were immunoreactive for NFH or beta-actin, but not for peripherin, alpha-internexin, vimentin, or nestin. In contrast, neuroaxonal spheroids were strongly immunoreactive for NFH and peripherin, but not for beta-actin, alpha-internexin, vimentin, or nestin. These findings suggest that the stoichiometry of cytoskeletal protein expression in ALS spinal motor neurons is significantly altered in a pattern conducive to the formation of neurofilamentous aggregates.  相似文献   

4.
The mechanism by which aluminum induces formation of perikaryal neurofilament (NF) inclusions remains unclear. Aluminum treatment inhibits:
  1. The incorporation of newly synthesized NF subunits into Trition-insoluble cytoskeleton of axonal neurites;
  2. Their degradation and dephosphorylation;
  3. Their translocation into axonal neurites.
It also fosters the accumulation of phosphorylated NFs within perikarya. In the present study, we addressed the relationship among these effects. Aluminum reduced the assembly of newly synthesized NF subunits into NFs. During examination of those subunits that did assemble in the presence of aluminum, it was revealed that aluminum also interfered with transport of newly assembled NFs into axonal neurites. Similarly, a delay in axonal transport of microinjected biotinylated NF-H was observed in aluminum-treated cells. Aluminum also inhibited the incorporation of newly synthesized and microinjected subunits into the Triton-insoluble cytoskeleton within both perikarya and neurites. Once incorporated into Triton-insoluble cytoskeletons, however, biotinylated subunits were retained within perikarya of aluminum-treated cells to a greater extent than within untreated cells. Notably these subunits were depleted in the presence and absence of aluminum within 48 h, despite the persistence of the aluminum-induced perikaryal accumulation itself, suggesting that individual NF subunits undergo turnover even within aluminum-induced perikaryal accumulations. These findings demonstrate that aluminum interferes with multiple aspects of neurofilament dynamics and furthermore leaves open the possibility that aluminum-induced perikaryal NF whorls may not represent permanent structures, but rather may require continued recruitment of cytoskeletal constituents.  相似文献   

5.
Summary A series of monoclonal antibodies that distinguish phosphorylated and nonphosphorylated neurofilament (NF) epitopes was used to immunostain brain stem neurons from control rabbits and from rabbits chronically intoxicated with Aluminium (Al). In controls, none of the monoclonal antibodies to phosphorylated NF stained the perikaryon of neurons. In contrast, in animals treated with Al, all neuronal perikarya containing Al-induced neurofilament bundles (NB) and some lacking well-formed NB immunoreacted with two of the five antibodies to phosphorylated NF. Axons were stained by all five antibodies to phosphorylated NF in both control and Al-treated animals. A broadly reacting monoclonal antibody to a nonphosphorylated NF epitopes immunoreacted with neuronal cell bodies, dendrites and axons in control and Al-intoxicated animals regardless of the presence of Al-induced NB. Staining of Al-induced NB with one of the antibodies to phosphorylated NF was greatly diminished after treatment of sections with trypsin and phosphatase. It is concluded that NF which compose the Al-induced NB have different immunocytochemical characteristics from those of the NF present in the perkaryon of normal neurons. It is likely that, contrary to normal perikaryal NF, NF of Al-induced NB are phosphorylated. Moreover, phosphorylation of NF of Al-induced NB is probably abnormal, since NF of Al-induced NB have immunostaining characteristics different from NF of normal axons. Al-induced NB may result from abnormal phosphorylation of NF in the perikaryon, preventing normal axonal transport of these structures.Supported by grants from the National Institutes of Health NS 14509 and AG 00795  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is characterized neuropathologically by chromatolysis, Bunina bodies, hyaline inclusions, skein-like inclusions and axonal spheroids. Aluminum, a known neurotoxin, is the cause of dialysis encephalopathy and is considered to be a causative agent in high incidence foci of ALS in the western Pacific. We have developed an experimental model of motor neuron degeneration in New Zealand white rabbits using chronic low-dose intracisternal administration of aluminum and compared the clinical and neuropathological changes to those of human ALS. Aluminum-inoculated rabbits developed progressive hyperreflexia, hypertonia, limb splaying, gait impairment, muscle wasting, hindlimb paralysis and impaired tonic immobility responses without overt encephalopathic features over a 14-month period. Examination of spinal cords from these animals demonstrated the frequent occurrence and progressive development of anterior horn cell lesions that included small, round, argentophilic perikaryal inclusions similar to hyaline inclusions seen in human ALS. Other inclusions were more condensed and eosinophilic, while still others had neurofibrillary tangle-like morphologies. Axonal spheroids and neuritic thickenings were also prominent and were identical to those seen in human ALS. We believe that the similar and progressive development of neuropathological changes observed in the chronic aluminum-intoxication model, compared to human ALS, warrants further study to aid in understanding the cellular and molecular mechanisms of human motor neuron disease. Received: 30 January 1996 / Revised, accepted: 17 June 1996  相似文献   

7.
The Golgi apparatus (GA) of anterior horn neurons of rats chronically intoxicated with β,β′‐iminodipropionitrile (IDPN) in drinking water was examined with an organelle‐specific antibody. The neuropile of the anterior horns contained the typical axonal spheroids associated with IDPN toxicity while the perikarya of approximately one‐third of the neurons contained phosphorylated neurofilaments, which are not found in the perikarya of control rat neurons. By serial or double immunostaining with the SMI‐31 and anti‐MG 160 antibodies, there were no morphological changes of the GA in the majority of neurons including neurons with a mild to moderate degree of neurofilamentous accumulation. However, a few neurons with a massive accumulation of phosphorylated neurofilaments contained abnormal profiles of the GA which consisted of focal clustering, reduction in size and fragmentation. The results suggest that masses of phosphorylated neurofilaments are associated with struc‐tural abnormalities of the GA.  相似文献   

8.
Summary Exposure of the central nervous system (CNS) of rabbits to aluminum salts produces a progressive encephalopathy. Examination of CNS strucres discloses widespread perikaryal neurofibrillary tangle (NFTs) formation. The aluminum-induced NFTs consist of collections of normal neurofilaments, and differ ultrastructurally and in their solubility characteristics from Alzheimer-type NFTs, the latter being composed of largely insoluble paired helical filaments. The present study compares NFTs found in the rabbit to those of Alzheimer's disease, using monoclonal antibodies (SMI 31, SMI 32) that recognize phosphorylated and non-phosphorylated determinants respectively in normal neurofilaments, and an antiserum raised against purified microtubules. Paraffin-embedded sections were stained by the avidin-biotin immunocytochemical method. Intense staining of aluminum-induced NFTs was found after processing with SMI 31 and SMI 32, while no staining of non-tangled perikarya of control rabbits or of Alzheimer-type NFTs was seen. Antimicrotubule antiserum gave weak, nonfocal staining in the aluminum-treated and control rabbits, while Alzheimer-type NFTs were stained intensely. These results show that phosphorylated and non-phosphorylated neurofilaments accumulate in aluminum-induced NFTs, thus complementing the previously demonstrated specific slowing of the axonal transport of neurofilaments in aluminum intoxication. Further, they suggest that the presence of microtubular proteins may be necessary for altered neurofilaments to take on a paired helical configuration.Supported by NIH grant No. 1 KO8 AG00258  相似文献   

9.
With conventional immunocytochemical techniques on fixed tissue, antibodies which recognize highly phosphorylated neurofilament proteins strongly label axons, but often react poorly with perikaryal neurofilaments. The reactivity of one such antibody, SMI31, with neurofilaments in vivo has been investigated by microinjecting purified SMI31 into large neurons in living cultures of embryonic mouse spinal cord. Microinjected SMI31 (SMI31I) labeled perikarya and dendrites in a fibrillar pattern indistinguishable from that of microinjected SMI32 (SMI32I), which labels hypophosphorylated neurofilaments of perikarya and dendrites in fixed tissue. SMI31 also labeled perikarya and dendrites when applied to whole unfixed cultures after extraction with 1% Triton X-100 or to cultures fixed in acetone after Triton-extraction, but prior to exposure to primary antibody. SMI31 labeled mainly axons when applied after fixation with acetone without Triton-extraction. Positive labeling of neurofilaments and various inclusions in neuronal somata with antibodies against highly phosphorylated neurofilaments has been described in a number of neurotoxic and neurodegenerative diseases and after neuronal injury. The results of this study indicate that explanations other than alterations in phosphorylation could account for these observations.  相似文献   

10.
To find out what causes differences in phosphorylation states in neurofilaments (NF), we selected two types of dendrite, one provided with very few NFs (Purkinje cell) and the other with relatively many (anterior horn cell). We examined these with four monoclonal antibodies selected by the Western blot analysis, two (NE14 and SMI31) recongnizing only phosphorylated, SMI32 recognizing only nonphosphorylated, and N52 recognizing phosphorylation-independent epitopes of NF-H. The immunoperoxidase labeling of dendrites, and also of perikarya, in both neurons was detectable with all four antibodies. After the tissue was treated with Triton X-100, the labeling was still detectable with SMI32 or N52, but undetectable with NE14 and SMI31. The brain homogenate Triton-extracted supernatant after centrifugation at 100,000g for 1 hr showed the staining of NE14, SMI31, and N52 but not that of SMI32. In Purkinje cell dendrite and perikaryon, NFs always appeared singly. In the immunogold labeling, they were labeled only with SMI32 or N52. Labeling by NE14 or SMI31 was distributed throughout the cytoplasm and hardly associated with NFs. In the anterior horn cell dendrite and perikaryon, NFs appeared both single and in bundles. They were predominantly labeled with SMI31 or N52 when they were single, and with NE14, SMI31, or N52 when they were bundled. Even in one NF, portions that appeared single were labeled mostly with SMI32 or N52, while the remainder, to which other NFs approached closely, were labeled mostly with NE14, SMI31, or N52. Thus, when NFs appear singly, NF-H in their projections or cross-bridges with other organelles is not phosphorylated, while when NFs are bundled, NF-H is phosphorylated in crossbridges between NF core filaments. These data may explain why the NF-H is heavily phosphorylated in axons, where NFs are abundant, and not in dendrites and perikarya, where NFs are sparse. Wiley-Liss, Inc.  相似文献   

11.
We examined the role of the 20S proteasome in pathologic changes, including abnormal aggregation of phosphorylated neurofilaments, of spinal motor nerve cells from aluminum‐treated rabbits. Immunohistochemistry for the 20S proteasome revealed that many lumbar spinal motor neurons without intracytoplasmic neurofilamentous inclusions or with small inclusions were more intensely stained in aluminum‐treated rabbits than in controls, whereas the immunoreactivity was greatly decreased in some enlarged neurons containing large neurofilamentous inclusions. Proteasome activity in whole spinal cord extracts was significantly increased in aluminum‐treated rabbits compared with controls. Furthermore, Western blot analysis indicated that the 20S proteasome degraded non‐phosphorylated high molecular weight neurofilament (neurofilament‐H) protein in vitro. These results suggest that aluminum does not inhibit 20S proteasome activity, and the 20S proteasome degrades neurofilament‐H protein. We propose that abnormal aggregation of phosphorylated neurofilaments is induced directly by aluminum, and is not induced by the proteasome inhibition in the aluminum‐treated rabbits. Proteasome activation might be involved in intracellular proteolysis, especially in the earlier stages of motor neuron degeneration in aluminum‐treated rabbits.  相似文献   

12.
Summary This report concerns immunocytochemical and ultrastructural studies on the basophilic inclusions in two cases of sporadic juvenile amyotrophic lateral sclerosis (ALS). The inclusion had a globular, irregularshaped, or sometimes fragmented appearance. Ultrastructurally, the inclusions consisted mainly of thick filamentous structures associated with granules. Focal neurofilamentous accumulations were occasionally observed among the granulofilamentous structures. The basophilic inclusions occasionally showed granular reaction product deposits with an antibody to ubiquitin. The inclusions did not react with antibodies to phosphorylated neurofilament and to tau protein.Supported in part by the Amyotrophic lateral Sclerosis Society  相似文献   

13.
NB2a/d1 cells constitutively express and extensively phosphorylate neurofilament (NF) triplet proteins. However, only hypophosphorylated NFs are observed within the Triton-insoluble perikaryal cytoskeletons of undifferentiated and differentiated cells, while phosphorylated NF isoforms accumulate exclusively within the axonal neurites elaborated following treatment with dbcAMP. We examined NF synthesis and distribution of newly synthesized subunits by immunoprecipitation from 35S-methionine-radiolabeled undifferentiated and dbcAMP-treated differentiated cells. Following a 15 min pulse radiolabeling, NF-H isoforms migrating from approximately 160–200 kDa, NF-M isoforms migrating from approximately 97 k-145 Da, and a single 70 kDa NF-L isoform were readily detectable within Triton-soluble fractions from both undifferentiated and differentiated cells. During chase analyses in the absence of radiolabel, the entire spectrum of isoforms was present in Triton-soluble and -insoluble fractions from both undifferentiated and differentiated cells. However, differentiated cells displayed a significant increase in radiolabel associated with each subunit and isoform. Normalization of their NF synthesis levels to those of undifferentiated cells revealed that differentiated cells deposited 10-fold more radiolabeled subunits into the Triton-insoluble cytoskeleton as compared to undifferentiated cells. Similar levels of radiolabeled subunits were observed throughout the 2 hr period in dbcAMP-treated cells. By contrast, radiolabeled subunits and isoforms increased in undifferentiated cytoskeletons during the chase period, although final levels remained substantially lower than those observed in cytoskeletons of dbcAMP-treated cells. These data were considered with respect to potential mechanisms by which the phosphorylated NFs are normally excluded from perikaryal cytoskeletons. The presence of extensively phosphorylated subunits within perikarya indicates the presence of necessary NF kinases. The progressive increase of radiolabeled subunits, including phosphorylated isoforms of NF-H and NF-M, within undifferentiated cytoskeletons, argues against selective elimination of phosphorylated NFs from perikaryal cytoskeletons by proteolysis or dephosphorylation as exclusive regulatory mechanisms; if these were the case, overall decreases of radiolabeled subunits (proteolysis), or specific loss of phosphorylated isoforms (dephosphorylation) would have been observed during chase analyses. The increased deposition of NF subunits within cytoskeletons in dbcAMP-treated cells (which have elaborated axonal neurites), coupled with our previous immunocytochemical observation of segregation of phosphorylated NFs within axonal neurites, suggests that selective assembly is a major control mechanism to maintain normal distribution patterns of phosphorylated NFs. The up-regulation in NF synthesis observed following dbcAMP treatment is likely to support the increased need for NFs by the developing axonal cytoskeleton. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Neurofilament metabolism in sporadic amyotrophic lateral sclerosis.   总被引:6,自引:0,他引:6  
Although the role of intraneuronal neurofilamentous aggregates in the pathogenesis of ALS is unknown, their presence forms a key neuropathological hallmark of the disease process. Conversely, the experimental induction of neurofilamentous aggregates in either neurotoxic or transgenic mice gives rise to motor system degeneration. To determine whether alterations in the physiochemical properties of NF are present in sporadic ALS, we purified NF subunit proteins from cervical spinal cord of ALS and age-matched control patients. The cytoskeleton-enriched, Triton X-100 insoluble fraction was further separated into individual NF subunits using hydroxyapatite HPLC. We observed no differences between control and ALS in the characteristics of NFH, including migration patterns on 2D-IEF, sensitivity to E. coli, alkaline phosphatase mediated dephosphorylation, peptide mapping, or proteolysis (calpain, calpain/calmodulin mediated, phosphorylated or dephosphorylated NFH). NFL showed no differences in 2D-IEF migration patterns, peptide mapping, or the extent of NFL nitrotyrosine immunoreactivity in either the Triton soluble or insoluble fractions. The latter observation demonstrated that NFL nitration is a ubiquitous occurrence in neurons and suggests that NFL might function as a sink for free reactive nitrating species. In contrast to the lack of differences in the post-translational processing of NF in ALS, we did observe a selective suppression of NFL steady state mRNA levels in the limb innervating lateral motor neuron column of ALS. This occurred in the absence of modifications in NFH, NFM or neuronal nitric oxide synthase (Type I NOS; nNOS) steady state mRNA levels. Coupled with previous observations of nNOS immunoreactivity co-localizing with NF aggregates in ALS motor neurons, this suggests activation of the nNOS enzyme complex in ALS, which would be predicted to contribute directly to the generation of reactive nitrating species. Given this, the isolated suppression of NFL steady state mRNA levels in ALS may indicate that ALS motor neurons are at an intrinsic deficit in the ability to buffer free reactive nitrating species.  相似文献   

15.
Distribution of neurofilament antigens after axonal injury   总被引:2,自引:0,他引:2  
Phosphorylated and nonphosphorylated epitopes of neurofilament (NF) proteins are distributed in different regions of individual neurons. Immunocytochemical methods, with monoclonal antibodies directed against phosphorylated and nonphosphorylated NF, demonstrated nonphosphorylated NF in perikarya and proximal axonal segments of neurons in dorsal root ganglia, while phosphorylated NF proteins were present in axons of these cells. The distribution of these epitopes of NF were examined at various times following injury of axons in the rat sciatic nerve. Between one and 21 days after crush of the proximal nerve, phosphorylated NF were present in neuronal perikarya. We have compared patterns of perikaryal immunoreactivity at one time point (three weeks) following a more distal crush or complete transection of the sciatic nerve. At this time period, following transection/ligation, phosphorylated NF immunoreactivity was not present in perikarya, but abnormal staining was observed after nerve crush. These altered distributions of phosphorylated epitopes of NF are of interest because several recent reports have indicated that similar, but not identical, abnormal staining patterns occur in human neurological diseases, including Alzheimer's disease and Parkinson's disease. In accord with previous studies, this investigation indicates that one response of neurons to injury, or to disease, is an abnormal distribution of phosphorylated epitopes of NF proteins.  相似文献   

16.
Perikaryal collections of intermediate filaments have been described in the anterior horn motoneurons of patients with amyotrophic lateral sclerosis (ALS), but these inclusions have generally been considered rare and mainly associated with the familial form of ALS. Using the monoclonal antibody NF2F11, which recognizes phosphorylated neurofilament epitopes, we showed that focal collections of neurofilaments in anterior horn motoneurons were a characteristic finding in sporadic as well as in familial ALS; they were present in seven of nine ALS patients, but in none of nine control spinal cords. These neurofilamentous collections are not cross-reactive with antibodies directed against paired helical filaments and the microtubule associated protein tau. In addition, diffuse staining for phosphorylated neurofilament epitopes in chromatolytic anterior horn perikarya was significantly more frequent in ALS patients than in controls.  相似文献   

17.
As observed for neuronsin situ, phosphorylated neurofilament (NF) epitopes are normally segregated within the axonal cytoskeleton of NB2a/d1 cells. However, accumulations of phosphorylated NFs develop in NB2a/d1 perikarya following, exposure to aluminum salts and following inhibition of proteolysis. In the present study, we observed that perikarya of cells exposed to both aluminum and the protease inhibitor C1 (also known as “AllNal”) were more intensely labeled by monoclonal antibodies directed against both nonphosphorylated and phosphorylated epitopes than were cells treated with either aluminum or protease inhibitor alone. Since these monoclonal antibodies crossreact with tau, we also immunostained cells treated under these conditions with monoclonal antibodies directed against phosphate-insensitive (5E2) and phosphorylated (PHF-1) epitopes of tau. Aluminum treatment, but not C1 treatment, induced accumulation of total tau isoforms as judged by an increase in 5E2 immunoreactivity Neither treatment, either separately or in combination, induced an increase in PHF-1 immunoreactivity. These findings suggest that alterations in immunoreactivity with SMI antibodies reflected increases in NF epitopes. This was confirmed by immunoblot analyses. Since proteolysis is apparently instrumental in maintaining the normal distribution patterns of phosphorylated NF epitopes, these findings implicate deficiencies in proteolytic mechanisms in the development of neurofibrillary pathology, and underscore the possibility of a multiple etiology in human neuropathological conditions.  相似文献   

18.
Neurofilaments (NF), the intermediate filaments of the neuronal cytoskeleton, provide mechanical stability to the cell. High-molecular-weight NF (NFH) comprises a heavily phosphorylated carboxyl terminal ("sidearm") domain which helps determine interfilament spacing distances. Experimental evidence suggests that dephosphorylation greatly increases the rate and extent of proteolysis of NFH. Because NF proteolysis has been implicated as one pathogenic mechanism underlying cell death following traumatic brain injury (TBI), we analyzed the patterns of acute NFH damage in relation to phosphorylation state following focal, concussive, controlled cortical impact (CCI) brain injury in mice. Brains from C57BL/6 male mice (n = 4 injured and n = 1 sham per time point) were evaluated 5 min, 15 min, 90 min, 4 h, and 24 h following CCI injury (1 mm depth, 5 m/s). Immunohistochemistry was performed using antibodies that recognize epitopes on either dephosphorylated (d-NFH) or phosphorylated (p-NFH) sidearms or on the core (c-NFH) domain. As early as 5-15 min postinjury, immunoreactivity for d-, p-, and c-NFH decreased in the ipsilateral cortex, and hippocampal CA3, CA1, and dentate areas. This marked decrease of NFH labeling occurred in the absence of notable cell loss. Furthermore, partial recovery of NFH labeling was observed as early as 90 min postinjury in the cortex and by 24 h postinjury in hippocampal CA3 and dentate. The results of this study suggest that both phosphorylated and dephosphorylated NFH are vulnerable almost immediately following focal brain injury in mice, but that injured neurons may have an adaptive capability to partially restore this important cytoskeletal protein.  相似文献   

19.
We examined the influence of calcium on neurotoxicity of AlCl3 and Al-lactate toward differentiated NB2a/d1 cells. Apart from induction of perikaryal neurofibrillary inclusions, AlCl3 at 1 mM induced no obvious additional signs of toxicity when added to culture medium in the presence of the normal medium CaCl2 content of 1.8 mM, nor when extracellular calcium was decreased by the addition to the medium of 0.9 mM EDTA. Increasing the extracellular CaCl2 concentration by fivefold was only marginally toxic, but in the presence of AlCl3, reduced viable cell numbers by well over 50% as compared to control cultures, and by approximately 50% vs fivefold CaCl2 alone. A twofold increase in extracellular CaCl2 did not increase the percentage of cells exhibiting Bielschowsky-positive perikarya but induced a near doubling in the percentage of cells exhibiting accumulations in the presence of 1 mM Al-lactate. AlCl3 (1 mM) retards the electrophoretic migration of NF subunits on SDS-gels. This effect was eliminated by withholding CaCl2 from the incubation mixture and including 5 mM EDTA during incubation of cytoskeletons with AlCl3. The presence of CaCl2 alone did not alter NF migration. These findings underscore the possibility that multiple factors, including those that compromise general neuronal homeostasis, may contribute to neurofibrillary pathology.  相似文献   

20.
The paradigm of IDPN neuropathy was produced in rats in order to examine the neurofilaments (NFs) that accumulate in the proximal motor and sensory axons of intoxicated animals, and to compare the aggregated NFs with control NFs and with the depleted populations of NFs in the distal portions of the same experimental nerves. NFs were probed biochemically and histochemically, using a large and well-characterized library of monoclonal antibodies that included antibodies that are monospecific for each of the rat NF protein subunits (NF-H, NF-M, and NF-L) as well as antibodies that recognized differential phosphorylated states of rat NF-H and NF-M. All antibodies tested showed enhanced immunostaining of enlarged axons and of large spheroids in the spinal cord and dorsal root ganglia of experimental animals. Biochemical analyses of IDPN-treated animals revealed enrichment of NF-H, NF-M, and NF-L in homogenates of dorsal root ganglia and of proximal motor and sensory nerve roots as well as depletion of the three subunits in distal nerve roots and in sciatic nerves. Immunoblots revealed a uniform enrichment of NF-H, NF-M, and NF-L in NF aggregates as well as the same admixture of phosphorylated and dephosphorylated epitopes of NF-H and NF-M in experimental and in control tissues. The global increase of immunoreactivity in axonal swellings to antibodies that react with phosphorylated, nonphosphorylated,and phosphorylation-independent NF epitopes suggests that IDPN induces an accumulation of NFs in proximal axons without necessarily altering the state of NF phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号