首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Leishmania spp. are protozoans that cause skin and visceral diseases. Leishmania are obligate intracellular parasites of mononuclear phagocytes and have been documented to be transmitted by blood transfusion. STUDY DESIGN AND METHODS: This study examines whether Leishmania can be inactivated in human platelet (PLT) concentrates by a photochemical treatment process that is applicable to blood bank use. Human PLT concentrates were contaminated with Leishmania mexicana metacyclic promastigotes or mouse-derived Leishmania major amastigotes and were exposed to long-wavelength ultraviolet (UV) A light (320-400 nm) plus the psoralen amotosalen HCl. RESULTS: Neither treatment with amotosalen nor UVA alone had an effect on Leishmania viability; however, treatment with 150 micromol per L amotosalen plus 3 J per cm(2) UVA inactivated both metacyclic promastigotes and amastigotes to undetectable levels, more than a 10,000-fold reduction in viability. CONCLUSIONS: This study demonstrates the effectiveness of photochemical treatment to inactivate Leishmania in PLT concentrates intended for transfusion. Both metacylic promastigotes, which represent the infectious form from the sand fly vector, and amastigotes, which represent the form that grows in mononuclear phagocytes, were extremely susceptible to photochemical inactivation by this process. Thus, the photochemical treatment of PLT concentrates inactivates both forms of Leishmania that would be expected to circulate in blood products collected from infected donors.  相似文献   

2.
BACKGROUND: Transfusion-transmitted cases of malaria and babesiosis have been well documented. Current efforts to screen out contaminated blood products result in component wastage due to the lack of specific detection methods while donor deferral does not always guarantee safe blood products. This study evaluated the efficacy of a photochemical treatment (PCT) method with amotosalen and long-wavelength ultraviolet light (UVA) to inactivate these agents in red blood cells (RBCs) contaminating platelet (PLT) and plasma components. STUDY DESIGN AND METHODS: Plasmodium falciparum- and Babesia microti-contaminated RBCs seeded into PLT and plasma components were treated with 150 micromol per L amotosalen and 3 J per cm2 UVA. The viability of both pathogens before and after treatment was measured with infectivity assays. Treatment with 150 micromol per L amotosalen and 1 J per cm2 UVA was used to assess the robustness of the PCT system. RESULTS: No viable B. microti was detected in PLTs or plasma after treatment with 150 mol per L amotosalen and 3 J per cm2 UVA, demonstrating a mean inactivation of greater than 5.3 log in PLTs and greater than 5.3 log in plasma. After the same treatment, viable P. falciparum was either absent or below the limit of quantification in three of four replicate experiments both in PLTs and in plasma demonstrating a mean inactivation of at least 6.0 log in PLTs and at least 6.9 log in plasma. Reducing UVA dose to 1 J per cm2 did not significantly affect the level of inactivation. CONCLUSION: P. falciparum and B. microti were highly sensitive to inactivation by PCT. Pathogen inactivation approaches could reduce the risk of transfusion-transmitted parasitic infections and avoid unnecessary donor exclusions.  相似文献   

3.
BACKGROUND: This study evaluated the efficacy of photochemical treatment (PCT) with amotosalen and ultraviolet A (UVA) light to inactivate Trypanosoma cruzi in contaminated platelet (PLT) components. STUDY DESIGN AND METHODS: Fifteen pools of buffy-coat PLTs (BC-PLTs) were inoculated with approximately 5 x 10(3) to 5 x 10(5) per mL of viable T. cruzi of the G, Tulahuen (T), or Y strains. Samples from BC-PLTs were assayed for infectivity before and after PCT with 150 micromol per L amotosalen and 3 J per cm(2) UVA light. Infectivity was determined with three different methods: 1) in vitro culture to detect viable epimastigotes, 2) [(3)H]thymidine incorporation in culture, and 3) in vivo inoculation into interferon-gamma receptor (IFN-gammaR)-deficient mice. RESULTS: The in vitro assay yielded viable parasite titers of 3.9 x 10(5), 2.8 x 10(4), and 5.6 x 10(3) per mL (corresponding to 5.6, 4.4, and 3.8 logs/mL) for the Y, T, and G strains, respectively. PCT was able to inactivate all three strains of T. cruzi to below the limit of detection (10 parasites/mL) in the sensitive in vivo assay. Because 10-mL samples, each concentrated into a 1-mL sample for inoculation, were tested in the in vivo assay, log reductions achieved were greater than 5.6, greater than 4.4, and greater than 3.8 for the Y, T, and G strains of T. cruzi, respectively. CONCLUSIONS: The pathogen reduction system with amotosalen HCl and UVA demonstrated robust efficacy for inactivation of high doses of three different strains of T. cruzi and offers the potential to make the PLT supply safer.  相似文献   

4.
BACKGROUND: Human T-cell leukemia virus Types I and II (HTLV-I and HTLV-II), blood-borne retroviruses found worldwide, can cause leukemia, immunosuppression, and severe neurologic diseases. In most countries, HTLV-I and -II screening is not performed systematically for blood donations. A new photochemical treatment (PCT) with a synthetic psoralen was developed to inactivate most pathogens in platelet (PLT) concentrates or plasma and to improve the safety of blood donations. STUDY DESIGN AND METHODS: Cell-associated HTLV-I or -II (10(6)/mL) was inoculated in full-size fresh PLT concentrates or fresh frozen plasma and treated with 150 micromol per L amotosalen (S-59) and different doses of long-wavelength ultraviolet A (UVA) light. The residual viral titer in the treated samples was assessed by a cocultivation assay on indicator cells. RESULTS: The inactivation obtained at a 3.0 J per cm2 UVA dose was greater than 5.2 log foci-forming units (FFUs) per mL for HTLV-I and 4.6 log FFUs per mL for HTLV-II in presence of human PLT concentrates and greater than 4.5 log FFUs per mL for HTLV-I and 5.7 log FFUs per mL for HTLV-II in the presence of human plasma. The residual infectivity was very low and shown as the limit of detection of the cocultivation assay. CONCLUSION: In human plasma or PLT concentrates, the retroviruses HTLV-I and -II were strongly sensitive to the PCT with 150 micromol per L amotosalen (S-59) and a 3.0 J per cm2 UVA dose. This high efficiency for photoinactivation of these retroviruses opens a possibility of improving the safety of PLTs or plasma transfusion in the future.  相似文献   

5.
BACKGROUND: Bacterial contamination of platelet (PLT) concentrates can result in transfusion-transmitted sepsis. A photochemical treatment (PCT) process with amotosalen HCl and long-wavelength ultraviolet light (UVA), which cross-links nucleic acids, was developed to inactivate bacteria and other pathogens in PLT concentrates. STUDY DESIGN AND METHODS: High titers of pathogenic aerobic and anaerobic Gram-positive bacteria (10 species), aerobic Gram-negative bacteria (7 species), and spirochetes (2 species) were added to single-donor PLT concentrates containing 3.0 x 10(11) to 6.0 x 10(11) PLTs in approximately 300 mL of 35 percent plasma and 65 percent PLT additive solution (InterSol, Baxter Healthcare) or saline. After PCT with 150 micro mol per L amotosalen and 3 J per cm(2) UVA, residual bacterial levels were detected by sensitive microbiologic methods. RESULTS: The level of inactivation of viable bacteria was expressed as log reduction. Log reduction of Gram-positive bacteria for Staphylococcus epidermidis was > 6.6; for Staphylococcus aureus, 6.6; for Streptococcus pyogenes, > 6.8; for Listeria monocytogenes, > 6.3; for Corynebacterium minutissimum, > 6.3; for Bacillus cereus (vegetative), > 5.5; for Lactobacillus sp., > 6.4; for Bifidobacterium adolescentis, > 6.0; for Propionibacterium acnes, > 6.2; and for Clostridium perfringens, > 6.5. Log reduction of Gram-negative bacteria for Escherichia coli was > 6.4; for Serratia marcescens, > 6.7; for Klebsiella pneumoniae, > 5.6; for Pseudomonas aeruginosa, 4.5; for Salmonella choleraesuis, > 6.2; for Yersinia enterocolitica, > 5.9; and for Enterobacter cloacae, 5.9. Log reduction of spirochetes for Treponema pallidum was 6.8 to 7.0, and for Borrelia burgdorferi, > 6.9. CONCLUSION: PCT inactivates high levels of a broad spectrum of pathogenic bacteria. The inactivation of bacteria in PLT concentrates offers the potential to prospectively prevent PLT-transfusion-associated bacteremia.  相似文献   

6.
BACKGROUND: Amotosalen plus ultraviolet A (UVA) light inactivates a broad range of bacteria, viruses, protozoa, and leukocytes in platelet (PLT) and plasma components. Upon UVA illumination a small fraction of amotosalen reacts with the nucleic acid of contaminating pathogens and residual white blood cells and the remaining fraction undergoes photodegradation into defined photoproducts. The levels of amotosalen and photoproducts can be accurately quantified. STUDY DESIGN AND METHODS: This study evaluated the relationship between the extent of photodegradation of amotosalen and the level of pathogen inactivation in PLT components. PLT components containing of 3.78 × 1011 to 7.23 × 1011 PLTs in 300 to 450 mL of 35% to 50% plasma and 50% to 65% PLT additive solution and up to 5 × 106 red blood cells (RBCs)/mL were prepared. Each component was contaminated with 105 to 106 colony‐forming units/mL Klebsiella pneumoniae and treated with 115 to 200 µmol/L amotosalen and 0 to 3 J/cm2 UVA light. For each treatment condition, the level of K. pneumoniae inactivation (log‐reduction) was measured by microbiologic methods. The initial and postillumination amotosalen concentrations (µmol/L) were determined by high‐performance liquid chromatography. RESULTS: For a defined set of treatment conditions, the extent of amotosalen photodegradation was consistent and reproducible. The bacterial log‐reduction correlated linearly with the extent of amotosalen photodegradation with a regression correlation coefficient (r2) between 0.845 and 0.890 regardless of the treatment variables such as PLT content, component volume, plasma content, RBC content, initial amotosalen concentration, and UVA dose. CONCLUSION: This study demonstrated that the extent of amotosalen photodegradation can serve as an intrinsic actinometer which directly correlated with the level of pathogen inactivation.  相似文献   

7.
Primary cytomegalovirus (CMV) infection is usually asymptomatic in immunocompetent patients but can cause serious life-threatening complications in immunocompromised CMV-seronegative patients, including patients receiving a bone marrow or peripheral blood stem cell transplant, recipients of some solid-organ transplants, and low-birth-weight neonates. Current recommendations for preventing transfusion-transmitted CMV (TT-CMV) infection in these patients include exclusive use of CMV-seronegative and/or leukoreduced cellular blood components (red blood cells and platelets) for transfusion. However, breakthrough cases of TT-CMV still occur. Despite improving the safety of blood components, testing remains a reactive approach to blood safety. In contrast, pathogen inactivation technologies offer a proactive approach with the potential to further improve blood safety. To reduce the risks associated with platelet transfusions, a photochemical treatment (PCT) process using a combination of the psoralen amotosalen HCl and long-wavelength UV light has been developed and introduced into clinical practice in Europe. PCT has been shown to result in greater than 5.9-log reductions in infectivity of human CMV in platelet concentrates and to prevent the transfusion transmission of murine CMV in a mouse transfusion model. Thus, PCT pathogen inactivation may play a role in further reducing the incidence of TT-CMV infection in patients who are at risk for serious CMV disease. Because PCT is a technology that targets nucleic acids, it also offers a proactive process for the inactivation of a broad range of viral, bacterial, and protozoan pathogens in addition to CMV.  相似文献   

8.
BACKGROUND: Viral contamination of platelet (PLT) concentrates can result in transfusion-transmitted diseases. A photochemical treatment (PCT) process with amotosalen-HCl and long-wavelength ultraviolet light (UVA), which cross-links nucleic acids, was developed to inactivate viruses and other pathogens in PLT concentrates. STUDY DESIGN AND METHODS: High titers of pathogenic or blood-borne viruses, representing 10 different families, were added to single-donor PLT concentrates containing 3.0 x 10(11) to 6.0 x 10(11) PLTs in approximately 300 mL of 35 percent plasma and 65 percent PLT additive solution (InterSol). After PCT with 150 micromol per L amotosalen and 3 J per cm(2) UVA, residual viral infectivity was assayed by sensitive cell culture or animal systems. RESULTS: Enveloped viruses were uniformly sensitive to inactivation by PCT whereas nonenveloped viruses demonstrated variable inactivation. Log reduction of enveloped viruses for cell-free HIV-1 was >6.2; for cell-associated HIV-1, >6.1; for clinical isolate HIV-1, >3.4; for clinical isolate HIV-2, >2.5; for HBV, >5.5; for HCV, >4.5; for DHBV, >6.2; for BVDV, >6.0; for HTLV-I, 4.2; for HTLV-II, 4.6; for CMV, >5.9; for WNV, >5.5; for SARS-HCoV, >5.8; and for vaccinia virus, >4.7. Log reduction of nonenveloped viruses for human adenovirus 5 was >5.2; for parvovirus B19, 3.5->5.0; for bluetongue virus, 5.6-5.9; for feline conjunctivitis virus, 1.7-2.4; and for simian adenovirus 15, 0.7-2.3. CONCLUSION: PCT inactivates a broad spectrum of pathogenic, blood-borne viruses. Inactivation of viruses in PLT concentrates with amotosalen and UVA offers the potential to prospectively prevent the majority of PLT transfusion-associated viral diseases.  相似文献   

9.
BACKGROUND: There were no previous studies about the quality of cryoprecipitate prepared from fresh‐frozen plasma (FFP) inactivated with amotosalen and ultraviolet A (UVA) light. The aim of this study was to analyze the quantity and quality of coagulation factors in cryoprecipitate prepared from FFP treated with amotosalen and UVA light. STUDY DESIGN AND METHODS: FFP was obtained from whole blood donations and inactivated with amotosalen and UVA light according to the manufacturer's instructions. Fibrinogen, factor VIII (FVIII), von Willebrand factor antigen (VWF : Ag) and activity (VWF : RCo), the von Willebrand factor cleavage protease activity (ADAMTS‐13), and the multimeric structure of VWF were analyzed. RESULTS: The content of fibrinogen, FVIII, and ADAMTS‐13 was lower in cryoprecipitates prepared from amotosalen‐treated plasma when compared with cryoprecipitates prepared from nontreated plasma (35, 40, and 18% loss, respectively). The quantity and quality of VWF as well as VWF multimer patterns were not affected by the inactivation method. CONCLUSION: Cryoprecipitates prepared from amotosalen‐treated FFP contained significantly reduced levels of fibrinogen, FVIII, and ADAMTS‐13. However, the VWF quantity and quality was well preserved.  相似文献   

10.
BACKGROUND: The human erythrovirus B19 (B19) is a small (18- to 26-nm) nonenveloped virus with a single-stranded DNA genome of 5.6 kb. B19 is clinically significant and is also generally resistant to pathogen inactivation methods. Photochemical treatment (PCT) with amotosalen and ultraviolet A (UVA) inactivates viruses, bacteria, and protozoa in platelets (PLTs) and plasma prepared for transfusion. In this study, the capacity of PCT to inactivate B19 in human PLT concentrates was evaluated. STUDY DESIGN AND METHODS: B19 inactivation was measured by a novel enzyme-linked immunosorbent spot (ELISPOT) erythroid progenitor cell infectivity assay and by inhibition of long-range (up to 4.3 kb) polymerase chain reaction (PCR), under conditions where the whole coding region of the viral genome was amplified. B19-infected plasma was used to test whether incubation of amotosalen with virus before PCT enhanced inactivation compared to immediate PCT. RESULTS: Inactivation of up to 5.8 log of B19 as measured by the infectivity assay, or up to 6 logs as measured by PCR inhibition can be achieved under non-limiting conditions. Inactivation efficacy was found to increase with incubation prior to UVA illumination. Without incubation prior to illumination 2.1 +0.4 log was inactivated as determined by infectivity assay. When measured by PCR inhibition, inactivation varied inversely with amplicon size. When primers that spanned the entire coding region of the B19 genome were used, maximum inhibition of PCR amplification was demonstrated. CONCLUSION: Under defined conditions, PCT with amotosalen combined with UVA light can be used to inactivate B19, a clinically significant virus that can be transmitted through blood transfusion, and heretofore has been demonstrated to be refractory to inactivation.  相似文献   

11.
Improving the bacteriological safety of platelet transfusions   总被引:10,自引:0,他引:10  
Despite the increased application of aseptic techniques for blood collection and the preparation of platelet concentrates, morbidity and mortality arising from the transfusion of bacterially contaminated allogeneic platelet products persist. This problem exists because stored platelet concentrates represent a nearly ideal growth medium for bacteria and because they are stored at temperatures (22 degrees +/- 2 degrees C) that facilitate bacterial growth. The presence of bacteria in blood components including platelets has been a problem for many decades and currently is the most common microbiological cause of transfusion-associated morbidity and mortality. A variety of strategies have been devised and/or proposed in an attempt to try to reduce the risk of transfusion-associated sepsis. These include pretransfusion bacterial detection, efforts to reduce the likelihood of bacterial contamination, the optimization of blood product processing and storage, reducing recipient exposure, and the introduction of pathogen inactivation methodology. With regard to doing bacterial detection, a number of automated detection systems have become available to test for contaminated platelet components, but their utility to some extent is restricted by the time they take to indicate the presence of bacteria and/or their lack of sensitivity to detect initially low bacterial loads. A variety of other approaches has been shown to reduce the risk of bacterial contamination and include filtration to remove leukocytes and bacteria, diversion of the initial aliquot of blood during donation, and improved donor skin disinfection. Platelet pathogen inactivation methods under investigation include the addition of L-carnitine, gamma-irradiation, riboflavin plus UVA irradiation, and amotosalen HCl plus UVA irradiation. The latter process is licensed for clinical use with platelets in some countries in Europe. All of these approaches, either collectively or individually, hold considerable promise that the prevalence of adverse events associated with bacteria in platelet products will decline significantly in the very foreseeable future.  相似文献   

12.
Functional characteristics of photochemically treated platelets   总被引:6,自引:0,他引:6  
BACKGROUND: A photochemical treatment (PCT) process using the psoralen compound amotosalen HCL (S59) and long wavelength UVA light was developed for inactivation of infectious pathogens and WBCs. In this study the effect of PCT on functional characteristics of the platelets was evaluated in vitro. STUDY DESIGN AND METHODS: Platelet concentrates were treated photochemically using the experimental clinical processing system T-bag S59 Reduction Device (SRD) (n = 4) or the commercially available integral processing system Wafer SRD (n = 4) and compared with control platelet concentrates in plasma/PAS III alone (n = 4). The evaluation included variables with respect to the overall quality of the product (e.g., HSR, pH), the function (aggregation and activation tests), apoptosis (annexin V and caspase 3), and lysis. RESULTS: No differences were found in the product quality variables, in P-selectin expression, and the apoptosis variables. PCT using the T-bag SRD led to a significant decrease in aggregation capacity with collagen and thrombin and a significant increase in plasma LDH, whereas no differences for the Wafer SRD were found. CONCLUSION: PCT using the experimental T-bag SRD led to a significant decrease in platelet function. However, the commercially available Wafer SRD had only minor in vitro effects on the quality of the platelets.  相似文献   

13.
A novel human coronavirus causing severe acute respiratory syndrome (SARS) emerged in epidemic form in early 2003 in China and spread worldwide in a few months. Every newly emerging human pathogen is of concern for the safety of the blood supply during and after an epidemic crisis. For this purpose, we have evaluated the inactivation of SARS-coronavirus (CoV) in platelet concentrates using an approved pathogen inactivation device, the INTERCEPT Blood System. Apheresis platelet concentrates (APCs) were inoculated with approximately 10(6) pfu mL(-1) of either Urbani or HSR1 isolates of SARS-CoV. The inoculated units were mixed with 150 microm amotosalen and illuminated with 3 J cm(-2) UV-A light. The viral titres were determined by plaque formation in Vero E6 cells. Mixing SARS-CoV with APC in the absence of any treatment decreased viral infectivity by approximately 0.5-1 log10. Following photochemical treatment, SARS-CoV was consistently inactivated to the limit of detection in seven independent APC units. No infectious virus was detected after treatment when up to one-third of the APC unit was assayed, demonstrating a mean log10-reduction of >6.2. Potent inactivation of SARS-CoV therefore extends the capability of the INTERCEPT Blood System in inactivating a broad spectrum of human pathogens including recently emerging respiratory viruses.  相似文献   

14.
BACKGROUND: A photochemical treatment (PCT) process utilizing amotosalen hydrochloride and long wavelength UVA light has been developed to inactivate pathogens in PLTs. This study investigated the effects of amotosalen/UVA treatment on free and latent murine CMV (MCMV) in PLT preparations using a murine model of transfusion-transmitted CMV (TT-CMV). STUDY DESIGN AND METHODS: In a model of latent MCMV infection, "donor" mice received 1 x 10(6) plaque-forming units (PFUs) MCMV and were rested 14 days. Subsequently harvested, pooled, and washed WBCs were PCR positive for MCMV. Murine WBC doses of 1 x 10(4), 1 x 10(5), and 1 x 10(6) were added to human apheresis PLTs in 35 percent autologous plasma and 65 percent PLT AS (PAS). The WBC-PLT products were treated with 150 micro mol/L amotosalen and 0.6 J per cm2 UVA and transfused via tail vein injection into recipient mice. Recipients were killed on Day 14. Blood and spleens were collected and assayed for MCMV by PCR. In a parallel model of active infection with free virus, human PLT in 35 percent autologous plasma and 65 percent PAS were dosed with 1 x 10(5) and 1 x 10(6) PFUs of MCMV. All other procedures were as described above. RESULTS: In the absence of amotosalen/UVA-pretreatment, transfusion of PLT latently or actively infected with MCMV produced TT-CMV in a dose-dependent fashion. In contrast, all transfusion recipients of identical PLT preparations pretreated with amotosalen/UVA were uniformly PCR negative for MCMV (abrogation of TT-CMV; p < 0.05). CONCLUSIONS: PCT of PLT preparations with the specified doses of amotosalen hydrochloride and UVA light prevents transfusion transmission of free and latent MCMV in a murine model. These results suggest that PCT of human PLTs with amotosalen/UVA should also effectively abrogate TT-CMV in the clinical setting.  相似文献   

15.
BACKGROUND: Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. STUDY DESIGN AND METHODS: Inactivation studies were performed with cell culture–derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture–grown viruses. After treatment of the blood units with MB plus light (Theraflex MB‐Plasma system, MacoPharma) or UVC (Theraflex UV‐Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. RESULTS: HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. CONCLUSIONS: Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion‐transmitted HCV infections.  相似文献   

16.
BACKGROUND: A photochemical treatment process has been developed for the inactivation of viruses and bacteria in platelet concentrates. This process is based on the photochemical reaction of a novel psoralen, S- 59, with nucleic acids upon illumination with long-wavelength ultraviolet light (UVA, 320–400 nm). STUDY DESIGN AND METHODS: High levels of pathogens were added to single-donor platelet concentrates containing 3 to 5 × 10(11) platelets in 300 mL of 35-percent autologous plasma and 65-percent platelet additive solution. After treatment with S-59 (150 microM) and UVA (0-3 J/cm2), the infectivity of each pathogen was measured with established biologic assays. In vitro platelet function after photochemical treatment was evaluated during 7 days of storage by using a panel of 14 assays. The in vivo recovery and life span of photochemically treated platelets were evaluated after 24 hours of storage in a primate transfusion model. RESULTS: The following levels of pathogen inactivation were achieved:>10(6.7) plaque-forming units (PFU) per mL of cell-free human immunodeficiency virus (HIV),>10(6.6) PFU per mL of cell-associated HIV,>10(6.8) infectious dose (ID50) per mL of duck hepatitis B virus (a model for hepatitis B virus),>10(6.5) PFU per mL of bovine viral diarrhea virus (a model for hepatitis C virus),>10(6.6) colony-forming units of Staphylococcus epidermidis, and>10(5.6) colony-forming units of Klebsiella pneumoniae. Expression of integrated HIV was inhibited by 0.1 microM S- 59 and 1 J per cm2 of UVA. In vitro and in vivo platelet function were adequately maintained after antiviral and antibacterial treatment. CONCLUSION: Photochemical treatment of platelet concentrates offers the potential for reducing transfusion-related viral and bacterial diseases.  相似文献   

17.
summary .  American Trypanosomiasis, or Chagas' disease, is a parasitic infection caused by the protozoan Trypanosoma cruzi . It is endemic in a large area of the American continent, extending from Mexico to Argentina. Imported Chagas' disease is now appearing as a new threat to non-endemic countries, mostly because of a steady increase of foreign residents from Latin America. Chagas' disease becomes chronic in the vast majority of infected individuals. This finding gives rise to problems for blood transfusion services. In non-endemic countries, transfusion is the most likely infection route. Strategies to reduce transmission by transfusion include blood donor selection and deferral, blood donation testing, leukoreduction, filters and pathogen inactivation systems. Policies in endemic and non-endemic areas are quite different: in endemic countries, universal screening of blood donations for T. cruzi antibody detection is mandatory. However, in non-endemic countries, there are two different approaches: one is the deferral of people at risk of Chagas' disease and the second approach is to accept the blood donation if specific laboratory assay results are negative. This second approach is being introduced in countries where there is a substantial Latin American population, such as United States, Spain and France. The assays used for the detection of T. cruzi are mostly immunologic, made with T. cruzi antigen homogenates or with recombinant antigens. Complementary assays, such as indirect immunofluorescence (IIF) or immunoblot, can help ascertain antibody specificity.  相似文献   

18.
BACKGROUND: Treatment of platelet concentrates (PCs) with psoralens and broad-band ultraviolet A (UVA) radiation is being examined for the elimination of pathogens that might be present in donated blood. Previous studies have demonstrated the inactivation of cell-free viruses and the maintenance of platelet integrity with common in vitro assays. STUDY DESIGN AND METHODS: Human immunodeficiency virus (HIV) in three forms-cell-free, activity replicating, and latently infected cell lines-was added to PCs and treated with 50-microgram per mL of 4'- aminomethyl-4,5',8-trimethylpsoralen (AMT), 0.35 mM rutin, and broad- and narrow-band UVA light (320-400 nm and 360–370 nm [UVA1], respectively). The inactivation of added HIV was assessed in tissue culture; platelet hemostatic activity was assessed in thrombocytopenic rabbits. RESULTS: Each form of HIV was inactivated completely (> or = 10(5) infectious units) on treatment with 30 J per cm2 of UVA1 light. Similar results were obtained on treatment of 2.5 mL of PCs in test tubes or intact PC units (50 mL) in blood bags. Latently infected cell lines were substantially more sensitive than cell-free HIV or HIV that was actively replicating. Human platelets treated with 40 J per cm2 of UVA1 light had a fully corrected bleeding time shortly after treatment or after 5 days' storage, as assessed in thrombocytopenic rabbits. Platelet hemostatic function began to decrease with 81 J per cm2 of UVA1 light and was abolished with 113 J per cm2. At similar fluences, broad-band UVA light was more injurious to platelets than was UVA1 light. CONCLUSION: HIV transmission might be eliminated by PCs after treatment with AMT and UVA1 light and without a reduction in platelet hemostatic function.  相似文献   

19.
BACKGROUND: The INTERCEPT Blood System, a photochemical treatment (PCT) process, has been developed to inactivate pathogens in platelet concentrates. These studies evaluated the efficacy of PCT to inactivate pathogens in plasma and the effect of PCT on plasma function. STUDY DESIGN AND METHODS: Jumbo (600 mL) plasma units were inoculated with high titers of test pathogens and treated with 150 micromol per L amotosalen and 3 J per cm(2) long-wavelength ultraviolet light. The viability of each pathogen before and after treatment was measured with biological assays. Plasma function was evaluated through measurement of coagulation factors and antithrombotic protein activities. RESULTS: The levels of inactivation expressed as log-reduction were as follows: cell-free human immunodeficiency virus-1 (HIV-1), greater than 6.8; cell-associated HIV-1, greater than 6.4; human T-lymphotropic virus-I (HTLV-I), 4.5; HTLV-II, greater than 5.7; hepatitis B virus (HBV) and hepatitis C virus, greater than 4.5; duck HBV, 4.4 to 4.5; bovine viral diarrhea virus, 6.0; severe acute respiratory syndrome coronavirus, 5.5; West Nile virus, 6.8; bluetongue virus, 5.1; human adenovirus 5, 6.8; Klebsiella pneumoniae, greater than 7.4; Staphylococcus epidermidis and Yersinia enterocolitica, greater than 7.3; Treponema pallidum, greater than 5.9; Borrelia burgdorferi, greater than 10.6; Plasmodium falciparum, 6.9; Trypanosoma cruzi, greater than 5.0; and Babesia microti, greater than 5.3. Retention of coagulation factor activity after PCT was expressed as the proportion of pretreatment (baseline) activity. Retention was 72 to 73 percent of baseline fibrinogen and Factor (F)VIII activity and 78 to 98 percent for FII, FV, FVII, F IX, FX, FXI, FXIII, protein C, protein S, antithrombin, and alpha2-antiplasmin. CONCLUSION: PCT of plasma inactivated high levels of a wide range of pathogens while maintaining adequate coagulation function. PCT has the potential to reduce the risk of transfusion-transmitted diseases in patients requiring plasma transfusion support.  相似文献   

20.
BACKGROUND: A photochemical treatment (PCT) method to inactivate pathogens in platelet concentrates has been developed. The system uses a psoralen, amotosalen HCl, coupled with ultraviolet A (UVA) illumination. STUDY DESIGN AND METHODS: Three sequential clinical trials evaluated viability of PCT platelets prepared with a prototype device. Posttransfusion recovery and lifespan of (111)Indium-labeled autologous 5 day-old platelets in healthy subjects was assessed. In the first study, 23 subjects received transfusions of autologous PCT and/or control platelets. In a second study, 16 of these subjects received PCT platelets processed with a Compound Adsorption Device (CAD) (PCT-CAD) to reduce patient exposure to residual amotosalen. In the third study, the effect of gamma-irradiation on PCT platelets was studied. Data from control transfusions from Study A were used for paired comparisons in the latter 2 studies. RESULTS: Mean PCT-CAD platelet recovery for the 16 subjects with paired data was 42.5 +/- 8.7% versus 50.3 +/- 7.7% for control platelets, mean difference of 7.8% (p < 0.01). Mean lifespan for PCT-CAD platelets was 4.8 days (+/-1.3) versus 6.0 days (+/-1.2) for control platelets, mean difference of 1.3 days (p < 0.01). Platelet recovery and lifespan were similar to PCT-CAD for PCT without CAD treatment and PCT-CAD with gamma-irradiation. CONCLUSION: Viability of 5 day-old PCT platelets was less than for control platelets. However, both were within ranges reported for 5 day-old platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号