首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Single-neuron recordings, functional magnetic resonance imaging (fMRI) data, and the effects of lesions indicate that the prefrontal cortex (PFC) is involved in some types of working memory and related cognitive processes. Based on these data, two different models of the topographical and functional organization of the PFC have been proposed: organization-by-stimulus-domain, and organization-by-process. In this article, we utilize an integrate-and-fire network to model both single-neuron and fMRI data on short-term memory in order to understand data obtained in topologically different parts of the PFC during working memory tasks. We explicitly model the mechanisms that underlie working memory-related activity during the execution of delay tasks that have a "what"-then-"where" design (with both object and spatial delayed responses within the same trial). The model contains different populations of neurons (as found experimentally) in attractor networks that respond in the delay period to the stimulus object, the stimulus position, and to combinations of both object and position information. The pools are arranged hierarchically and have global inhibition through inhibitory interneurons to implement competition. It is shown that a biasing attentional input to define the current relevant information (object or location) enables the system to select the correct neuronal populations during the delay period in what is a biased competition model of attention. The processes occurring at the AMPA and NMDA synapses are dynamically modeled in the integrate-and-fire implementation to produce realistic spiking dynamics. It is shown that the fMRI data characteristic of the dorsal PFC and linked to spatial processing and manipulation of items can be reproduced in the model by a high level of inhibition, whereas the fMRI data characteristic of the ventral PFC and linked to object processing can be produced by a lower level of inhibition, even though the network is itself topographically homogeneous with no spatial topology of the neurons. This article, thus, not only presents a model for how spatial versus object short-term memory could be implemented in the PFC, but also shows that the fMRI BOLD signal measured during such tasks from different parts of the PFC could reflect a higher level of inhibition dorsally, without this dorsal region necessarily being primarily spatial and the ventral region object-related.  相似文献   

2.
Research on the functional organization of the lateral prefrontal cortex (PFC) in working memory continues to be fairly equivocal between two major frameworks: organization-by-process or organization-by-material. Although there is fairly strong evidence for organization-by-process models from event-related fMRI studies, some investigators argue that the nature of the stimulus material better defines the functional organization of the lateral PFC, particularly in more ventral regions (BA 47/45/44). Specifically, the anterior region of the ventrolateral PFC (BA 47/45) is hypothesized to subserve semantic processing while the posterior region (BA 44) may subserve phonological processing. In the current event-related fMRI study, we directly compared process-related versus material-related organizational principles in a verbal working memory task. Subjects performed a modified delayed response task in which they (1) retained a list of five words or five nonwords during the delay period ("maintenance"), or (2) performed a semantic (size reordering) or phonological (alphabetical reordering) task on the word or nonword lists, respectively ("manipulation"). We did not find evidence during the delay period of our task to support claims of anterior-posterior specializations in the ventrolateral PFC for semantic versus phonological processing. Subjects did, however, display greater neuronal activity during the delay period of manipulation trials than maintenance trials in both the dorsolateral PFC and posterior ventrolateral regions. These data are more consistent with the process model of the organization of lateral PFC in verbal working memory.  相似文献   

3.
Understanding the contributions of the prefrontal cortex (PFC) to working memory is central to understanding the neural bases of high-level cognition. One question that remains controversial is whether the same areas of the dorsolateral PFC (dlPFC) that participate in the manipulation of information in working memory also contribute to its short-term retention (STR). We evaluated this question by first identifying, with functional magnetic resonance imaging (fMRI), brain areas involved in manipulation. Next, these areas were targeted with repetitive transcranial magnetic stimulation (rTMS) while subjects performed tasks requiring only the STR or the STR plus manipulation of information in working memory. fMRI indicated that manipulation-related activity was independent of retention-related activity in both the PFC and superior parietal lobule (SPL). rTMS, however, yielded a different pattern of results. Although rTMS of the dlPFC selectively disrupted manipulation, rTMS of the SPL disrupted manipulation and STR to the same extent. rTMS of the postcentral gyrus (a control region) had no effect on performance. The implications of these results are twofold. In the PFC, they are consistent with the view that this region contributes more importantly to the control of information in working memory than to its STR. In the SPL, they illustrate the importance of supplementing the fundamentally correlational data from neuroimaging with a disruptive method, which affords stronger inference about structure-function relations.  相似文献   

4.
Recent functional neuroimaging studies have provided a wealth of new information about the likely organization of working memory processes within the human lateral frontal cprtex. This article seeks to evaluate the results of these studies in the context of two contrasting theoretical models of lateral frontal-lobe function, developed through lesion and electrophysiological recording work in non-human primates (Goldman-Rakic, 1994, 1995; Petrides, 1994, 1995). Both models focus on a broadly similar distinction between anatomically and cytoarchitectonically distinct dorsolateral and ventrolateral frontal cortical areas, but differ in the precise functions ascribed to those regions. Following a review of the relevant anatomical data, the origins of these two theoretical positions are considered in some detail and the main predictions arising from each are identified. Recent functional neuroimaging studies of working memory processes are then critically reviewed in order to assess the extent to which they support either, or both, sets of predictions. The results of this meta-analysis suggest that lateral regions of the frontal lobe are not functionally organized according to stimulus modality, as has been widely assumed, but that specific regions within the dorsolateral or ventrolateral frontal cortex make identical functional contributions to both spatial and non-spatial working memory.  相似文献   

5.
Curtis CE  Zald DH  Pardo JV 《Neuropsychologia》2000,38(11):1503-1510
The prefrontal cortex plays a critical role in working memory, the active maintenance of information for brief periods of time for guiding future motor and cognitive processes. Two competing models have emerged to account for the growing human and non-human primate literature examining the functional neuroanatomy of working memory. One theory holds that the lateral frontal cortex plays a domain-specific role in working memory with the dorsolateral and ventrolateral cortical regions supporting working memory for spatial and non-spatial material, respectively. Alternatively, the lateral frontal cortex may play a process-specific role with the more dorsal regions becoming recruited whenever active manipulation or monitoring of information in working memory becomes necessary. Many working memory tasks do not allow for direct tests of these competing models. The present study used a novel self-ordered working memory task and positron emission tomography to identify whether dorsal or ventral lateral cortical areas are recruited during a working memory task that required extensive monitoring of non-spatial information held within working memory. We observed increased blood flow in the right dorsolateral, but not ventrolateral, prefrontal cortex. Increases in blood flow in the dorsolateral region correlated strongly with task performance. Thus, the results support the process-specific hypothesis.  相似文献   

6.
The lateral prefrontal cortex (LPFC) is important for working memory (WM) task performance. Neuropsychological and neurophysiological studies in monkeys suggest that the lateral prefrontal cortex is functionally segregated based on the working memory domain (spatial vs. non-spatial). However, this is not supported by most human neuroimaging studies, and the discrepancy might be due to differences in methods and/or species (monkey neuropsychology/physiology vs. human neuroimaging). We used positron emission topography to examine the functional segregation of the lateral prefrontal cortex of Japanese macaques (Macaca fuscata) that showed near 100% accuracy on spatial and non-spatial working memory tasks. Compared with activity during the non-working memory control tasks, the dorsolateral prefrontal cortex (DLPFC) was more active during the non-spatial, but not during the spatial, working memory task, although a muscimol microinjection into the dorsolateral prefrontal cortex significantly impaired the performance of both working memory tasks. A direct comparison of the brain activity between the two working memory tasks revealed no differences within the lateral prefrontal cortex, whereas the premotor area was more active during the spatial working memory task. Comparing the delay-specific activity, which did not include task-associated stimulus/response-related activity, revealed more spatial working memory-related activity in the posterior parietal and premotor areas, and more non-spatial working memory-related activity in the dorsolateral prefrontal cortex and hippocampus. These results suggest that working memory in the monkey brain is segregated based on domain, not within the lateral prefrontal cortex but rather between the posterior parietal-premotor areas and the dorsolateral prefrontal-hippocampus areas.  相似文献   

7.
Studies of high-risk offspring (HR) of schizophrenic patients have found abnormalities in attention, working memory and executive functions, suggesting impaired integrity of the prefrontal cortex and related brain regions. The authors conducted a preliminary high-field (3 T) functional magnetic resonance imaging (fMRI) study to assess performance and activation during a memory-guided saccade (MGS) task, which measures spatial working memory. HR subjects showed significant decreases in fMRI-measured activation in the dorsolateral prefrontal cortex (Brodmann's areas 8 and 9/46) and the inferior parietal cortex (Brodmann's area 40) compared to age- and sex-matched healthy controls (HC). Abnormal functional integrity of prefrontal and parietal regions of the heteromodal association cortical (HAC) regions in subjects at genetic risk for schizophrenia is consistent with findings observed in adults with the illness [Callicott et al., Cereb. Cortex 10 (2000) 1078; Manoach et al., Biol. Psychiatry 48 (2000) 99.]. These abnormalities need to be prospectively investigated in nonpsychotic individuals at risk for schizophrenia in order to determine their predictive value for eventual emergence of schizophrenia or related disorders.  相似文献   

8.
Brain imaging and behavioral studies of working memory (WM) converge to suggest that the ventrolateral prefrontal cortex (PFC) mediates a capacity-limited storage buffer and that the dorsolateral PFC mediates memory organization processes that support supracapacity memory storage. Previous research from our laboratory has shown that the extent to which such memory organization processes are required depends on both task factors (i.e., memory load) and subject factors (i.e., response speed). Task factors exert their effects mainly during WM encoding while subject factors exert their effects mainly during WM retrieval. In this study, we sought to test the generalizability of these phenomena under more difficult memory-demand conditions than have been used previously. During scanning, subjects performed a WM task in which they were required to maintain between 1 and 8 letters over a brief delay. Neural activity was measured during encoding, maintenance, and retrieval task periods using event-related functional magnetic resonance imaging. With increasing memory load, there were reaction time increases and accuracy rate decreases, ventrolateral PFC activation decreases during encoding, and dorsolateral PFC activation increases during maintenance and retrieval. These results suggest that the ventrolateral PFC mediates WM storage and that the dorsolateral PFC mediates strategic memory organization processes that facilitate supracapacity WM storage. Additionally, high-performing subjects showed overall less activation than low-performing subjects, but activation increases with increasing memory load in the lateral PFC during maintenance and retrieval. Low-performing subjects showed overall more activation than high-performing subjects, but minimal activation increases in the dorsolateral PFC with increasing memory load. These results suggest that individual differences in both neural efficiency and cognitive strategy underlie individual differences in the quality of subjects' WM performance.  相似文献   

9.
BACKGROUND: Schizophrenia is characterized by executive functioning deficits, presumably mediated by prefrontal cortex dysfunction. For example, schizophrenia participants show performance deficits on ocular motor delayed response (ODR) tasks, which require both inhibition and spatial working memory for correct performance. METHODS: The present functional magnetic resonance imaging (fMRI) study compared neural activity of 14 schizophrenia and 14 normal participants while they performed ODR tasks. RESULTS: Schizophrenia participants generated: 1) more trials with anticipatory saccades (saccades made during the delay period), 2) memory saccades with longer latencies, and 3) memory saccades of decreased accuracy. Increased blood oxygenation level-dependent (BOLD) signal changes were observed in both groups in ocular motor circuitry (e.g., supplementary eye fields [SEF], lateral frontal eye fields [FEF], inferior parietal lobule [IPL], cuneus, and precuneus). The normal, but not the schizophrenia, group demonstrated BOLD signal changes in dorsolateral prefrontal regions (right Brodmann area [BA] 9 and bilateral BA 10), medial FEF, insula, thalamus, and basal ganglia. Correlations between percentage of anticipatory saccade trials and BOLD signal changes were more similar between groups for subcortical regions and less similar for cortical regions. CONCLUSIONS: These results suggest that executive functioning deficits in schizophrenia may be associated with dysfunction of the basal ganglia-thalamocortical circuitry, evidenced by decreased prefrontal cortex, basal ganglia, and thalamus activity in the schizophrenia group during ODR task performance.  相似文献   

10.
Changes in memory function in elderly individuals are often attributed to dysfunction of the prefrontal cortex (PFC). One mechanism for this dysfunction may be disruption of white matter tracts that connect the PFC with its anatomical targets. Here, we tested the hypothesis that white matter degeneration is associated with reduced prefrontal activation. We used white matter hyperintensities (WMH), a magnetic resonance imaging (MRI) finding associated with cerebrovascular disease in elderly individuals, as a marker for white matter degeneration. Specifically, we used structural MRI to quantify the extent of WMH in a group of cognitively normal elderly individuals and tested whether these measures were predictive of the magnitude of prefrontal activity (fMRI) observed during performance of an episodic retrieval task and a verbal working memory task. We also examined the effects of WMH located in the dorsolateral frontal regions with the hypothesis that dorsal PFC WMH would be strongly associated with not only PFC function, but also with areas that are anatomically and functionally linked to the PFC in a task-dependent manner. Results showed that increases in both global and regional dorsal PFC WMH volume were associated with decreases in PFC activity. In addition, dorsal PFC WMH volume was associated with decreased activity in medial temporal and anterior cingulate regions during episodic retrieval and decreased activity in the posterior parietal and anterior cingulate cortex during working memory performance. These results suggest that disruption of white matter tracts, especially within the PFC, may be a mechanism for age-related changes in memory functioning.  相似文献   

11.
The prefrontal cortex (PFC) is known to subserve working memory (WM) processes. Brain imaging studies of WM using delayed response tasks (DRTs) have shown memory-load-dependent activation increases in dorsal prefrontal cortex (PFC) regions. These activation increases are believed to reflect manipulation of to-be-remembered information in the service of memory-consolidation. This speculation has been based on observations of similar activation increases in tasks that overtly require manipulation by instructing participants to reorder to-be-remembered list items. In this study, we tested the assumption of functional equivalence between these two types of WM tasks. Participants performed a DRT under two conditions with memory loads ranging from 3 to 6 letters. In an "item-order" condition, participants were required to remember letters in the order in which they were presented. In a "reordering" condition, participants were required to remember the letters in alphabetical order. Load-related activation increases were observed during the encoding and maintenance periods of the order maintenance condition, whereas load-related activation decreases were observed in the same periods of the reordering condition. These results suggest that (1) the neural substrates associated with long-list retention and those associated with reordering are not equivalent, (2) cognitive processes associated with long-list retention may be more closely approximated by item-order maintenance than by reordering, and (3) multiple forms of WM manipulation are dissociable on the basis of fMRI data.  相似文献   

12.
OBJECTIVE: The identification of neurobiological intermediate phenotypes may hasten the search for susceptibility genes in complex psychiatric disorders such as schizophrenia. Earlier family studies have suggested that deficits in executive cognition and working memory may be related to genetic susceptibility for schizophrenia, but the biological basis for this behavioral phenotype has not been identified. METHOD: The authors used functional magnetic resonance imaging (fMRI) during performance of the N-back working memory task to assess working memory-related cortical physiology in nonschizophrenic, cognitively intact siblings of patients with schizophrenia. They compared 23 unaffected siblings of schizophrenic patients to 18 matched comparison subjects. As a planned replication, they studied another 25 unaffected siblings and 15 comparison subjects. RESULTS: In both cohorts, there were no group differences in working memory performance. Nevertheless, both groups of siblings showed an exaggerated physiological response in the right dorsolateral prefrontal cortex that was qualitatively similar to results of earlier fMRI studies of patients with schizophrenia. CONCLUSIONS: These fMRI data provide direct evidence of a primary physiological abnormality in dorsolateral prefrontal cortex function in individuals at greater genetic risk for schizophrenia, even in the absence of a manifest cognitive abnormality. This exaggerated fMRI response implicates inefficient processing of memory information at the level of intrinsic prefrontal circuitry, similar to earlier findings in patients with schizophrenia. These data predict that inheritance of alleles that contribute to inefficient prefrontal information processing will increase risk for schizophrenia.  相似文献   

13.
It is widely held that the frontal cortex plays a critical part in certain aspects of spatial and non-spatial working memory. One unresolved issue is whether there are functionally distinct subdivisions of the lateral frontal cortex that subserve different aspects of working memory. The present study used positron emission tomography (PET) to demonstrate that working memory processes within the human mid-dorsolateral and mid-ventrolateral frontal regions are organized according to the type of processing required rather than according to the nature (i.e. spatial or non-spatial), of the information being processed, as has been widely assumed. Two spatial working memory tasks were used which varied in the extent to which they required different executive processes. During a 'spatial span' task that required the subject to hold a sequence of five previously remembered locations in working memory a significant change in blood-flow was observed in the right mid-ventrolateral frontal cortex, but not in the anatomically and cytoarchitectonically distinct mid-dorsolateral frontal-lobe region. By contrast, during a '2-back' task that required the subject to continually update and manipulate an ongoing sequence of locations within working memory, significant blood flow increases were observed in both mid-ventrolateral and mid-dorsolateral frontal regions. When the two working memory tasks were compared directly, the one that emphasized manipulation of information within working memory yielded significantly greater activity in the right mid-dorsolateral frontal cortex only. This dissociation provides unambiguous evidence that the mid-dorsolateral and mid-ventrolateral frontal cortical areas make distinct functional contributions to spatial working memory and corresponds with a fractionation of working memory processes in psychological terms.  相似文献   

14.
Although the prefrontal cortex (PFC) is consistently found to be associated with various working memory processes, the necessity of the PFC for such processes remains unclear. To elucidate PFC contributions to storage and rehearsal/maintenance processes engaged during verbal working memory function, we assessed behavior of patients with lesions to the left or right lateral PFC, and neural activity of healthy young subjects during fMRI scanning, during performance of working memory tasks. We found that PFC lesions did not affect storage processes--which is consistent with the notion that posterior cortical networks can support simple retention of information. We also found that PFC lesions did not affect rehearsal/maintenance processes, which was in contrast to our finding that healthy subjects performing a verbal delayed recognition task showed bilateral PFC activation. These combined imaging and behavioral data suggest that working memory rehearsal/maintenance processes may depend on both hemispheres, which may have implications for recovery of function and development of rehabilitation therapies after frontal injury.  相似文献   

15.
Working memory--including simple maintenance of information as well as manipulation of maintained information--has been long associated with lateral prefrontal cortex (PFC). More recently, evidence has pointed to an important role for posterior parietal cortex (PPC) in supporting working-memory processes as well. While explanations have emerged as to the nature of parietal involvement in working-memory maintenance, the apparent involvement of this region in working-memory manipulation has not been fully accounted for. We have hypothesized that parietal cortex, through its representation of spatial information, in conjunction with dorsolateral PFC, supports organization of information (manipulation) and the maintenance of information in an organized state. Through computational modeling, we have demonstrated how this might be achieved. Presently, we consider a pair of fMRI experiments that were designed to test our hypothesis. Both experiments involved simple working-memory delay tasks with contrasts between maintenance of information in organized and unorganized states, as well as contrasts between high and low working-memory load conditions. Two different kinds of organization, associative (grouping) and relational, were employed in the two studies. Across both studies, superior parietal cortex (BA 7) demonstrated a significant increase in activity associated with maintenance of information in an organized state, over and above any increases associated with increased working-memory load. During the delay period, dorsolateral PFC (BA 9) exhibited similar increases for both organization and load; however, this region was particularly engaged by organization demand during the initial cue period. Functional connectivity analysis indicates interaction between dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex, especially when organization is required.  相似文献   

16.
Neuroimaging studies of normal young adults have consistently found right prefrontal cortex (RPFC) activity during the performance of recency memory tasks. However, it is unclear whether the involvement of RPFC during these tasks reflects retrieval processes or executive processes such as: strategic ordering or monitoring. In the current study, we distinguish between those PFC regions that are more related to retrieval processes, versus strategic ordering processes. An event-related fMRI study was conducted in which eight young subjects were scanned while performing verbal episodic retrieval tasks (recognition and recency memory tasks), and verbal non-memory strategic organizing control tasks (reverse alphabetizing of words). The fMRI results show that young subjects engaged right dorsolateral PFC during recency and reverse alphabetizing control tasks. Left ventral PFC was engaged across all tasks; however, a subset of voxels within this region was more active during retrieval tasks. Left dorsolateral and right ventral PFC activity was more related to the performance of reverse alphabetizing tasks, respectively. We conclude that right dorsolateral PFC activity during recency memory reflects more general strategic organizational or monitoring processes, and is not EM-specific.  相似文献   

17.
Functional magnetic resonance imaging (fMRI) has shown that brain activation during performance of working memory (WM) tasks under high memory loads is altered in adults with severe traumatic brain injury (TBI) relative to uninjured subjects (Perlstein et al., 2004; Scheibel et al., 2003). Our study attempted to equate TBI patients and orthopedically injured (OI) subjects on performance of an N-Back task that used faces as stimuli. To minimize confusion in TBI patients that was revealed in pilot work, we presented the memory conditions in two separate tasks, 0- versus 1-back and 0- versus 2-back. In the 0- versus 1-back task, OI subjects activated bilateral frontal areas more extensively than TBI patients, and TBI patients activated posterior regions more extensively than OI subjects. In the 0- versus 2-back task, there were no significant differences between the groups. Analysis of changes in activation over time on 1-back disclosed that OI subjects had decreases in bilateral anterior and posterior regions, while TBI patients showed activation increases in those and other areas over time. In the 2-back condition, both groups showed decreases over time in fusiform and parahippocampal gyri, although the OI group also showed increases over time in frontal, parietal, and temporal areas not seen in the TBI patients. The greatest group differences were found in the 1-back condition, which places low demand on WM. Although the extent of activation in the 2-back condition did not differ between the two groups, deactivation in the 2-back condition was seen in the OI patients only, and both groups' patterns of activation over time varied, suggesting a dissociation between the TBI and OI patients in recruitment of neural areas mediating WM.  相似文献   

18.
Neuroimaging research on the brain basis of memory decline in older adults typically has examined age-related changes either in structure or in function. Structural imaging studies have found that smaller medial temporal lobe (MTL) volumes are associated with lower memory performance. Functional imaging studies have found that older adults often exhibit bilateral frontal-lobe activation under conditions where young adults exhibit unilateral frontal activation. As yet, no one has examined whether these MTL structural and frontal-lobe functional findings are associated. In this study, we tested whether these findings were correlated in a population of healthy older adults in whom we previously demonstrated verbal memory performance was positively associated with left entorhinal cortex volume in the MTL (Rosen et al., 2003) and right frontal lobe activation during memory encoding (Rosen et al., 2002). Thirteen, non-demented, community-dwelling older adults participated both in a functional MRI (fMRI) study of verbal memory encoding and structural imaging. MRI-derived left entorhinal volume was measured on structural images and entered as a regressor against fMRI activation during verbal memory encoding. Right frontal activation (Brodmann's Area 47/insula) was positively correlated with left entorhinal cortex volume. These findings indicate a positive association between MTL volume and right frontal-lobe function that may underlie variability in memory performance among the elderly, and also suggest a two-stage model of memory decline in aging.  相似文献   

19.
Executive functions include processes by which important information (e.g., words, objects, task goals, contextual information) generated via perception or thought can be foregrounded and thereby influence current and subsequent processing. One simple executive process that has the effect of foregrounding information is refreshing--thinking briefly of a just-activated representation. Previous studies (e.g., Johnson et al., 2005) identified refresh-related activity in several areas of left prefrontal cortex (PFC). To further specify the respective functions of these PFC areas in refreshing, in Experiment 1, healthy young adult participants were randomly cued to think of a just previously seen word (refresh) or cued to press a button (act). Compared to simply reading a word, refresh and act conditions resulted in similar levels of activity in left lateral anterior PFC but only refreshing resulted in greater activity in left dorsolateral PFC. In Experiment 2, refreshing was contrasted with a minimal phonological rehearsal condition. Refreshing was associated with activity in left dorsolateral PFC and rehearsing with activity in left ventrolateral PFC. In both experiments, correlations of activity among brain areas suggest different functional connectivity for these processes. Together, these findings provide evidence that (1) left lateral anterior PFC is associated with initiating a non-automatic process, (2) left dorsolateral PFC is associated with foregrounding a specific mental representation, and (3) refreshing and rehearsing are neurally distinguishable processes.  相似文献   

20.
Alcohol intoxication effects on visual perception: an fMRI study   总被引:1,自引:0,他引:1  
We examined the effects of two doses of alcohol (EtOH) on functional magnetic resonance imaging (fMRI) activation during a visual perception task. The Motor-Free Visual Perception Test-Revised (MVPT-R) provides measures of overall visual perceptual processing ability. It incorporates different cognitive elements including visual discrimination, spatial relationships, and mental rotation. We used the MVPT-R to study brain activation patterns in healthy controls (1) sober, and (2) at two doses of alcohol intoxication with event-related fMRI. The fMRI data were analyzed using a general linear model approach based upon a model of the time course and a hemodynamic response estimate. Additionally, a correlation analysis was performed to examine dose-dependent amplitude changes. With regard to alcohol-free task-related brain activation, we replicate our previous finding in which SPM group analysis revealed robust activation in visual and visual association areas, frontal eye field (FEF)/dorsolateral prefrontal cortex (DLPFC), and the supplemental motor area (SMA). Consistent with a previous study of EtOH and visual stimulation, EtOH resulted in a dose-dependent decrease in activation amplitude over much of the visual perception network and in a decrease in the maximum contrast-to-noise ratio (in the lingual gyrus). Despite only modest behavior changes (in the expected direction), significant dose-dependent activation increases were observed in insula, DLPFC, and precentral regions, whereas dose-dependent activation decreases were observed in anterior and posterior cingulate, precuneus, and middle frontal areas. Some areas (FEF/DLPFC/SMA) became more diffusely activated (i.e., increased in spatial extent) at the higher dose. Alcohol, thus, appears to have both global and local effects upon the neural correlates of the MVPT-R task, some of which are dose dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号