首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Maintenance of arterial pressure (AP) under orthostatic stress against gravitational fluid shift and pressure disturbance is of great importance. One of the mechanisms is that upright tilt resets steady-state baroreflex control to a higher sympathetic nerve activity (SNA). However, the dynamic feedback characteristics of the baroreflex system, a hallmark of fast-acting neural control, remain to be elucidated. In the present study, we tested the hypothesis that upright tilt resets the dynamic transfer function of the baroreflex neural arc to minify the pressure disturbance in total baroreflex control. Renal SNA and AP were recorded in ten anesthetized, vagotomized and aortic-denervated rabbits. Under baroreflex open-loop condition, isolated intracarotid sinus pressure (CSP) was changed according to a binary white noise sequence at operating pressure +/- 20 mmHg, while the animal was placed supine and at 60 degrees upright tilt. Regardless of the postures, the baroreflex neural (CSP to SNA) and peripheral (SNA to AP) arcs showed dynamic high-pass and low-pass characteristics, respectively. Upright tilt increased the transfer gain of the neural arc (resetting), decreased that of the peripheral arc, and consequently maintained the transfer characteristics of total baroreflex feedback system. A simulation study suggests that postural resetting of the neural arc would significantly increase the transfer gain of the total arc in upright position, and that in closed-loop baroreflex the resetting increases the stability of AP against pressure disturbance under orthostatic stress. In conclusion, upright tilt resets the dynamic transfer function of the baroreflex neural arc to minify the pressure disturbance in total baroreflex control.  相似文献   

2.
Although the Bezold-Jarisch (BJ) reflex is potentially evoked during acute myocardial ischemia or infarction, its effects on the static characteristics of the arterial baroreflex remain to be analyzed in terms of an equilibrium diagram between the neural and peripheral arcs. The neural arc represents the static input-output relationship between baroreceptor pressure input and efferent sympathetic nerve activity (SNA), whereas the peripheral arc represents that between SNA and arterial pressure (AP). In 8 anesthetized rabbits, we increased carotid sinus pressure stepwise from 40 to 160 mmHg in increments of 20 mmHg at one-minute intervals while measuring renal SNA and AP under control conditions and during the activation of the BJ reflex by intravenous administration of phenylbiguanide (PBG, 100 microg.kg(-1).min(-1)). The neural arc approximated a sigmoid curve whereas the peripheral arc approximated a straight line. PBG decreased AP at the operating point from -91.3 +/- 2.4 to -71.7 +/- 3.1 mmHg (P < 0.01), and attenuated the total loop gain at the operating point from -1.31 +/- 0.44 to -0.51 +/- 0.14 (P < 0.05). The equilibrium diagram indicated that PBG caused a parallel shift of the neural arc toward lower SNA such that the maximum SNA was reduced to approximately 60% of control. PBG decreased neural and peripheral arc gains at the operating point to approximately 43% and 77%, respectively. In conclusion, the BJ reflex blunts arterial baroreflex via the shift of the neural arc toward lower SNA.  相似文献   

3.
Although the elevation of angiotensin II (Ang II) associated with cardiovascular diseases has been considered to suppress the arterial baroreflex function, how Ang II affects dynamic arterial pressure (AP) regulation remains unknown. The aim of the present study was to elucidate the acute effects of Ang II on dynamic AP regulation by the arterial baroreflex. In seven anesthetized Japanese white rabbits, we randomly perturbed intra-carotid sinus pressure (CSP) according to a binary white noise sequence while recording renal sympathetic nerve activity (RSNA) and AP. We estimated the neural arc transfer function from CSP to RSNA and the peripheral arc transfer function from RSNA to AP before and after 30-min intravenous administration of Ang II (100 ng/kg/min). Ang II increased mean AP from 75.7 +/- 3.1 to 95.5 +/- 5.1 mmHg (p < 0.01), while it did not affect mean RSNA (from 5.9 +/- 1.3 to 5.7 +/- 1.2 a.u.). The neural arc transfer functions did not differ before or after Ang II administration (dynamic gain: -0.94 +/- 0.04 vs. -0.94 +/- 0.13, corner frequency: 0.06 +/- 0.01 vs.0.06 +/- 0.01 Hz, pure delay: 0.16 +/- 0.01 vs. 0.17 +/- 0.02 s). The peripheral arc transfer function did not differ before or after Ang II administration (dynamic gain: 1.18 +/- 0.05 vs. 1.06 +/- 0.11, natural frequency: 0.07 +/- 0.01 vs. 0.08 +/- 0.01 Hz, damping ratio: 1.19 +/- 0.06 vs. 1.24 +/- 0.19, pure delay: 0.83 +/- 0.06 vs. 0.78 +/- 0.05 s). Intravenous Ang II hardly affects the dynamic characteristics of neural and peripheral arc around the physiological operating pressure.  相似文献   

4.
Two types of closed-loop perturbations can be applied to the arterial baroreflex system. The first (P(D1)) is introduced into the baroreceptors without a direct effect on arterial pressure (AP), whereas the second (P(D2)) initially affects AP. Neck suction and hemorrhage are examples of P(D1) and P(D2), respectively. To estimate the baroreflex open-loop gain (G(Baro)) without knowing the absolute magnitudes of P(D1) and P(D2), we explored a new strategy to estimate G(Baro) by combining P(D1) and P(D2) in a baroreflex equilibrium diagram. In this diagram, the neural arc presents the input-output relationship between baroreceptor pressure input and sympathetic nerve activity (SNA). The peripheral arc presents the input-output relationship between SNA and AP. In 8 anesthetized rabbits, we estimated G(Baro) by multiplying the slopes of the peripheral arc determined from P(D1) and the neural arc determined from P(D2). We also estimated G(Baro) by a conventional open-loop analysis. The G(Baro) values estimated by the equilibrium diagram and the open-loop analysis showed a positive correlation (y = 0.80x + 0.22, r(2) = 0.95) and a standard error of estimate of 0.21 across the animals. We conclude that G(Baro) was estimated well by combining P(D1) and P(D2) in the equilibrium diagram.  相似文献   

5.
We estimated open-loop dynamic characteristics of the carotid sinus baroreflex in normal control rats and chronic heart failure (CHF) rats after myocardial infarction. First, the neural arc transfer function from carotid sinus pressure to splanchnic sympathetic nerve activity (SNA) and its corresponding step response were examined. Although the steady-state response was attenuated in CHF, the negative peak response and the time to peak did not change significantly, suggesting preserved neural arc dynamic characteristics. Next, the peripheral arc transfer function from SNA to arterial pressure (AP) and its corresponding step response were examined. The steady-state response and the initial slope were reduced in CHF, suggesting impaired end-organ responses. In a simulation study based on the dynamic and static characteristics, the percent recovery of AP was reduced progressively as the size of disturbance increased in CHF, suggesting that a reserve for AP buffering is lost in CHF despite relatively maintained baseline AP.  相似文献   

6.
Despite accumulating data of muscle sympathetic nerve activity (SNA) measured by human microneurography, whether neural discharges of muscle SNA correlates and coheres with those of other SNAs controlling visceral organs remains unclear. Further, how the baroreflex control of SNA affects the relations between these SNAs remains unknown. In urethane and alpha-chloralose anesthetized, vagotomized, and aortic-denervated rabbits, we recorded muscle SNA from the tibial nerve using microneurography and simultaneously recorded renal and cardiac SNAs. After isolating the carotid sinuses, we produced a baroreflex closed-loop condition by matching the isolated intracarotid sinus pressure (CSP) with systemic arterial pressure (CLOSE). We also fixed CSP at operating pressure (FIX) or altered CSP widely (WIDE: operating pressure +/- 40 mmHg). Under these conditions, we calculated time-domain and frequency-domain measures of the correlation between muscle SNA and renal or cardiac SNAs. At CLOSE, muscle SNA resampled at 1 Hz correlated with both renal (r(2) = 0.71 +/- 0.04, delay = 0.10 +/- 0.004 s) and cardiac SNAs (r(2) = 0.58 +/- 0.03, delay = 0.13 +/- 0.004 s) at optimal delays. Moreover,muscle SNA at CLOSE strongly cohered with renal and cardiac SNAs(coherence >0.8) at the autospectral peak frequencies, and weakly (0.4-0.5) at the remaining frequencies. Increasing the magnitude of CSP change from FIX to CLOSE and further to WIDE resulted in corresponding increases in correlation and coherence functions at nonpeak frequencies, and the coherence functions at peak frequencies remained high (>0.8). In conclusion, muscle SNA correlates and coheres approximately with renal and cardiac SNAs under closed-loop baroreflex conditions. The arterial baroreflex is capable of potently homogenizing neural discharges of these SNAs by modulating SNA at the nonpeak frequencies of SNA autospectra.  相似文献   

7.
We sought to determine if resetting of the carotid-vasomotor baroreflex function curve during exercise is modulated by changes in central blood volume (CBV). CBV was increased during exercise by altering: (1) subject posture (supine versus upright) and (2) pedal frequency (80 versus 60 revolutions min−1 (r.p.m.)); while oxygen uptake (     ) was kept constant. Eight male subjects performed three exercise trials: upright cycling at 60 r.p.m. (control); supine cycling at 60 r.p.m. (SupEX) and upright cycling at 80 r.p.m. to enhance the muscle pump (80EX). During each condition, carotid baroreflex (CBR) function was determined using the rapid neck pressure (NP) and neck suction (NS) protocol. Although mean arterial pressure (MAP) was significantly elevated from rest (88 ± 2 mmHg) during all exercise conditions ( P < 0.001), the increase in MAP was lower during SupEX (94 ± 2 mmHg) and 80EX (95 ± 2 mmHg) compared with control (105 ± 2 mmHg, P < 0.05). Importantly, the blood pressure responses to NP and NS were maintained around these changed operating points of MAP. However, in comparison to control, the carotid-vasomotor baroreflex function curve was relocated downward and leftward when CBV was increased during SupEX and 80EX. These alterations in CBR resetting occurred without any differences in     or heart rate between the exercise conditions. Thus, increasing CBV and loading the cardiopulmonary baroreflex reduces the magnitude of exercise-induced increases in MAP and CBR resetting. These findings suggest that changes in cardiopulmonary baroreceptor load influence carotid baroreflex resetting during dynamic exercise.  相似文献   

8.
Although random aortic pressure (AOP) perturbation according to a binary white noise sequence enables us to estimate open-loop dynamic characteristics of the carotid sinus baroreflex under closed-loop conditions, the necessity of arterial catheter implantation limits the applicability of this method in freely moving animal experiments. Thus, we explored a closed-loop system identification method using electrical stimulation. In 6 anesthetized and vagotomized rabbits, we stimulated the aortic depressor nerve with a binary white noise sequence (0-10 Hz) under baroreflex closed-loop conditions while measuring cardiac sympathetic nerve activity (SNA) and AOP. We used a closed-loop identification method to estimate the peripheral arc transfer function from SNA to AOP. The peripheral arc transfer function approximated a second-order low-pass filter and its fitted parameters did not differ from those obtained by an open-loop identification method (dynamic gain: 1.16+/-0.32 vs. 1.02+/-0.11; natural frequency: 0.08+/-0.03 vs. 0.09+/-0.03 Hz; damping ratio: 1.53+/-0.15 vs. 1.57+/-0.21). In 6 different rabbits, we applied intermittent rapid pacing (396 beats/min) under baroreflex closed-loop conditions to estimate the neural arc transfer function from AOP to SNA. The neural arc transfer function approximated a first-order high-pass filter and its fitted parameters did not differ from those obtained by an open-loop identification method (dynamic gain: -1.15+/-0.45 vs. -1.06+/-0.05; corner frequency: 0.12+/-0.05 vs. 0.13+/-0.03 Hz). In conclusion, the closed-loop identification method using electrical stimulation is effective to estimate the neural and peripheral arc transfer functions.  相似文献   

9.
1. Renal and cardiac sympathetic baroreflex functions were studied in sodium pentobarbitone anaesthetized rabbits given succinylcholine, during constant artificial ventilation with air and with hypoxic gas mixtures. Mean arterial pressure (MAP) was raised and lowered between values of 40 and 140 mm Hg by means of aortic and vena caval periovascular balloons and integrated sympathetic nerve activity (SNA) was recordered. 2. The relationship between MAP and SNA was sigmoid, with upper and lower plateau levels. The curves were defined by calculating median blood pressure, SNA Range and reflex gain. In both renal and cardiac sympathetics section of the carotid sinus and aortic nerves completely abolished the MAP-related changes in SNA. 3. The renal baroreflex curves were reset from control levels during hypoxia. Median blood pressure increased, as did SNA Range and gain. These effects were due to central interactions between arterial baroreceptor, arterial chemoreceptor and vagal afferent activity. 4. The cardiac sympathetic baroreflex curves were shifted in the opposite direction from control with reduction in median blood pressure, SNA Range and reflex gain. These changes were due to chemoreceptor-arterial baroreceptor interactions. 5. Arterial hypoxia thus evokes a differentiated pattern of baroreflex resetting in the renal and cardiac sympathetic montoneuron pools with differing changes in neural response range and sensitivity to arterial pressure changes.  相似文献   

10.
The dynamic characteristics of the baroreflex neural arc from pressure input to efferent sympathetic nerve activity (SNA) reveal derivative characteristics in the frequency range of 0.01 to 0.8 Hz (i.e., the baroreflex gain augments with increasing frequency) and high-cut characteristics in the frequency range above 0.8 Hz (i.e., the baroreflex gain decreases with increasing frequency) in rabbits. The derivative characteristics accelerate the arterial pressure regulation via the baroreflex. The high-cut characteristics preserve the baroreflex gain against pulsatile pressure by attenuating the high-frequency components less necessary for arterial pressure regulation. However, to what extent the carotid sinus baroreceptor transduction from pressure input to afferent baroreceptor nerve activity (BNA) contributes to these characteristics remains unanswered. To test the hypothesis that the carotid sinus pressure-BNA transduction partly explains the derivative characteristics but not the highcut characteristics, we examined the dynamic BNA response to pressure input in the frequency range from 0.01 to 3 Hz by using a white noise analysis in 7 anesthetized rabbits. The transfer function from pressure input to BNA showed slight derivative characteristics in the frequency range from 0.01 to 0.3 Hz with approximately a 1.7-fold increase in dynamic gain, but it showed no high-cut characteristics. In conclusion, the carotid sinus baroreceptor transduction partly explained the derivative characteristics but not the high-cut characteristics of the baroreflex neural arc. The present results suggest the importance of the central processing from BNA to efferent SNA to account for the overall dynamic characteristics of the baroreflex neural arc.  相似文献   

11.
Although an acute arterial pressure (AP) elevation induced by intravenous angiotensin II (ANG II) does not inhibit sympathetic nerve activity (SNA) compared to an equivalent AP elevation induced by phenylephrine, there are conflicting reports as to how circulating ANG II affects the baroreflex control of SNA. Because most studies have estimated the baroreflex function under closed-loop conditions, differences in the rate of input pressure change and the magnitude of pulsatility may have biased the estimation results. We examined the effects of intravenous ANG II (10 μg kg−1 h−1) on the open-loop system characteristics of the carotid sinus baroreflex in anesthetized and vagotomized rats. Carotid sinus pressure (CSP) was raised from 60 to 180 mmHg in increments of 20 mmHg every minute, and steady-state responses in systemic AP, splanchnic SNA and heart rate (HR) were analyzed using a four-parameter logistic function. ANG II significantly increased the minimum values of AP (67.6 ± 4.6 vs. 101.4 ± 10.9 mmHg, P < 0.01), SNA (33.3 ± 5.4 vs. 56.5 ± 11.5%, P < 0.05) and HR (391.1 ± 13.7 vs. 417.4 ± 11.5 beats/min, P < 0.01). ANG II, however, did not attenuate the response range for AP (56.2 ± 7.2 vs. 49.7 ± 6.2 mmHg), SNA (69.6 ± 5.7 vs. 78.9 ± 9.1%) or HR (41.7 ± 5.1 vs. 51.2 ± 3.8 beats/min). The maximum gain was not affected for AP (1.57 ± 0.28 vs. 1.20 ± 0.25), SNA (1.94 ± 0.34 vs. 2.04 ± 0.42%/mmHg) or HR (1.11 ± 0.12 vs. 1.28 ± 0.19 beats min−1 mmHg−1). It is concluded that high levels of circulating ANG II did not attenuate the response range of open-loop carotid sinus baroreflex control for AP, SNA or HR in anesthetized and vagotomized rats.  相似文献   

12.
To determine whether acute adaptation and resetting occur in the baroreflex control of regional vascular resistance, experiments were conducted in anesthetized and vagotomized dogs. The carotid sinuses were vascularly isolated to regulate the carotid sinus pressure (CSP) in an open-loop fashion. The hindquarters (n= 12) and mesenteric (n=10) beds were perfused with constant flow and arterial perfusion pressures (HPP and MPP) were used to reflect changes in hindquarters and mesenteric resistance respectively. We first observed alterations in HPP and MPP during the course of CSP holding (conditioning pressure) at various levels for 15 min. Thereafter, the CSP was lowered to 50 mm Hg and increased stepwise to obtain the CSP-HPP and CSP-MPP baroreflex function curves. In experiments in the hindquarters bed, HPP stabilized at an average of 104.7 mm Hg during the initial conditioning pressure at 100 mm Hg. When conditioning pressure decreased to 50 mm Hg, the HPP increased to 125.5 mm Hg and then gradually declined to a steady level (115.6 mm Hg) in 5 min. An increase in conditioning pressure from 100 to 150 mm Hg caused HPP to decrease to 54.8 mm Hg followed by an upward adaptation to a steady level (80.2 mm Hg) in 5 min. The CSP/HPP curves constructed from the CSP step protocol were also affected by conditioning pressure. There were significant increases in the threshold and saturation pressures as conditioning pressure was elevated. However, the resetting was characterized by a parallel shift of the CSP/HPP curves without significant changes in baroreflex gain or sensitivity. Although the changes in mesenteric resistance in response to CSP changes were relatively weaker (lower gain), the phenomena of acute adaptation (MPP changes during 15-min conditioning pressure) and resetting (curve shift following different conditioning pressures) were still observed. In addition to the demonstration of adaptation and resetting of baroreflex control on the resistance in these two vascular beds, a graphical analysis is used to indicate that acute adaptation of the baroreflex responses is part of the resetting process. It is not necessarily associated with a decrease in sensitivity. Adaptation occurs as the baroreceptors recognize a new pressure in minutes and results from a shift of the HPP or MPP to a new level along the newly reset function curve.  相似文献   

13.
The loop gain (G) of the autonomic reflex function in orthostatic stress was assessed in anesthetized dogs subjected to 45 and 90 degrees head-up tilt. We observed the magnitude of orthostatic hypotension before and after 1) sinus denervation and vagotomy (SDVT), or 2) ganglionic blockade (GB) with hexamethonium. The decreases in arterial pressure during the orthostatic stress before and after interruption of the autonomic reflex from either the afferent or efferent limb were defined as E and D, respectively. The loop G of the compensatory system was calculated using closed-loop analysis: G = (D/E) - 1. In the SDVT experiments, the average values of E, D, and G were 18.6 mmHg, 62.6 mmHg, and 2.36, respectively, for 45 degrees tilt; and 31.2 mmHg, 82.7 mmHg, and 1.63, respectively, for 90 degrees tilt. The data provide a quantitative measure of the autonomic reflex function in orthostatic hypotension. Furthermore, we found that the corresponding G values in the SDVT and GB experiments were not significantly different. In each experiment, the G value in 90 degrees tilt was lower than that in 45 degrees tilt. The findings suggest that reflexes from the arterial baroreceptors and cardiopulmonary receptors account for a large part of the autonomic compensation to the orthostatic stress. The whole control system operates in a nonlinear fashion, because the gain value tends to decrease as the degree of tilt is increased.  相似文献   

14.
We sought to determine whether the cardiovascular deconditioning that occurs in exercising men after prolonged (42 days) bedrest in the head-down tilt (HDT) position is primarily related to mechanical changes in the heart or to an impaired arterial-cardiac-chronotropic baroreflex. Seven subjects were studied before (C, control) and repeatedly after HDT with rapid tilting between the upright and supine positions during steady-state 50-W dynamic leg exercise. Ventricular interdependence was assumed to be an index of cardiac size; it was assessed on the basis of the initial dip of arterial pulse pressure (PP) induced by a sudden tilt from the upright to the supine position (down-tilt). Arterial-cardiac-chronotropic baroreflex sensitivity (ABS) was assessed as the ratio between tilt-induced heart rate transients and the preceding (and reciprocal) transient in arterial pressure. On the first day of recovery, the initial PP dip was −4 (2) mmHg (where 1 mmHg is 0.13 kPa), less than half of the control value; on subsequent recovery days, the initial PP dip was not significantly different from the control value. When tilting from the upright to the supine position, mean ABS ranged from 1.02 to 1.06 bpm/mmHg during three separate control sessions. Tilts in the opposite direction gave lower ABS values because of the more sluggish HR response and ranged from 0.43 to 0.45 bpm/mmHg in the control situations. ABS did not change after HDT. Our results indicate that impairments of the cardiovascular system after long-term bedrest are of haemodynamic rather than baroreflex origin. Accepted: 8 March 2000  相似文献   

15.
The arterial baroreflex acts to buffer acute changes in blood pressure by reciprocal modulation of sympathetic and parasympathetic activity that controls the heart and vasculature. We have examined the baroreflex pressure–function curves for changes in heart rate and non-cardiac sympathetic nerve activity (SNA, thoracic chain T8–12) in artificially perfused in situ rat preparations. We found that the non-cardiac SNA baroreflex is active over a lower range of pressures than the cardiac baroreflex (threshold 66 ± 1 mmHg versus 82 ± 5 mmHg and mid-point 77 ± 3 versus 87 ± 4 mmHg, respectively, P < 0.05, n = 6). This can manifest as a complete dissociation of the baroreflex limbs at low pressures. This difference between the cardiac and non-cardiac SNA baroreflex is also seen in end-organ sympathetic outflows (adrenal and renal nerves). Recordings of the cardiac vagal (parasympathetic) and the inferior cardiac (sympathetic) nerves identify the cardiac parasympathetic baroreflex component as being active over a higher range of pressures. This difference in the operating range of the baroreflex–function curves is exaggerated in the spontaneously hypertensive rat where the cardiac component has selectively reset by 20–25 mmHg to a higher pressure range (threshold of 104 ± 4 mmHg and mid-point 113 ± 4, n = 6). The difference in the pressure–function curves for the cardiac versus the vascular baroreflex indicates that there is a hierarchical recruitment of the output limbs of the baroreflex with a sympathetic predominance at lower arterial pressures.  相似文献   

16.
We tested the hypothesis that arterial baroreflex (ABR)-mediated beat-to-beat control over muscle sympathetic nerve activity (MSNA) is progressively modulated as orthostatic stress increases in humans, but that this control becomes impaired just before the onset of orthostatic syncope. In 17 healthy subjects, the ABR control over MSNA (burst incidence, burst strength and total MSNA) was evaluated by analysing the relationship between beat-to-beat spontaneous variations in diastolic blood pressure (DAP) and MSNA during supine rest (control) and during progressive, stepwise increases in lower body negative pressure (LBNP) that were incremented by −10 mmHg every 5 min until presyncope (nine subjects) or −60 mmHg was reached. (1) The linear relationships between DAP and burst strength and between DAP and total MSNA were shifted progressively upward as LBNP increased until the level at which syncope occurred. The relationship between DAP and burst incidence, however, gradually shifted upward from control only to LBNP =−30 mmHg; there was no further upward shift at higher LBNPs. (2) Although the slope of the relationship between DAP and burst strength and between DAP and total MSNA remained constant at all LBNPs tested, except at the level where syncope occurred, the slope of the relationship between DAP and burst incidence was reduced at LBNPs of −40 mmHg and higher ( versus control). (3) In syncopal subjects, the slopes of the relationships between DAP and burst incidence, burst strength, and total MSNA were all substantially reduced during the 1–2 min period prior to the onset of syncope. Taken together, these results suggest baroreflex control over MSNA is progressively modulated as orthostatic stress increases, so that its sensitivity is substantially reduced during the period immediately preceding the severe hypotension associated with orthostatic syncope.  相似文献   

17.
Aim: The prompt increase in peripheral vascular resistance, mediated by sympathetic α‐adrenergic stimulation, is believed to be the key event in blood pressure control during postural stress. However, despite the absence of central sympathetic control of the leg vasculature, postural leg vasoconstriction is preserved in spinal cord‐injured individuals (SCI). This study aimed at assessing the contribution of both central and local sympathetically induced α‐adrenergic leg vasoconstriction to head‐up tilt (HUT) by including healthy individuals and SCI, who lack central sympathetic baroreflex control over the leg vascular bed. Methods: In 10 controls and nine SCI the femoral artery was cannulated for drug infusion. Upper leg blood flow (LBF) was measured bilaterally using venous occlusion strain gauge plethysmography before and during 30° HUT throughout intra‐arterial infusion of saline or the non‐selective α‐adrenergic receptor antagonist phentolamine respectively. Additionally, in six controls the leg vascular response to the cold pressor test was assessed during continued infusion of phentolamine, in order to confirm complete α‐adrenergic blockade by phentolamine. Results: During infusion of phentolamine HUT still caused vasoconstriction in both groups: leg vascular resistance (mean arterial pressure/LBF) increased by 10 ± 2 AU (compared with 12 ± 2 AU during saline infusion), and 13 ± 3 AU (compared with 7 ± 3 AU during saline infusion) in controls and SCI respectively. Conclusion: Effective α‐adrenergic blockade did not reduce HUT‐induced vasoconstriction, regardless of intact baroreflex control of the leg vasculature. Apparently, redundant mechanisms compensate for the absence of sympathetic α‐adrenoceptor leg vasoconstriction in response to postural stress.  相似文献   

18.
After considerable debate and key experimental evidence, the importance of the arterial baroreflex in contributing to and maintaining the appropriate neural cardiovascular adjustments to exercise is now well accepted. Indeed, the arterial baroreflex resets during exercise in an intensity-dependent manner to continue to regulate blood pressure as effectively as at rest. Studies have indicated that the exercise resetting of the arterial baroreflex is mediated by both the feedforward mechanism of central command and the feedback mechanism associated with skeletal muscle afferents (the exercise pressor reflex). Another perhaps less appreciated neural mechanism involved in evoking and maintaining neural cardiovascular responses to exercise is the cardiopulmonary baroreflex. The limited information available regarding the cardiopulmonary baroreflex during exercise provides evidence for a role in mediating sympathetic nerve activity and blood pressure responses. In addition, recent investigations have demonstrated an interaction between cardiopulmonary baroreceptors and the arterial baroreflex during dynamic exercise, which contributes to the magnitude of exercise-induced increases in blood pressure as well as the resetting of the arterial baroreflex. Furthermore, neural inputs from the cardiopulmonary baroreceptors appear to play an important role in establishing the operating point of the arterial baroreflex. This symposium review highlights recent studies in these important areas indicating that the interactions of four neural mechanisms (central command, the exercise pressor reflex, the arterial baroreflex and cardiopulmonary baroreflex) are integral in mediating the neural cardiovascular adjustments to exercise.  相似文献   

19.
Since human thermoregulatory heat loss responses, cutaneous vasodilation and sweating, cause hypovolemia, they should resultantly stimulate human baroreflexes. However, it is possible that the thermoregulatory system directly interacts with the baroreflex system through central neural connections independently of the heat-induced hypovolemia. We hypothesized that heat stress modifies the baroreflex control of sympathetic nerve activity independently of heat-induced hypovolemia in humans. We made whole-body heating with tube-lined suits perfused with warm water (46-47 degrees C) on 10 healthy male subjects. The heating increased skin and tympanic temperatures by 10.0 and 0.4 degrees C, respectively. It increased resting total muscle sympathetic nerve activity (MSNA, microneurography) by 94 +/- 9% and decreased central venous pressure (CVP, dependent arm technique) by 2.6 +/- 0.9 mmHg. The heating increased arterial baroreflex gain by 193%, assessed as a response of MSNA to a decrease in diastolic arterial pressure during Valsalva's maneuver, but it did not change threshold arterial pressure for MSNA activation. Although the heating did not change the cardiopulmonary baroreflex gain assessed as a response of MSNA to a change in estimated central venous pressure (CVP) during a 10 degrees head-down and -up tilt test, it upwardly shifted the stimulus-response baroreflex relationship. These changes in baroreflex functions during heating were not restored by an intravenous infusion of warmed isotonic saline (37 degrees C, 15 ml/kg) that restored the heat-induced reduction of CVP. Our results support our hypothesis that heat stress modifies the baroreflex control of MSNA independently of heat-induced hypovolemia in humans. Our results also suggest that the hyperthermal modification of baroreflex results from central neural interaction between thermoregulatory and baroreflex systems.  相似文献   

20.
AIM: Administration of angiotensin II (angII) into the cerebral ventricles or specific brain sites impairs arterial baroreflex regulation of renal sympathetic nerve activity (SNA). Further insight into this effect was derived from: (a) using specific non-peptide angII receptor antagonists to assess the role of endogenous angII acting on angII receptor subtypes, (b) microinjection of angII receptor antagonists into brain sites behind an intact blood-brain barrier to assess the role of endogenous angII of brain origin and (c) alterations in dietary sodium intake, a known physiological regulator of activity of the renin-angiotensin system (RAS), to assess the ability to physiologically regulate the activity of the brain RAS. METHODS: In rats in balance on low, normal or dietary sodium intake, losartan or candesartan was injected into the lateral cerebral ventricle or the rostral ventrolateral medulla (RVLM) and the effects on basal renal SNA and the arterial baroreflex sigmoidal relationship between renal SNA and arterial pressure were determined. RESULTS: With both routes of administration, the effects were proportional to the activity of the RAS as indexed by plasma renin activity (PRA). The magnitude of both the decrease in basal renal SNA and the parallel resetting of arterial baroreflex regulation of renal SNA to a lower arterial pressure was greatest in low-sodium rats with highest PRA and least in high-sodium rats with lowest PRA. Disinhibition of the paraventricular nucleus (PVN) by injection of bicuculline causes pressor, tachycardic and renal sympathoexcitatory responses mediated via an angiotensinergic projection from PVN to RVLM. In comparison with responses in normal sodium rats, these responses were greatly diminished in high-sodium rats and greatly enhanced in low-sodium rats. CONCLUSION: Physiological changes in the activity of the RAS produced by alterations in dietary sodium intake regulate the contribution of endogenous angII of brain origin in the modulation of arterial baroreflex regulation of renal SNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号