首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart rate is controlled by stimulatory sympathetic and inhibitory parasympathetic nerves innervating the sino-atrial node and cardiac conduction system. Sympathetic release of norepinephrine (NE) and parasympathetic release of acetylcholine (ACh) are controlled by the central nervous system, and by pre-synaptic inhibition of transmitter release within the atria. An increase in cardiac sympathetic transmission relative to parasympathetic transmission is pathological as it can lead to disturbances in heart rhythm, catecholaminergic toxicity and development of arrhythmias or fibrillation. Mice lacking the p75 neurotrophin receptor (p75−/−) have elevated atrial NE but a low heart rate suggesting autonomic dysregulation. Similarly, mice whose sympathetic neurons lack the gp130 cytokine receptor (gp130 KO) have a normal heart rate but enhanced bradycardia after vagal nerve stimulation. What is unclear is whether cardiac autonomic disturbances in these animals reflect systemic alterations in nerve activity or whether localized defects in neurotransmitter stores or release are involved. To examine local stimulus-evoked release of neurotransmitters, we have developed a novel method for simultaneous quantification of both NE and ACh after ex vivo atrial field stimulation. Using HPLC with electrochemical detection for NE, and HPLC with mass spectrometry for ACh, we found that following field stimulation NE release was impaired in p75−/− atria while ACh content and release was elevated in gp130 KO atria. Thus, alterations in localized transmitter release from atrial explants are consistent with in vivo deficits in heart rate control, suggesting peripheral alterations in autonomic transmission in these mice.  相似文献   

2.
Peripheral nerve injury promotes the release of brain-derived neurotrophic factor (BDNF) from spinal microglial cells and primary afferent terminals. This induces an increase in dorsal horn excitability that contributes to "central sensitization" and to the onset of neuropathic pain. Although it is accepted that impairment of GABAergic and/or glycinergic inhibition contributes to this process, certain lines of evidence suggest that GABA release in the dorsal horn may increase after nerve injury. To resolve these contradictory findings, we exposed rat spinal cord neurons in defined-medium organotypic culture to 200 ng/ml BDNF for 6 days to mimic the change in spinal BDNF levels that accompanies peripheral nerve injury. Morphological and electrophysiological criteria and glutamic acid decarboxylase (GAD) immunohistochemistry were used to distinguish putative inhibitory tonic-islet-central neurons from putative excitatory delay-radial neurons. Whole cell recording in the presence of 1 μM tetrodotoxin showed that BDNF increased the amplitude of GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) in both cell types. It also increased the amplitude and frequency of spontaneous, action potential-dependent IPSCs (sIPSCs) in putative excitatory neurons. By contrast, BDNF reduced sIPSC amplitude in inhibitory neurons but frequency was unchanged. This increase in inhibitory drive to excitatory neurons and decreased inhibitory drive to inhibitory neurons seems inconsistent with the observation that BDNF increases overall dorsal horn excitability. One of several explanations for this discrepancy is that the action of BDNF in the substantia gelatinosa is dominated by previously documented increases in excitatory synaptic transmission rather than by impediment of inhibitory transmission.  相似文献   

3.
4.
1. Intraluminal pressure was recorded from the isolated guinea-pig and mouse stomach with the vagus and sympathetic nerves attached.2. The response to vagal stimulation, which consists of an excitatory and an inhibitory component, resembled the response to 5-hydroxytryptamine (5-HT), which has no direct action on the muscle but acts on intrinsic excitatory and inhibitory ganglia.3. In the presence of hyoscine, the effect of vagal stimulation, of nicotinic compounds and of 5-HT were all purely relaxant. Competitive block of ganglionic receptors for acetylcholine reduced the vagal relaxation without antagonizing 5-HT. Specific desensitization of ganglionic receptors for 5-HT reduced the vagal relaxation without antagonizing nicotinic compounds.4. During the early phase of the blocking action of nicotine, responses to vagal stimulation and to 5-HT were both abolished. As the non-specific antagonism changed to the later phase of specific antagonism to acetylcholine, the inhibitory (but not the excitatory) component of the vagal response recovered partially, in parallel with the recovery of the relaxant effect of 5-HT.5. The vagal inhibitory effect was completely abolished only when competitive block of acetylcholine receptors was combined with desensitization of 5-HT receptors.6. Stimulation of the mouse stomach (after asphyxiation of the mucosa and exclusion of the luminal content) in the presence of hyoscine caused the release of 5-HT; this release was blocked by tetrodotoxin.7. The results, together with previous observations that 5-HT is contained within preganglionic nerve fibres in the myenteric plexus, are consistent with the hypothesis that 5-HT, with acetylcholine, may be a neurotransmitter in the vagal inhibitory innervation of the stomach.  相似文献   

5.
Grafted neurons obtained from the fetal basal forebrain can provide a functional cholinergic reinnervation of the hippocampal formation in rats with a lesion of the intrinsic septal cholinergic afferents. In the present experiments graft-derived acetylcholine release in the hippocampus was studied by microdialysis in awake rats during different types of behaviours which are known to activate the innate septohippocampal cholinergic system and during different activity periods of the day-night cycle. Two types of basal forebrain grafts were studied: cell suspensions implanted into the hippocampus in rats with an aspirative lesion of the fimbria-fornix, and grafts of solid tissue implanted as a tissue bridge into the fimbria-fornix lesion cavity. Increased acetylcholine overflow was seen in both groups with grafts during sensory stimulation (by handling). The strongest response (50% increase in acetylcholine release) was seen in rats with solid basal forebrain grafts (equivalent to two-thirds of that seen in intact rats). Immobilization stress and motor activity (swimming) also resulted in increased, but more variable, acetylcholine release (+ 30%; about one-third of the normal response). None of these effects was seen in the control rats with fimbria-fornix lesion only. The two-fold difference in hippocampal acetylcholine release in normal animals between day and night was absent in both types of grafted rats. An acute knife-cut, transecting the connections between the solid basal forebrain graft and the host hippocampus, caused an immediate 75% reduction in acetylcholine release (similar to the effect of an acute fimbria-fornix transection in the normal rats) and the response to swimming was no longer evident. The results show that grafted cholinergic neurons can be functionally integrated into the host brain, allowing the grafted neurons to be activated in the correct behavioural contexts, although the changes in acetylcholine overflow were overall smaller and more variable than normal. The ability of the host to influence cholinergic graft activity, most probably mediated via activation of afferent host-graft connections, may contribute to the efficacy of basal forebrain grafts in the amelioration of behavioural impairments in animals with lesions of the forebrain cholinergic system.  相似文献   

6.
In the heart and in the blood vessel walls, complex adrenergic-cholinergic interactions occur both prejunctionally, at the level of the autonomic nerve terminals, and postjunctionally, at the level of the responding cells themselves. The principal prejunctional interaction appears to be an inhibition of the release of norepinephrine from adrenergic nerve terminals by the acetylcholine liberated from nearby cholinergic nerve endings. This inhibitory effect is mediated by muscarinic receptors located on the postganglionic sympathetic nerve terminals. The inhibitory effect of acetylcholine on cardiac and vascular tissues are therefore achieved in part by a direct influence of the cholinergic neurotransmitter on the cardiac and vascular muscle cells, and in part by an indirect influence on sympathetic neurotransmission.  相似文献   

7.
《Neuroscience》1999,95(4):1121-1127
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists ω-conotoxin GVIA (N type), nifedipine and nimodipine (L type), ω-conotoxin MVIIC and ω-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse.These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals.  相似文献   

8.
Smith AB  Motin L  Lavidis NA  Adams DJ 《Neuroscience》2000,95(4):1121-1127
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals.  相似文献   

9.
Modulation of inhibitory synaptic potentials in the piriform cortex. Intracellular recordings from pyramidal neurons in brain slice preparations of the piriform cortex were used to test results from a computational model about the effects of cholinergic agonists on inhibitory synaptic potentials induced by stimulation of afferent fibers in layer Ia and association/intrinsic fibers in layer Ib. A simple model of piriform cortex as an associative memory was used to analyze how suppression of inhibitory synaptic transmission influenced performance of the network. Levels of suppression of excitatory synaptic transmission were set at levels determined in previous experimental work. Levels of suppression of inhibitory synaptic transmission were then systematically varied within the model. This modeling work demonstrated that suppression of inhibitory synaptic transmission in layer Ib should be stronger than suppression of inhibitory synaptic transmission in layer Ia to keep activity levels high enough for effective storage. Experimental data showed that perfusion of the cholinergic agonist carbachol caused a significant suppression of inhibitory postsynaptic potentials (IPSPs) in the pyramidal neurons that were induced by stimulation of layer Ib, with a weaker effect on IPSPs induced by stimulation of layer Ia. As previously described, carbachol also selectively suppressed excitatory postsynaptic potentials (EPSPs) elicited by intrinsic but not afferent fiber stimulation. The decrease in amplitude of IPSPs induced by layer Ib stimulation did not appear to be directly related to the decrease in EPSP amplitude induced by layer Ib stimulation. The stimulation necessary to induce neuronal firing with layer Ia stimulation was reduced in the presence of carbachol, whereas that necessary to induce neuronal firing with layer Ib stimulation was increased, despite the depolarization of resting membrane potential. Thus physiological data on cholinergic modulation of inhibitory synaptic potentials in the piriform cortex is compatible with the functional requirements determined from computational models of piriform cortex associative memory function.  相似文献   

10.
Glycine is an inhibitory neurotransmitter activating a chloride conductance in the mammalian CNS. In vitro studies from brain slices revealed a novel presynaptic site of glycine action in the medial nucleus of the trapezoid body (MNTB) which increases the release of the excitatory transmitter glutamate from the calyx of Held. Here, we investigate the action of glycine on action potential firing of single MNTB neurons from the gerbil under acoustic stimulation in vivo. Iontophoretic application of the glycine receptor antagonist strychnine caused a significant decrease in spontaneous and sound-evoked firing rates throughout the neurons' excitatory response areas, with the largest changes at the respective characteristic frequency (CF). The decreased firing rate was accompanied by longer and more variable onset latencies of sound-evoked responses. Outside the neurons' excitatory response areas, firing rates increased during the application of strychnine due to a reduction of inhibitory sidebands, causing a broadening of frequency tuning. These results indicate that glycine enhances the efficacy for on-CF stimuli, while simultaneously suppressing synaptic transmission for off-CF stimuli. These in vivo results provide evidence of multiple excitatory and inhibitory glycine effects on the same neuronal population in the mature mammalian CNS.  相似文献   

11.
We report functional neuronal and synaptic transmission properties in Drosophila CNS neurons. Whole cell current- and voltage-clamp recordings were made from dorsally positioned neurons in the larval ventral nerve cord. Comparison of neuronal Green Fluorescent Protein markers and intracellular dye labeling revealed that recorded cells consisted primarily of identified motor neurons. Neurons had resting potentials of -50 to -60 mV and fired repetitive action potentials (APs) in response to depolarizing current injection. Acetylcholine application elicited large excitatory responses and AP bursts that were reversibly blocked by the nicotinic receptor antagonist D-tubocurarine (dtC). GABA and glutamate application elicited similar inhibitory responses that reversed near normal resting potential and were reversibly blocked by the chloride channel blocker picrotoxin. Multiple types of endogenous synaptically driven activity were present in most neurons, including fast spontaneous synaptic events resembling unitary excitatory postsynaptic currents (EPSCs) and sustained excitatory currents and potentials. Sustained forms of endogenous activity ranged in amplitude from smaller subthreshold "intermediate" sustained events to large "rhythmic" events that supported bursts of APs. Electrical stimulation of peripheral nerves or focal stimulation of the neuropil evoked sustained responses and fast EPSCs similar to endogenous events. Endogenous activity and evoked responses required external Ca(2+) and were reversibly blocked by dtC application, indicating that cholinergic synaptic transmission directly underlies observed activity. Synaptic current amplitude and frequency were reduced in shibire conditional dynamin mutants and increased in dunce cAMP phosphodiesterase mutants. These results complement and advance those of recent functional studies in Drosophila embryonic neurons and demonstrate the feasibility of in-depth synaptic transmission and plasticity studies in the Drosophila CNS.  相似文献   

12.
Xiao J  Wang Y  Wang SR 《Neuroscience》1999,90(3):1061-1067
The present paper using microiontophoresis analysis describes transmitters and their receptor subtypes used in retinotectal and isthmotectal transmission, and suggests several modes converging retinotectal and isthmotectal afferents on tectal neurons in toads (Bufo bufo gargarizans). Neuronal responses of tectal cells were extracellularly recorded to both visual stimulation and electrical stimulation of the nucleus isthmi, and effects of glutamatergic, cholinergic, GABAergic and glycinergic antagonists on these responses examined. Visual responses in 80% of tectal cells were reversibly blocked by the N-methyl-D-aspartate antagonist 3-Rs-2-carboxypiperazin-4-yl-propyl-1-phosphonic acid, and those of the remaining 20% of cells by the muscarinic antagonist atropine, suggesting that there may be at least two kinds of retinotectal synapse that use glutamate and N-methyl-D-aspartate receptors, and acetylcholine and muscarinic receptors, respectively. Electrical stimulation of the nucleus isthmi elicited excitatory responses in 67% of tectal cells, excitatory-inhibitory responses in 16% of cells, and inhibitory responses in 17% of cells examined. The excitatory responses were reversibly abolished by atropine, but not affected by either 3-Rs-2-carboxypiperazin-4-yl-propyl-1-phosphonic acid or the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, whereas the inhibitory responses were released by the GABA receptor A antagonist bicuculline, but not influenced by the GABA receptor B antagonist 2-hydroxysaclofen and glycinergic antagonist strychnine. Excitatory and inhibitory components in the excitatory-inhibitory responses were blocked by atropine and bicuculline, respectively. It appears that glutamatergic and cholinergic afferents from the retina, and cholinergic and GABAergic afferents from the nucleus isthmi may converge on tectal neurons in at least five modes of synaptic connections, in agreement with the heterogeneous populations of tectal cells in amphibians.  相似文献   

13.
Substance P in low concentrations (10-7 M) activates rat cerebellar neurons (in slices), while in high concentrations (10-6 and 10-5 M) this compound causes a biphasic response (excitation-inhibition). Substance P probably acts as the excitatory neurotransmitter in the cerebellum and produces modulatory effects (triggering and facilitation) on cerebellar cholinergic structures. Substance P reactivates cholinergic excitatory processes, while acetylcholine prevents substance P-induced inhibitory phase. The data suggest that the modulatory effects of substance P are realized via the feedback mechanisms.  相似文献   

14.
Substance P in low concentrations (10?7 M) activates rat cerebellar neurons (in slices), while in high concentrations (10?6 and 10?5 M) this compound causes a biphasic response (excitation-inhibition). Substance P probably acts as the excitatory neurotransmitter in the cerebellum and produces modulatory effects (triggering and facilitation) on cerebellar cholinergic structures. Substance P reactivates cholinergic excitatory processes, while acetylcholine prevents substance P-induced inhibitory phase. The data suggest that the modulatory effects of substance P are realized via the feedback mechanisms.  相似文献   

15.
Summary Extracellular single-neuron recordings were obtained from electrophysiologically identified nigrostriatal neurons in chloral hydrate anesthetized rats, in order to test the hypothesis that excitatory amino acid receptors are involved in responses of these neurons to electrical stimulation of the pontine region where the pedunculopontine nucleus (PPN) is located. The effects of iontophoretic application of excitatory amino acids and their antagonists as well as of cholinergic antagonists were tested on the fast orthodromic excitation of nigrostriatal neurons evoked by stimulation of the PPN region. The N-methyl-D-aspartate (NMDA) receptor antagonist D-a-aminoadipic acid as well as the cholinergic receptor antagonists mecamylamine and atropine failed to suppress the synaptic excitation of nigral neurons. The NMDA receptor antagonist DL-2-amino-5-phosphonovalerate exerted a weak depressant action on the synaptic response in a few neurons only. On the contrary, the broad spectrum antagonists of excitatory amino acid receptors kynurenic acid and gamma-Dglutamyl-amino-methyl-sulphonate were found to block simultaneously both the synaptic excitation and the neuronal responses to iontophoretic pulses of glutamate while leaving unaffected the neuronal responses to local application of acetylcholine or carbachol. The competitive antagonist of non-NMDA receptors 6-cyano-2,3-dihy-droxy-7-nitro-quinoxaline suppressed the synaptic excitation at ejection currents which antagonized neuronal responses to quisqualate and kainate. These results suggest that PPN excitatory fibers synapsing onto pars compacta nigrostriatal neurons utilize an excitatory amino acid as a synaptic transmitter acting preferentially on non-NMDA receptors.  相似文献   

16.
Neuronal activity is critical for many aspects of brain development. It has often been assumed that the primary excitatory transmitter driving this activity is glutamate. In contrast, we report that during early development, synaptic release of GABA, the primary inhibitory neurotransmitter in the mature brain, is not only excitatory but in addition plays a more robust role than glutamate in generating spike activity in mouse hypothalamic neurons. Based on gramicidin perforated whole cell and extracellular recording, which leave intracellular Cl(-) unperturbed in brain slices and cultures, the GABA(A) receptor antagonist bicuculline induced a dramatic decrease in spike frequency (83% decrease) in developing neurons, three times greater than that generated by glutamate receptor antagonists 2-amino-5-phosphono-pentanoic acid and 6-cyano-7-nitroquinoxalene-2,3-dione. Thus a number of factors related to spike-dependent stabilization of neuronal connections, including Hebbian mechanisms, that are generally applied to glutamate transmission may also participate in stabilization of GABA circuits.  相似文献   

17.
目的:研究内源性神经肽神经降压素(neurotensin,NT)在脊髓背角胶状质(substantia gelatinosa,SG)内对突触前神经递质释放的影响。方法:采用全细胞电压膜片钳记录方法,在脊髓薄片上观察NT对SG内微小兴奋性突触后电流(mEPSCs)和微小抑制性突触后电流(mIPSCs)的频率和幅值的影响。结果:(1)灌流NT(2μmol/L)对SG内神经元mEPSCs的频率和幅值均无明显影响,说明NT不影响SG内兴奋性神经递质的释放;(2)灌流NT(2μmol/L)能增加SG内神经元mIPSCs的频率,但对幅值无明显影响,即NT可引起突触前抑制性神经递质的释放增加,但对突触后神经元无明显影响。结论:NT可通过增加SG内抑制性神经递质释放的途径抑制伤害性信息的传递,从而实现镇痛效应。  相似文献   

18.
Smith AB  Cunnane TC 《Neuroscience》1999,94(3):891-896
An electropharmacological analysis of the type(s) of calcium channel controlling neurotransmitter release in preganglionic sympathetic nerve terminals in the guinea-pig anterior pelvic ganglion has been carried out. Conventional intracellular recording techniques were used to record excitatory postsynaptic potentials as a measure of neurotransmitter release. Excitatory postsynaptic potentials were abolished by hexamethonium (30-100 microM) and are therefore mediated by acetylcholine acting at nicotinic receptors. In studies of more than 150 cells, the N-type calcium channel blocker omega-conotoxin GVIA (100-300 nM) failed to block the initiation of the nerve impulse by the excitatory postsynaptic potential. In single-cell studies, omega-conotoxin GVIA (1 microM) sometimes altered the configuration of the excitatory postsynaptic potential/cell body nerve action potential complex, but on only one occasion was the excitatory postsynaptic potential reduced below the threshold required to initiate the action potential. Nifedipine (10 microM), omega-agatoxin IVA (100 nM) and omega-conotoxin MVIIC (300 nM), applied alone or in combination with omega-conotoxin GVIA (300 nM), were also ineffective. However, excitatory postsynaptic potentials evoked by trains of stimuli (0.1-0.5 Hz) were markedly reduced or abolished by the non-specific calcium channel blocker omega-grammotoxin SIA (300 nM). When trains of stimuli were delivered at higher frequencies (4 Hz), the block induced by omega-grammotoxin SIA could be overcome, and excitatory postsynaptic potentials were able to initiate action potentials even when omega-conotoxin GVIA, omega-agatoxin IVA and omega-conotoxin MVIIC were also present. The calcium channel(s) controlling acetylcholine release was (were) blocked by low concentrations of cadmium ions (30 microM) at all stimulation frequencies studied (0.1-50 Hz). Thus, the dominant calcium channels controlling acetylcholine release in sympathetic ganglia are not the L, N, P or Q types. At low frequencies of stimulation, omega-grammotoxin SIA-sensitive calcium channels play a dominant role in acetylcholine release, but at higher stimulation frequencies yet another pharmacologically distinct calcium channel (or subtype) supports neurotransmitter release.  相似文献   

19.
The nervous control of the retractor penis muscle (rp) was investigated in the anaesthetized goat. Also, isolated field stimulated strips of the muscle were studied. The noradrenaline (NA) and acetylcholine (ACh) content of the rp was determined, and histochemistry for adrenergic and acetylcholinesterase (AChE) positive nerves was performed. The muscle exhibited spontaneous activity that persisted after section of all nerves. There was, however, also a tendency of the activity to follow the general vasomotor tone, which disappeared after section of the sympathetic chains. The excitatory adrenergic nerves which innervate the muscle come from the sympathetic chains and run along the pudendal, the hypogastric and the pelvic nerves. The rp has a dense network of adrenergic fibres and is very sensitive to excitatory adrenergic stimulation. It has a fairly large NA content, which is higher in old goats (5.95 ± 0.42 μg g-1) than in young goats (2.87 ± 0.78 μg g-1). Inhibitory non-adrenergic non-cholinergic (NANC) innervation reaches it via the pelvic and the hypogastric nerves. The maximum inhibitory response is reached at low frequencies (2–4 Hz). Cholinergic prejunctional inhibition of the excitatory response to sympathetic chain stimulation was effected by simultaneous stimulation of the hypogastric nerves. In vitro experiments confirmed the presence of endogenous cholinergic muscarinic suppression of the excitatory adrenergic neurotransmission. Significant amounts of ACh (0.81 7 plusmn; 0.18 μg g-1) are present in the muscle, and it contains strongly AChE positive nerve fibres and nerve cell bodies. It is concluded that the goat rp is innervated by sympathetic adrenergic excitatory nerves and parasympathetic NANC inhibitory nerves. It further has a direct sympathetic inhibitory NANC innervation, and an indirect inhibitory cholinergic innervation which at least in part is sympathetic.  相似文献   

20.
A L Willard  R Nishi 《Neuroscience》1985,16(1):213-221
We have used intracellular recordings to study synaptic interactions between myenteric neurons grown in dissociated cell culture. Intracellular stimulation of individual myenteric neurons caused several types of synaptic effects in nearby neurons: fast excitatory synaptic potentials mediated by nicotinic acetylcholine receptors; slow, non-cholinergic synaptic potentials; dual transmission having both fast cholinergic and slow non-cholinergic components and inhibition of spontaneously occurring fast nicotinic synaptic potentials. Fast nicotinic synaptic potentials were elicited by about 40% of neurons tested and often occurred spontaneously. The fast synaptic potentials were similar to those that have been studied in other autonomic neurons with respect to their estimated reversal potential and their sensitivity to cholinergic antagonists. The amplitudes of the fast synaptic potentials declined if evoked at frequencies greater than 0.5 Hz. Potentiation of the fast synaptic potentials was observed following high-frequency stimulation of presynaptic neurons. Several transmitter candidates modulated fast cholinergic transmission. Substance P and vasoactive intestinal peptide promoted nicotinic transmission by causing increased amplitudes of evoked and spontaneous fast synaptic potentials and an increased frequency of spontaneous synaptic potentials. gamma-Aminobutyrate and [Met]enkephalin both caused decreased amplitudes and frequency of nicotinic synaptic potentials. Serotonin depressed synaptic potentials in some neurons while enhancing them or having no effect in others. Slow, non-cholinergic, synaptic potentials were elicited by about 10% of neurons tested. These synaptic effects lasted 15-300s, caused depolarizations of 3-15 mv and were accompanied by increased neuronal input resistance. The transmitter(s) causing these slow synaptic potentials has not yet been identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号