首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
Although numerous studies have examined the effects of neurotrophin treatment following spinal cord injury, few have examined the changes that occur in the neurotrophin receptors following either such damage or neurotrophin treatment. To determine what changes occur in neurotrophin receptor expression following spinal cord damage, adult rats received a midthoracic spinal cord hemisection alone or in combination with intrathecal application of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Using immunohistochemical and in situ hybridization techniques, p75, trkA, trkB, and trkC receptor expression was examined throughout the spinal cord. Results showed that trkA, full-length trkB, and trkC receptors were not present in the lesion site but had a normal expression pattern in uninjured parts of the spinal cord. In contrast, p75 receptor expression occurred on Schwann cells throughout the lesion site. BDNF and NT-3 (but not saline) applied to the lesion site increased this expression. In addition, the truncated trkB receptor was expressed in the border between the lesion and intact spinal cord. Truncated trkB receptor expression was also increased throughout the white matter ipsilateral to the lesion and BDNF (but not NT-3 or saline) prevented this increase. The study is the first to show changes in truncated trkB receptor expression that extend beyond the site of a spinal cord lesion and is one of the first to show that BDNF and NT-3 affect Schwann cells and/or p75 expression following spinal cord damage. These results indicate that changes in neurotrophin receptor expression following spinal cord injury could influence the availability of neurotrophins at the lesion site. In addition, neurotrophins may affect their own availability to damaged neurons by altering the expression of the p75 and truncated trkB receptor.  相似文献   

2.
To understand the dependence of primary sensory neurons on neurotrophic factors, we examined the distribution and colocalization of mRNAs for receptors of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) family ligands in dorsal root ganglion (DRG) and nodose ganglion (NG) neurons of adult rats by in situ hybridization (ISH) histochemistry using serial sections. About 35, 10, and 20% of the lumbar DRG neurons expressed trkA, trkB and trkC mRNAs, respectively. Messenger RNA signals for c-ret, a common signaling receptor of GDNF family ligands, were seen in about 60% of DRG neurons, and some of these neurons expressed trkA, trkB, or trkC mRNAs. Most (97%) of the DRG neurons observed were positive to at least one of these four mRNAs. About 50, 20, and 20% of DRG neurons expressed GDNF family receptor alpha1 (GFR alpha1), GFR alpha2, and GFR alpha3 mRNAs, respectively, and most of these neurons were positive to c-ret mRNA. Interestingly, GFR alpha2 and GFR alpha3 mRNA signals were frequently seen in the same neurons, which lack GFR alpha1 mRNA signals. On the other hand, 98% of NG neurons expressed trkB mRNA and 30-40% of NG neurons co-expressed c-ret and GFR alpha1 mRNAs. However, mRNA signals for other receptors (TrkA, TrkC, GFR alpha2, GFR alpha3) were seen in only a few NG neurons. These findings suggest that all the DRG neurons in adult rats depend on at least one of the NGF and GDNF family ligands, and that some DRG neurons depend on two ligands or more. In contrast, NG neurons were suggested to be divided into two major groups; one group depends on brain-derived neurotrophic factor (BDNF)/neurotrophin-4/5 (NT-4/5), and the other depends on both BDNF/NT-4/5 and GDNF.  相似文献   

3.
Neurotrophins exert effects on sensory neurons through receptor tyrosine kinases (trks) and a common neurotrophin receptor (p75). Quantitative in situ hybridization studies were performed on serial sections to identify neurons expressing single or multiple neurotrophin trk receptor mRNA(s) in adult lumbar dorsal root ganglion (DRG) in order to examine the possibility of multi-neurotrophin modulation of phenotype via different trk receptors or various trk isoforms. Expression of mRNA encoding trkA, trkB, trkC, or p75 is restricted to select subpopulations representing approximately 41%, 33%, 43%, and 79% of DRG neurons, respectively. Colocalization studies reveal that approximately 10% of DRG neurons coexpress trkA and trkB mRNA; 19% coexpress trkA and trkC mRNA; and 18% coexpress trkB and trkC mRNA. Trilocalization of all three trk mRNAs is rare, with approximately 3-4% of neurons in this category. Overall incidence of expression of more than one full length trk mRNA occurs in approximately 40% of DRG neurons, whereas expression of individual trk mRNA is found in approximately 34%. Full length trk receptor mRNA is rarely detected without p75, implicating the latter in neuronal response to neurotrophins. Examination of two full-length isoforms of trkA reveal that they are coexpressed with relative levels of expression positively correlated. TrkC mRNAs corresponding to 14- or 39-amino acid insert isoforms colocalize with the non-insert trkC isoform, but the converse is not necessarily true. The data suggest that substantial subpopulations of adult sensory neurons may be modulated through interactions with multiple neurotrophins, the consequences of which are largely unknown.  相似文献   

4.
Aging is accompanied by declined sensory perception, paralleled by widespread dystrophic and degenerative changes in both central and peripheral sensory pathways. Several lines of evidence indicate that neurotrophic interactions are of importance for a maintained plasticity in the adult and aging nervous system, and that changes in the expression of neurotrophins and/or their receptors may underpin senile neurodegeneration. We have here examined the expression of neurotrophin receptor (p75NTR, trkA, trkB, and trkC) mRNA and protein in intact and axotomized primary sensory neurons of young adult (3 months) and aged (30 months) rats. To examine possible differences among primary sensory neuron populations, we have studied trigeminal ganglia (TG) as well as cervical and lumbar dorsal root ganglia (DRG). In intact aged rats, a decrease in trk (A/B/C) mRNA labeling densities and protein-like immunoreactivities was observed. The decrease was most pronounced in lumbar DRG. In contrast, a small, not statistically significant, increase of p75NTR expression was observed in aged DRG neuron profiles. After axotomy, a down-regulation of mRNA and protein levels was observed for all neurotrophin receptors (p75NTR, trkA, trkB and trkC) in both young adult and aged rats. Consistent with the higher expression levels of neurotrophin receptors in unlesioned young adult primary sensory neurons, the relative effect of axotomy was more pronounced in the young adult than aged rats. Although a decrease in mean cell profile cross-sectional areas was found during aging and after axotomy, the characteristic distribution of neurotrophin receptor expression in different populations of NRG neurons was conserved. The present findings suggest an attenuation of neurotrophic signaling in primary sensory neurons with advancing age and that the expression of p75NTR and trks is regulated differently during aging. A similar dissociation of p75NTR and trk regulation has previously been reported in other neuronal systems during aging, suggesting that there may be a common underlying mechanism. Decreased access to ligands, disturbed axon function and systemic changes in androgen/estrogen levels are discussed as inducing and/or contributing factors.  相似文献   

5.
Nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, designated neurotrophins, are a family of neurotrophic factors, having important functions in the survival of embryonic and adult neuronal subpopulations. Through the trk family of receptors, these neurotrophins utilize phosphotyrosine-mediated signal transduction. We have used RT-PCR to detect the expression of mRNA for the above neurotrophins and their respective receptors, namely trkA, trkB and trkC in embryonic stages 1–8 of chicken development. While trkA and trkC mRNAs were expressed from stage 1 onwards, NGF and NT-3 mRNAs were expressed only at stages 3 and 5, respectively. In contrast, BDNF mRNA was expressed at stage 1, being the only neurotrophin expressed prior to expression of its respective receptor trkB. However, the latter was not expressed until stage 8. These results indicate an earlier expression of some but not all trk proto-oncogenes, suggesting that the two different receptor mRNAs expressed i.e. trkA and trkC in conjunction with BDNF, at stage 1, may act in aspects of very early embryonic development, such as gastrulation. Thereafter, mRNAs for trkB, NGF and NT-3 are expressed reflecting their later action in early embryonic development.  相似文献   

6.
7.
8.
Neurotrophin-3 (NT-3) binds to multiple trks, not only its initially identified receptor trkC. Recent studies in our laboratory show that NT-3 negatively regulates nociceptive phenotype associated with the trkA subpopulation. Due to the extensive overlap in trkA and trkC expression it is uncertain whether there is a direct influence of NT-3 on trkA in adult sensory neurons. Thus, the aim of this study was to examine whether NT-3 might alter trkA and associated neuronal phenotype outside of the trkC subpopulation. The effect of a seven-day intrathecal infusion of NT-3 on intact, uninjured adult rat dorsal root ganglion neurons was investigated. Serial sections were processed for receptor radioautography or in situ hybridization to identify and colocalize neurons expressing high-affinity nerve growth factor (NGF) binding sites, substance P (SP), trkC, or trkA mRNAs and to examine the influence of NT-3 on these populations. NT-3 does not appear to alter trkC expression, but evokes a notable reduction in trkA, high-affinity NGF binding sites, and SP levels. It is unlikely that signalling by trkC greatly influences this response because the down-regulation of SP occurs most notably in trkA neurons that lack trkC. Moreover, we have shown here that message levels of two trkA isoforms are differentially modulated by NT-3; infusion results in greater down-regulation of the noninsert containing isoform. These findings suggest a clinically relevant role for NT-3 as an antagonist to NGF, but also raise the caution that not just trkC-positive neurons are influenced following exposure to the neurotrophin.  相似文献   

9.
We have investigated the distribution of NMDA and neurotrophin receptor systems and their reciprocal interactions in post-synaptic densities (PSD) purified from spinal cord. NMDA receptor subunits, trkA and trkB, but not trkC, were present in spinal cord PSD. The incubation of PSD with BDNF and NGF induced the phosphorylation of NR2A and B subunits. This phosphorylation was counteracted by antibodies directed against the catalytic domain of trkA and trkB receptors and by genistein. These results suggest the existence of a previously unexplored cross-talk between neurotrophins and NMDA receptors in rat spinal cord neurons.  相似文献   

10.
Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4, and five neurotrophin receptors, trkA, trkB, trkC, p75, and truncated trkB (Trn-B) in single sensory neurons of the adult rat geniculate ganglion associated with the five innervation fields. For fungiform papillae, a glass pipette containing biotinylated dextran was placed over the target papilla and the tracer was iontophoresed into the target papilla. For the other target fields, Fluoro-Gold was microinjected. After 3 days, geniculate ganglia were harvested, sectioned, and treated histochemically (for biotinylated dextran) or immunohistochemically (for Fluoro-Gold) to reveal the neurons containing the tracer. Single labeled neurons were harvested from the slides and subjected to RNA amplification and RT-PCR to reveal the neurotrophin or neurotrophin receptor genes that were expressed. Neurons projecting from the geniculate ganglion to each of the five target fields had a unique expression profile of neurotrophin and neurotrophic receptor genes. Several individual neurons expressed more than one neurotrophin receptor or more than one neurotrophin gene. Although BDNF is significantly expressed in taste buds, its primary high affinity receptor, trkB, was not prominently expressed in the neurons. The results are consistent with the interpretation that at least some, perhaps most, of the trophic influence on the sensory neurons is derived from the neuronal somata, and the trophic effect is paracrine or autocrine, rather than target derived. The BDNF in the taste bud may also act in a paracrine or autocrine manner on the trkB expressed in taste buds, as shown by others.  相似文献   

11.
The purpose of the present study was to identify any compensatory changes at the site of chronic compression of the spinal cord and neighboring segments. For this purpose, serial immunohistochemical and immunoblot analyses were performed for the expression levels of endogenous brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-3, and their receptors, trkB and trkC in 24 tip-toe walking Yoshimura mice (twy/twy) aged 12-24 weeks. The twy mouse exhibits spontaneous calcified deposits posteriorly at the C1-C2 level, compressing the spinal cord. Immunoreactivities for BDNF, NT-3, trkB and trkC were preferentially localized in the gray matter, particularly in the anterior horn cells. In 24-week-old twy mice with severe compression, expression levels of these neurotrophins at the site of maximal compression were significantly lower than at the less- or non-compressed sites. In contrast, the expression levels of BDNF, NT-3, trkB and trkC were significantly higher at the rostral and caudal sites immediately adjacent to the maximal compression site. No such changes were noted in 12-week-old twy mice or in control Institute of Cancer Research mice. Our results suggest that overexpression of BDNF, NT-3, trkB and trkC in motoneuron areas neighboring the site of mechanical compression may represent compensatory changes in response to the compromised neuronal function at the level of compression, and that these proteins possibly contribute to neuronal survival and plasticity.  相似文献   

12.
Regionally specific effects of BDNF on oligodendrocytes   总被引:3,自引:0,他引:3  
To define the effects of neurotrophins on oligodendrocytes, we monitored NGF, BDNF and NT-3 actions on basal forebrain (BF) and cortical populations. NGF, BDNF and NT-3 applied to BF oligodendrocytes elicited increases in expression of myelin basic protein (MBP) and enhanced the numbers of MBP+ cells, without affecting total cell numbers. In the cortex, however, while NGF and NT-3 influenced MBP expression, BDNF was without effect. To explore this apparent regional difference in BDNF action, we compared expression of the neurotrophin receptors trkA, trkB and trkC. While BF cells expressed all three trks, cortical cells did not express the full-length BDNF receptor, trkB. Interestingly, in no case was any receptor expressed by all oligodendrocytes, indicating that oligodendrocytes may be heterogeneous within a brain region. The data suggest that BF oligodendrocytes are influenced by BDNF to express MBP and are distinct in this ability from cortical cells.  相似文献   

13.
The nerve growth factor family of receptors.   总被引:41,自引:0,他引:41  
The neurotrophins, of which nerve growth factor (NGF) is the best known example, support the survival and differentiation of chick embryo sensory neurons at extremely low concentrations, 10(-12) M or less. These same neurons display two different classes of neurotrophin receptors with dissociation constants of 10(-11) M and 10(-9) M, respectively, implying that only low occupancy of the higher affinity receptor is required to mediate the biological actions of the neurotrophins. Two structurally unrelated receptors have now been characterized for NGF, and one of them, p75NGFR, serves as a receptor for all the known neurotrophins. This is the receptor with a dissociation constant of 10(-9) M. The second NGF receptor is a member of the trk family of tyrosine kinase receptors, p140trkA. Other members, p145trkB and p145trkC, are receptors for brain-derived neurtrophic factor (BDNF) and neurotrophin-4 (NT-4) and neurotrophin-3 (NT-3), respectively, when assayed in fibroblasts. The specificity of neurotrophin binding to these receptors appears to be much higher in neurons than in the non-neuronal cells. The receptor p140trkA has many of the properties of the higher affinity class of NGF receptors, and is able to mediate survival and differentiation of the PC12 cell line, and cell growth and transformation in fibroblast cells. On the other hand, expression of p75NGFR in several types of cells displaying p140trkA induces a component of higher affinity NGF binding not seen in its absence. Since it is unlikely that p75NGFR and p140trkA interact at the level of the receptors, the crosstalk between receptors probably occurs through their signal transduction mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
(±)3,4-Methylenedioxymethamphetamine (MDMA), a widely used drug of abuse, rapidly reduces serotonin levels in the brain when ingested or administered in sufficient quantities, resulting in deficits in complex route-based learning, spatial learning, and reference memory. Neurotrophins are important for survival and preservation of neurons in the adult brain, including serotonergic neurons. In this study, we examined the effects of MDMA on the expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their respective high-affinity receptors, tropomyosin receptor kinase (trk)B and trkC, in multiple regions of the rat brain. A serotonergic-depleting dose of MDMA (10 mg/kg × 4 at 2-hour intervals on a single day) was administered to adult Sprague-Dawley rats, and brains were examined 1, 7, or 24 hours after the last dose. Messenger RNA levels of BDNF, NT-3, trkB, and trkC were analyzed by using in situ hybridization with cRNA probes. The prefrontal cortex was particularly vulnerable to MDMA-induced alterations in that BDNF, NT-3, trkB, and trkC mRNAs were all upregulated at multiple time points. MDMA-treated animals had increased BDNF expression in the frontal, parietal, piriform, and entorhinal cortices, increased NT-3 expression in the anterior cingulate cortex, and elevated trkC in the entorhinal cortex. In the nigrostriatal system, BDNF expression was upregulated in the substantia nigra pars compacta, and trkB was elevated in the striatum in MDMA-treated animals. Both neurotrophins and trkB were differentially regulated in several regions of the hippocampal formation. These findings suggest a possible role for neurotrophin signaling in the learning and memory deficits seen following MDMA treatment.  相似文献   

15.
The neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their cognate receptors, trkB and trkC, have a variety of physiological brain functions, ranging from cell survival to mechanisms involved in learning and memory and long-term potentiation (LTP). LTP can be induced in the cortex and hippocampus, as well as within the amygdala. However, the role of neurotrophins in amygdalar LTP is largely unknown. Expression patterns of BDNF and NT-3 and their cognate receptors in the adult mouse amygdala have not been analyzed in detail. We have therefore examined the expression of trkB, trkC, BDNF, and NT-3 mRNA and protein in different amygdalar nuclei as well as in the hippocampal areas CA1-CA3 and the dentate gyrus. The distribution pattern of trkB, trkC, BDNF, and NT-3 mRNA in the murine hippocampus is comparable to that seen in rats. Within most amygdalar nuclei, a moderate BDNF mRNA expression was found; however, BDNF mRNA was virtually absent from the central nucleus. No expression of NT-3 mRNA was found within the amygdala, but trkC mRNA-expressing cells were widely distributed within this brain region. trkB mRNA was strongly expressed in the amygdala. Because trkB is expressed in a full-length and a truncated form (the latter form is also expressed by nonneuronal cells), we also investigated the distribution of full-length trkB mRNA-expressing cells and could demonstrate that this version of trkB receptors is also widely expressed in the amygdala. These results can serve as a basis for studies elucidating the physiological roles of these receptors in the amygdala.  相似文献   

16.
The microinjection of nerve growth factor (NGF) and neurotrophin-3 (NT-3) into the rostral pontine tegmentum of adult cats rapidly induces long-lasting episodes of rapid eye movement (REM) sleep [J. Yamuy, F.R. Morales, M.H. Chase, Induction of rapid eye movement sleep by the microinjection of nerve growth factor into the pontine reticular formation of the cat, Neuroscience 66 (1995) 9-13]. Because this effect may be mediated by neurotrophin receptors, we sought to determine the distribution of neurons that contain low- and high-affinity neurotrophin receptors in regions of the feline pons and mesencephalon which are involved in the generation of REM sleep as well as neuronal groups that are involved in the control of REM sleep-related patterns of physiological activity. Using antibodies directed against p75, trkA, trkB and trkC, immunolabeled neurons were present in the latero-dorsal and pedunculo-pontine tegmental nuclei, the peribrachial nuclei, medial and lateral pontine reticular formation, the raphe nuclei, and the locus coeruleus. Giant reticular cells and large neurons in the mesencephalic trigeminal nucleus were immunoreactive for p75 and all trk receptors. Neurons that were devoid of neurotrophin-receptor immunoreactivity were intermingled with immunostained neurons in all explored structures. Thus, both low- and high-affinity neurotrophin receptors are conspicuously present in neurons located in mesopontine regions of adult cats. These data underscore the importance of neurotrophin-induced trophic actions on mesopontine neurons. Furthermore, the results support the hypothesis that NGF and NT-3 may modulate the electrical activity of neurons in the rostral pontine tegmentum that are responsible for the generation of REM sleep by acting on one or more of the neurotrophin receptors.  相似文献   

17.
Prior to the onset of hearing, synchronous cellular, neuronal, and morphogenetic processes participate in the development of a functional cochlea. We have studied the expression of different splice forms of trkB and trkC as well as p75(NGFR) in rat and mouse cochlea within this critical developmental period, using in situ hybridization, PCR, Northern blotting, and immunohistochemical analyses. An antibody to full-length trkB receptors proved to detect full-length trkB receptors as well as truncated trkB.T2 but not trkB. T1 isoforms. Full-length trkB and trkC isoforms as well as trkB.T2 but not trkB.T1 receptors were noted in cochlear neurons. A transient expression of trkB.T1 and trkB.T2 was observed at the epithelial-mesenchymal border of the spiral ligament during this time. A sequential appearance of trkB.T1, the low-affinity neurotrophin receptor p75(NGFR), and trkB.T2 in epithelial cochlear cells correlated with the formation of the inner sulcus of the organ. A differential expression of presumptive trkB.T2 in hair and supporting cells was observed concomitant with the maturation of the distinct innervation pattern of these cells. A gradual shift from p75(NGFR) to truncated trkC receptors in Pillar cells occurred during the formation of the tunnel of Corti. A distinct expression of full-length trkC correlated with the time of differentiation of the stria vascularis. Finally, an expression of trkB.T1 and trkB.T2 in oligodendrocytes, full-length trkB and trkC in nerve fibers, and p75(NGFR) in Schwann cells was noted at the glial interface of the VIIIth nerve during the establishment of the glial transition zone. These various transitory neurotrophin receptor expression patterns, which were related to final maturation processes of the cochlea, may provide new insights into the as yet obscure role of neurotrophin receptors in nonneuronal tissue.  相似文献   

18.
An increasing number of observations suggests an important and complex role for both high- (tyrosine kinase receptor, trk) and low- (p75) affinity neurotrophin receptors (NTRs) during development in human brain. In the present study, the cell-specific distribution of NTRs was studied in different developmental lesions, including focal cortical dysplasia (FCD, n=15), ganglioglioma (GG, n=15) and dysembryoplastic neuroepithelial tumors, (DNT, n=10), from patients with medically intractable epilepsy. Lesional, perilesional, as well as normal brain regions were examined for the expression of trkA, trkB, trkC and p75NTR by immunocytochemistry. In normal postmortem human cortex, immunoreactivity (IR) for trk and p75NTR was mainly observed in pyramidal neurons, whereas no notable glial IR was found within the white matter. All three trk receptors were encountered in high levels in the neuronal component of the majority of FCD, GG and DNT specimens. Strong trkA, trkB and trkC IR was found in neurons of different size, including large dysplastic neurons and balloon cells in FCD cases. In contrast, p75NTR IR was observed in only a small number of neuronal cells, which also contain trk receptors. Glial cells with astrocytic morphology showed predominantly IR for trkA in FCD and GG specimens, whereas oligodendroglial-like cells in DNT showed predominently IR for trkB. P75NTR IR was observed in a population of cells of the microglial/macrophage lineage in both FCD and glioneuronal tumors. Taken together, our findings indicate that the neuronal and the glial components of malformations of cortical development express both high- and low-affinity NTRs. Further research is necessary to investigate how activation of these specific receptors could contribute to the development and the epileptogenicity of these developmental disorders.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号