首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In vivo performance of a sol-gel glass-coated collagen   总被引:1,自引:0,他引:1  
Synthetic bioactive materials offer possibilities to repair large tissue defects. It is well known that bioactivity, angiogenesis, and inflammation are key events in implant incorporation. Using glass-coated and glass-free collagen as potential bone graft substitutes, we carried out in vitro bioactivity and an in vivo angiogenesis and inflammation studies. The in vitro study showed bioactivity when the glass-coated samples were left in SBF for 5 days. This was confirmed by FTIR results, which presented P--O vibration bands characteristic of hydroxyapatite close to 1060 cm(-1) and 600 cm(-1). The in vivo response was evaluated following subcutaneous implantation of the biomaterial in the mouse dorsa. Angiogenesis, as determined by hemoglobin content extracted from implants 7 and 14 days after implantation, increased progressively in both glass-coated and glass-free collagen implants. However, vascularization was higher in the glass-coated collagen implants 14 days after implantation (mug Hb per mg wet tissue 6.0 +/- 0.3) compared with the glass-free group (1.6 +/- 0.1). The inflammatory process, determined by the levels of myeloperoxidase and N-acetylglucosaminidase, was similar for both implants. This study shows that glass-coated collagen implants hold osteogenic and angiogenic potential and may be used in clinical conditions requiring improvement of these biological processes.  相似文献   

2.
Several factors influence the healing process and the long-term mechanical stability of cementless fixed implants, such as bone remodeling and mineralization processes. Histomorphometric and bone hardness measurements were taken in implants inserted in sheep femoral cortical bone at different times to compare the in vivo osseointegration of titanium screws (diam.; 3.5 x 7 mm length) with the following surface treatments: machined (Ti-MA); acid-etched (Ti-HF); HA vacuum plasma spray (Ti-HA); and Ca-P anodization followed by a hydrothermal treatment (Ti-AM/HA). Ti-MA and Ti-AM/HA implants presented the lowest (Ra = 0.20 +/- 0.01 microm) and highest (Ra = 1.97 +/- 0.64 microm) significant (p < 0.0005) roughness value, respectively. Bone-to-implant contact of Ti-HF was lower than that of the other surface treatments at both experimental times (8 weeks: -20%, ns; 12 weeks: -30%, p < 0.01). Significant differences in MAR (mineral apposition rate) were also found between the different experimental times for Ti-MA (115%, p < 0.01) and Ti-HF (57%, p < 0.01), demonstrating that bone growth had slowed inside the screw threads of Ti-HA and Ti-AM/HA after 12 weeks. No bone microhardness changes in preexisting host bone were found, while Ti-MA showed the lowest value for the inner thread area at 8 weeks (HV(200 microm)= 49.8 +/- 3.8 HV). These findings confirm that osseointegration may be accelerated by adequate surface roughness and bioactive ceramic coating such as Ca-P anodization followed by a hydrothermal treatment, which enhance bone interlocking and mineralization.  相似文献   

3.
The porous TiO2/perlite composite Ecopore is a synthetic biomaterial with possible clinical application in bone substitution. In our previous work, we demonstrated that surface modification of Ecopore with fibronectin (FN) enhanced spreading and growth of human osteoblasts in vitro. In the present study, we implanted untreated, alkaline-etched and FN-coated Ecopore cylinders into critical size defects of rabbit femora and applied pulsed polychrome sequence staining. After 6 weeks, sections of the implants were investigated via conventional and fluorescence microscopy. A partial ingrowth of bone matrix into the pore system of the Ecopore implants was observed. At the contact zones, the bone appeared to be directly connected to the implant without detectable gaps. Defect healing was complete within 6 weeks, while fibrous tissue generation or inflammation were absent in the implant modification groups, demonstrating basic Ecopore biocompatibility. The mean bone apposition rates within the implant cross-section were 4.1+/-0.6 microm/day (p<0.001) in the FN-coated group and 3.3+/-0.5 microm/day (p<0.05) in the NaOH-etched group. In both treated Ecopore modification groups, the apposition rates were significantly higher than in the non-modified control (2.9+/-0.6 microm/day), indicating bone growth stimulation by pre-treatment. Energy-dispersive X-ray analysis confirmed that significantly more bone tissue was formed inside the pores of the FN-coated implants compared to the unmodified control. The cross-sectional areas identified as ingrown bone amounted to 18.5+/-6.1% (p<0.05) in the FN group, 13.4+/-5.1% (p>0.05) in the NaOH-etched group and 10.2+/-5.5% in the unmodified group. In summary, we conclude that bone tissue tolerates Ecopore well and that tissue ingrowth can be enhanced by etching and coating with FN.  相似文献   

4.
The integration of hydroxyapatite-coated implants in dog femur was studied by near-infrared Fourier-transform Raman microscopy. Raman spectra were taken in lateral scans in step widths of 10-40 microm from the implant surface up to a distance of 320 microm into the bone tissue. The spectra were subjected to a component analysis for the quantitative determination of the protein and the inorganic components. This quantitative analysis is shown to be more reliable than conventional band fitting procedures and allows, for the first time, the quantitative distinction between the hydroxyapatite form of mature bone tissue and synthetic hydroxyapatite introduced by the implant coating. It is demonstrated that full mineralization of the ongrowing bone is not achieved after 6 months. In contrast, after a residence time of 18 months in the body, the Raman spectra reveal a complete calcification of the new bone tissue as indicated by content of biological hydroxyapatite that is the same as in mature bone tissue throughout the whole implant/bone interface. On the other hand, the content of synthetic hydroxyapatite is strongly reduced in the sample prepared after eighteen months implantation whereas for the shorter implantation time. substantial contributions of synthetic hydroxyapatite are found even at positions beyond the thickness of the implant coating. These results indicate that the coating material is actively involved in the mineralization of ongrowing bone. Possible mechanisms for the underlying transport processes in the implant/bone interface are discussed.  相似文献   

5.
Synthetic carbonatehydroxyapatite is the ceramic closest to the mineral component of human bone and seems, therefore, the optimum material to use in osseous implants. However, in vitro assays performed to determine its bioactivity have shown no positive results after 2 months of assay. With the aim of improving this bioactivity, a new biphasic material was synthesized composed mainly of synthetic carbonatehydroxyapatite and only 5% of a sol-gel bioactive glass. In vitro assays were assessed to determine the bioactive behavior of this new material and revealed that the addition of a minimal amount of bioactive glass is enough to induce bioactivity on synthetic carbonatehydroxyapatites.  相似文献   

6.
In vitro and in vivo behaviour of an injectable silk fibroin (SF) hydrogel was studied through osteoblast cultures and after implantation in critical-size defects of rabbit distal femurs. A commercial synthetic poly(D,L lactide-glycolide) copolymer was used as control material. In vitro biocompatibility was evaluated by measuring LDH release, cell proliferation (WST1), differentiation (ALP, OC), and synthetic activity (collagen I, TGF ss1, IL-6). Bone defect healing rate and quality of the newly formed bone inside the defects were determined in vivo by measuring trabecular bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), mineral apposition rate (MAR) and bone formation rate (BFR/B.Pm). In vitro tests indicated that both materials significantly increased cell proliferation in comparison with the negative control. A significant increase in the TGF-beta1 level was found for SF hydrogel in comparison with the control material and negative control. Both materials promoted bone healing when used to fill critical size defects in rabbit femurs. The new-formed bone of the SF hydrogel treated defects showed significantly higher BV/TV, Tb.Th, MAR and BFR/B.Pm and lower Tb.Sp values in comparison with the control gel. At 12 weeks the re-grown bone of the SF hydrogel-treated defects appeared more similar to normal bone than that of the control synthetic polymeric material-treated defects, except for the Tb.N value that differed significantly from that of normal bone (p<0.05). MAR and BFR/B.Pm presented significantly (p<0.05) higher values for SF hydrogel-treated defects in comparison with controls treated with a synthetic polymeric material, confirming that SF hydrogel accelerated remodelling processes.  相似文献   

7.
The use of polymethylmethacrylate (PMMA)-based bone cement is popular in orthopedics for the fixation of artificial joints with bone. However, it has a major problem with prostheses loosening because of coverage by fibrous tissue after long-term implantation. Recently, a bioactive bone cement has been developed that shows direct bonding to living bone through modification of PMMA resin with gamma-methacryloxypropyltrimethoxysilane (MPS) and calcium acetate. The cement is designed to exhibit bioactivity, through incorporation of silanol groups and calcium ions. Thus, it has the potential to form a layer of bone-like hydroxyapatite, which is essential for achieving direct bonding to living bone. This type of modification allows the cement to show spontaneous hydroxyapatite formation on its surface in a simulated body fluid after one day, and there is evidence of osteoconduction of the cement in rabbit tibia for periods of more than three weeks. However, the influence of the dissolved ions from the modified cement has not yet been clarified. Thus, the authors focused on the dissolution of the modified PMMA-based bone cement and its tissue response in muscle and bone by comparison with the behavior of non-modified PMMA-based bone cement. One week after implantation in the latissimus dorsi of a rabbit, the modified PMMA-based bone cement showed more inflammatory width than the commercial cement. However, four weeks after implantation, the inflammatory width of both cements was essentially the same. The osteoconductivity around the modified cement was higher than that for the conventional cement after four weeks implantation. These results indicate that the initial dissolution of calcium acetate from the modified cement to form the hydroxyapatite induced the acute inflammation around tissue, but also developed the osteoconductivity. It is suggested that the initial inflammation can be effective for inducing osteoconduction through a bone healing reaction when the material provides an environment that promotes bone formation.  相似文献   

8.
Porous and dense hydroxyapatite cylinders (PHA and DHA) were implanted into cavities produced in rat femora and the sites of implantation were examined at different times over a period of 24 weeks by microradiologic and histological techniques. Microradiographs showed the presence of a layer of trabecular bone around the implants, which became more radiopaque and thinner along the experimental time. The microradiologic methodology used was suitable for the evaluation of the interface between hydroxyapatite and newly formed bone in nondecalcified materials. Microscopic observations showed that young bone grew over the surface of both types of implants after 1 and 2 weeks of surgery and that bone also grew inside PHA implants. Progressive bone absorption was observed in both types of implants after the fourth week. A layer of fibrous tissue was formed in the interface between new bone and DHA. Mature bone with haversian systems surrounded DHA implants and filled the pores of PHA implants throughout the experimental period. The pores of PHA implants were smaller than those commonly reported, which should have been a disadvantage, although it was observed that the extra cellular fluid induced disintegration of the ceramic granules, allowing the gradual growth of bone tissue into the spaces among them, without the interposition of fibrous tissue.  相似文献   

9.
Our purpose was to evaluate the osteointegration of bilayered calcium phosphate (CaP)-coated femoral hip stems in a canine model. A first layer of hydroxyapatite (HA) 20 microm thick and a superficial layer of Biphasic Calcium Phosphate (BCP) 30 microm thick were plasma-sprayed on to the proximal region of sandblasted Ti6Al4V prostheses. Bilayered CaP-coated and non-coated canine femoral stems were implanted bilaterally under general anesthesia in 6 adult female Beagle dogs. After 6 and 12 months, a significant degradation of the bilayered coating occurred with a remainder of 33.1+/-12.4 and 23.6+/-9.2 microm in thickness, respectively. Lamellar bone apposition was observed on bilayered coated implants while fibrous tissue encapsulation was observed on non-coated femoral stems. The bone-implant contacts (BIC) were 91+/-3% and 81+/-8% for coated and 7+/-8% and 8+/-12% for non-coated implants, at 6 and 12 months, respectively. Our study supports the concept of a direct relationship between the biodegradation of CaP coating and the enhanced osteointegration of titanium prostheses. A bilayered CaP coating might therefore enhance bone apposition in the early stages because of the superior bioactivity of the BCP layer while the more stable HA layer might sustain bone bonding over long periods.  相似文献   

10.
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in bone bonding to sintered hydroxyapatite implants in rabbit tibiae. Smooth-surfaced rectangular plates (15 x 10 x 2 mm) made of sintered hydroxyapatite were implanted into the proximal metaphyses of bilateral rabbit tibiae, with TAK-778-containing sustained-release microcapsules packed into the medullary cavity in one limb and untreated microcapsules packed in the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bone bonding at the bone-implant interfaces was evaluated by a detaching test and undecalcified histological examination. The tensile failure load increased from 4 to 16 weeks for both groups; however, the tensile failure load of the TAK-778-treated group was significantly greater than that of the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding osteoinductive TAK-778 to hydroxyapatite implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish an earlier and stronger bonding of orthopedic ceramic implants between the surrounding bone tissue.  相似文献   

11.
A weight-bearing ovine model was used to quantify cancellous bone ingrowth and remodeling in porous-coated implants over 6, 12, and 24 weeks in situ. The null hypothesis for the investigation was that there would be no significant difference between the amount of cancellous bone ingrowth and rate of remodeling in this ovine model compared to a reported human bilateral implant model. Bone ingrowth progressed from 20.1 +/- 8.2% at 6 weeks in situ to 23.8 +/- 7.9% at 12 weeks, and 30 +/- 5.1% at 24 weeks. Fluorochrome analysis demonstrated a mineral apposition rate of 1.07 +/- 0.28 microm/day for bone at the porous-coating interface, whereas host bone remodeling at 0.89 +/- 0.23 microm/day. Histological analysis showed no adverse tissue or inflammatory response. The null hypothesis was supported in that regression analysis demonstrated that the amount of cancellous bone ingrowth over time (p = 0.545) and mineral apposition rate over time (p = 0.089) in this ovine model was not significantly different than reported human bilateral knee data. The results of this study appear to validate the ovine model for use in understanding skeletal attachment of porous-coated implants to cancellous bone in humans.  相似文献   

12.
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue.  相似文献   

13.
Quantification of bone ingrowth into porous block hydroxyapatite in humans.   总被引:1,自引:0,他引:1  
This study sought to quantify bone ingrowth from a single bone-implant surface into porous block hydroxyapatite used in maxillofacial applications. Seventeen maxillary hydroxyapatite implants (implant time of 4-138 months, 39-month mean) were harvested for analysis from 14 patients. The implants had been placed into the lateral maxillary wall during orthognathic surgery, juxtapositioned to the maxillary sinus. Ingrowth was measured in 100-microm increments from a bone-implant interface to a depth of 1500 microm. Bone ingrowth averaged over the 14 patients (0-1100 microm depth) is described by the equation % ingrowth - 20% * (depth in millimeters) + 41.25% (R2 = 0.98, n = 10 incremental depths). Beyond 1100 microm, the average ingrowth remained constant at 15.0 +/- 0.7%. The duration of implantation also showed as affect on the percent ingrowth into the implants at the incremental depths, and the percent ingrowth asymptotically approached a maximum. Overall, the composite average data from all depths is best described by the logarithmic function % ingrowth = 15% * ln(implantation time in months) - 24.0% (R2 = 0.71, n = 14 patients). Several factors may come into play in determining bone ingrowth including the mechanical environment, the osteoconductivity of the implant material, and the osteogenic capability of the tissues in the pore spaces. Measurements of bone ingrowth are most influenced by the depth into the implant and the time the implant was in the body; the age of the patient had little affect on bone ingrowth.  相似文献   

14.
Intertransverse process spinal fusion is a common surgical procedure for the treatment of spinal disorders. In the present study, a porous hydroxyapatite (HA)/beta-tricalcium phosphate (beta-TCP) ceramic was tested as graft material using a rabbit lumbar transverse process (L5-L6) fusion model. The porous ceramic blocks were implanted onto the dorsal decorticated surface of the lumbar transverse processes. The specimens were harvested at the seventh week after implantation. Histomorphological observation revealed that the integration of HA/beta-TCP with the host bone of the transverse process occurred by both cancellous bone formation and cartilage formation. Scanning electron microscopy-wavelength dispersive X-ray spectrometry examinations showed significant differences in calcium, phosphorus, and sulfur contents in the newly formed tissues and the porous HA/TCP implants. Nanoindentations were used to evaluate the intrinsic mechanical properties of the implants and the newly formed tissues. The Young's moduli of the newly formed cartilage, new cancellous bone, and HA/TCP, were 0.66 +/- 0.02 GPa, 2.36 +/- 0.50 GPa, and 10.2 +/- 1.21 GPa, respectively. Nanoindentation results revealed degradation of the porous ceramics and incomplete calcification of the new cancellous bone at the seventh week after implantation. Nanoindentation appeared to be a useful technique for assessing the mechanical status of spinal fusion in animal models.  相似文献   

15.
In vitro and in vivo bioactivity studies were performed to assess the biocompatibility of CaO-P2O5 glass-reinforced hydroxyapatite (GR-HA) composites. The ability to form an apatite layer by soaking in simulated body fluid (SBF) was examined and surfaces were characterized using FTIR reflection and thin-film X-ray diffraction analyses. Qualitative histology, histomorphometric measurements, and push-out testing were performed in a rabbit model for characterizing bone/implant bonding. Under the in vitro conditions using SBF, an apatite layer could not be formed on GR-HA composites within 8 weeks. Results of push-out testing showed bonding between the composites and bone, ranging from 130-145 N after 2 weeks of implantation. After the longest implantation period, 16 weeks, the GR-HA composite prepared with the higher content of CaO-P2O5 glass showed the highest bonding force, 606 +/- 45 N, compared to 459 +/- 30 N for sintered HA. Development of immature bone and modifications in the turnover of a more mature bone on the surface of GR-HA composites were similar to those on sintered HA.  相似文献   

16.
Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices.  相似文献   

17.
Bioactivity of sol-gel bioactive glass coated alumina implants   总被引:1,自引:0,他引:1  
Alumina on alumina total hip arthroplasty has been in use for more than 25 years with encouraging results. However, an improvement of the alumina/bone interface still is required. The objective of this study was to investigate the in vitro and in vivo osteoconductive properties of sol-gel bioactive glass coated alumina implants. Two sol-gel glass compositions (58S Bioglass(R) and 77S Bioglass(R)) were used as coatings on alumina substrates and implanted in a rabbit model. The 58S sol-gel coating was employed in two configurations, single (A58S1) and double layer (A58S2). SEM analysis after one week in simulated body fluid revealed small crystals assumed to represent the initial phase of hydroxyapatite formation, whereas no clear conclusion could be drawn from Fourier transform infrared spectroscopy data. The percentage of bone in direct contact was greater for coated implants when compared to bulk alumina implants (p <0.001). In the case of A58S1 implants, bone percentage significantly increased from 45.1% after 3 weeks up to 87. 8% after 24 weeks of implantation (p = 0.0004). The presence of osteoid tissue, related to an aluminum release from the alumina substrates, was greatly diminished when compared to melt-derived glass-coated alumina implants.  相似文献   

18.
煅烧骨是一种以羟基磷灰石为主要成分 ,拥有天然骨结构和形态的生物材料。它所具有的天然的多孔结构以及孔隙大小适合肉芽组织长入和骨、软骨组织的分化形成 ,并可被机体吸收降解 ,是一种理想的骨缺损修复材料。本文就近年来有关煅烧骨的理化性质 ,生物相容性 ,以及煅烧骨同锌离子、成骨细胞、BMP等的复合材料的基础研究进行了综述  相似文献   

19.
The aim of this study was to evaluate quantitatively the behaviour of in vivo hydroxyapatite coated implants (HA) in the rabbit over time, and to compare the results with observations made on titanium plasma spray implants (TPS). Results were analysed according to the percentage of bone contact. Eighteen HA cylindrical implants (3.25 x 8 mm) and 6 TPS cylindrical implants from Steri-Oss were placed in the epiphysis of the femur in 24 white rabbits. Each rabbit received one implant. Three rabbits with one HA implant (n = 3) and 1 rabbit with one TPS implant (n = 1) were sacrificed after implantation periods of 2, 4, 6, 8, 10 and 12 months. Implants were cut along the long axis and prepared for histological and histomorphometrical evaluations. Measurements of coating thickness and percentage of bone contact were performed with scanning electron microscopy analysis on the sides of the implant, in 3 different types of bone, namely cortical, trabecular and marrow. In cortical bone, dense bone was apposed to the HA implants: from 92.3 +/- 5.5% at 2 months to 89.6 +/- 6.5% at 1 year, with no significant regression of HA thickness (P = 0.37). TPS coating showed less bone contact, but thickness was stable (P = 0.46). In trabecular zone, where bone contact was less pronounced, a significant regression of HA coatings thickness (P < 0.05) was observed. Nevertheless TPS coatings were stable (P = 0.81). Histomorphometrical results demonstrated that a highly significant regression (P < 0.0001) of HA thickness was observed in the marrow area, where the bone-to-implant contact never exceeded 7.6% from 2 to 12 months. TPS coating did not reveal any sign of resorption (P = 0.88), despite a rare bone contact. Histological analysis revealed inflammatory and giant cells, principally in the marrow area in contact with HA coating, but always in restrictive numbers. We conclude that bone contact protected the HA coating from resorption.  相似文献   

20.
Ni GX  Chiu KY  Lu WW  Wang Y  Zhang YG  Hao LB  Li ZY  Lam WM  Lu SB  Luk KD 《Biomaterials》2006,27(24):4348-4355
Clinical outcome of cemented implants to revision total hip replacement (THR) is not as satisfactory as primary THR, due to the loss of bone stock and normal trabecular pattern. This study evaluated a bioactive bone cement, strontium-containing hydroxyapatite (Sr-HA) bone cement, in a goat revision hip hemi-arthroplasty model, and compared outcomes with polymethylmethacrylate (PMMA) bone cement. Nine months after operation, significantly higher bonding strength was found in the Sr-HA group (3.36+/-1.84 MPa) than in the PMMA bone cement group (1.23+/-0.73 MPa). After detached from the femoral component, the surface of PMMA bone cement mantle was shown relatively smooth, whereas the surface of the Sr-HA bioactive bone cement mantle was uneven, by SEM observation. EDX analysis detected little calcium and no phosphorus on the surface of PMMA bone cement mantle, while high content of calcium (14.03%) and phosphorus (10.37%) was found on the surface of the Sr-HA bone cement mantle. Even higher content of calcium (17.37%) and phosphorus (10.84%) were detected in the concave area. Intimate contact between Sr-HA bioactive bone cement and bone was demonstrated by histological and SEM observation. New bone bonded to the surface of Sr-HA cement and grew along its surface. However, fibrous tissue was observed between PMMA bone cement and bone. The results showed good bioactivity of Sr-HA bioactive bone cement in this revision hip replacement model using goats. This in vivo study also suggested that Sr-HA bioactive bone cement was superior to PMMA bone cement in terms of bone-bonding strength. Use of bioactive bone cement may be a possible solution overcoming problems associated with the use of PMMA bone cement in revision hip replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号