首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
BackgroundUp to one-third of individuals with a recent spinal cord injury (SCI) and most of the individuals with an incomplete lesion are able to regain partial balance and walking ability after the first-year post-injury. However, most individuals experience injurious falls while standing and frequent losses of balance post-rehabilitation, which can result in physical injuries and a fear of falling.Research questionControl of balance during quiet standing depends on the integration of sensory information. Since SCI causes sensory and motor impairments, understanding the underlying mechanisms of how postural control is regulated is of significant importance for targeted and guided rehabilitation post-SCI.MethodsWe characterized the impact of a variety of challenging conditions on the standing balance for eight participants with incomplete SCI with walking ability compared to twelve age-matched able-bodied individuals using a waist-mounted inertial measurement unit (IMU). We compared balance biomarkers derived from IMUs’ readouts under conditions that challenged balance by affecting somatosensory (i.e., standing on hard vs. foam surfaces) and visual (i.e., eyes open vs. closed) inputs. We performed a three-way ANOVA or a Kruskal-Wallis test to characterize changes in postural control post-SCI based on reliance on somatosensory and visual information using balance biomarkers.ResultsWe observed a reduced stability performance, an increased control demand, and a less effective active correction post-SCI in all standing conditions. Due to impaired somatosensory feedback, individuals with incomplete SCI showed a higher and lower reliance on visual and somatosensory information, respectively, for maintaining balance (p < 0.05).SignificanceUsing a single waist-mounted IMU, the proposed method could characterize standing balance in individuals with incomplete SCI compared to able-bodied participants. Having high clinical utility and sufficient resolution with discriminatory ability, our method could be used in the future to objectively evaluate the effectiveness of rehabilitative interventions on the balance performance of individuals with SCI.  相似文献   

2.
BackgroundTelemedicine has the advantage of expanding access to care for patients with Parkinson’s Disease (PD). However, rigidity and postural instability in PD are difficult to measure remotely, and are important measures of functional impairment and fall risk.Research questionCan measures from wearable sensors be used as future surrogates for the MDS-UPDRS rigidity and Postural Instability and Gait Difficulty (PIGD) subscores?MethodsThirty-one individuals with mild to moderate PD wore 3 inertial sensors at home for one week to measure quantity and quality of gait and turning in daily life. Separately, we performed a clinical assessment and balance characterization of postural sway with the same wearable sensors in the laboratory (On medication). We then first performed a traditional correlation analysis between clinical scores and objective measures of gait and balance followed by multivariable linear regression employing a best subset selection strategy.ResultsThe number of walking bouts and turns correlated significantly with the rigidity subscore, while the number of turns, foot pitch angle, and sway area while standing correlated significantly with the PIGD subscore (p < 0.05). The multivariable linear regression showed that rigidity subscore was best predicted by the number of walking bouts while the PIGD subscore was best predicted by a combination of number of walking bouts, gait speed, and postural sway.SignificanceThe correlation between objective sensor data and MDS-UPDRS rigidity and PIGD scores paves the way for future larger studies that evaluate use of objective sensor data to supplement remote MDS-UPDRS assessment.  相似文献   

3.
BackgroundIdentifying older adults with increased fall risk due to poor postural control on a large scale is only possible through omnipresent and low cost measuring devices such as the inertial measurement units (IMU) embedded in smartphones. However, the correlation between smartphone measures of postural stability and state-of-the-art force plate measures has never been assessed in a large sample allowing us to take into account age as a covariate.Research questionHow reliably can postural stability be measured with a smartphone embedded IMU in comparison to a force plate?MethodsWe assessed balance in 97 adults aged 50–90 years in four different conditions (eyes open, eyes closed, semi-tandem and dual-task) in the anterio-posterior and medio-lateral directions. We used six different parameters (root mean square and average absolute value of COP displacement, velocity and acceleration) for the force plate and two different parameters (root mean square and average absolute value of COM acceleration) for the smartphone.ResultsTest-retest reliability was smaller for the smartphone than for the force plate (intra class correlation) but both devices could equally well detect differences between conditions (similar Cohen’s d). Parameters from the smartphone and the force plate, with age regressed out, were moderately correlated (robust correlation coefficients of around 0.5).SignificanceThis study comprehensively documents test-retest reliability and effect sizes for stability measures obtained with a force plate and smartphone as well as correlations between force plate and smartphone measures based on a large sample of older adults. Our large sample size allowed us to reliably determine the strength of the correlations between force plate and smartphone measures. The most important practical implication of our results is that more repetitions or longer trials are required when using a smartphone instead of a force plate to assess balance.  相似文献   

4.
BackgroundPeople with from Parkinson’s disease (PD) and freezing of gait (FoG) have more frequent falls compared to those who do not freeze but there is no consensus on which, specific objective measures of postural instability are worse in freezers (PD + FoG) than non-freezers (PD-FoG).Research questionAre functional limits of stability (fLoS) or postural sway during stance measured with wearable inertial sensors different between PD + FoG versus PD-FoG, as well as between PD versus healthy control subjects (HC)?MethodsSixty-four PD subjects with FoG (MDS-UPDRS Part III: 45.9 ± 12.5) and 80 PD subjects without FoG (MDS-UPDRS Part III: 36.2 ± 10.9) were tested Off medication and compared with 79 HC. Balance was quantified with inertial sensors worn on the lumbar spine while performing the following balance tasks: 1) fLoS as defined by the maximum displacement in the forward and backward directions and 2) postural sway area while standing with eyes open on a firm and foam surface. An ANOVA, controlling for disease duration, compared postural control between groups.ResultsPD + FoG had significantly smaller fLoS compared to PD-FoG (p = 0.004) and to healthy controls (p < 0.001). However, PD-FoG showed similar fLoS compared to healthy controls (p = 0.48). Both PD+FoG and PD-FoG showed larger postural sway on a foam surface compared to healthy controls (p = 0.001) but there was no significant difference in postural sway between PD+FoG and PD-FoG.SignificancePeople with PD and FoG showed task-specific, postural impairments with smaller fLoS compared to non-freezers, even when controlling for disease duration. However, individuals with PD with or without FoG had similar difficulties standing quietly on an unreliable surface compared to healthy controls. Wearable inertial sensors can reveal worse fLoS in freezers than non-freezers that may contribute to FoG and help explain their more frequent falls.  相似文献   

5.
《Gait & posture》2014,39(1):70-75
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk.We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS).Resultsshowed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects.The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance.  相似文献   

6.
ObjectivesThis interventional pilot study aimed to 1) examine whether a novel wearable vibro-tactile feedback device (‘UpRight Go’) is effective and feasible to improve postural alignment in Parkinson’s disease (PD); 2) explore relationships between postural alignment and attention in PD; 3) explore effect of vibro-tactile device on balance and gait; and 4) gain initial feedback on the use of the vibro-tactile device in the laboratory and at home.Methods25 people with PD sat, stood and walked for two-minutes without and with the UpRight device attached to their upper backs to provide feedback on postural alignment in the laboratory. A sub-group (n = 12) wore the UpRight device at home for 60 min. per day for 7-days of postural feedback. Subjective feedback on use of the device was obtained in the laboratory and at the end of the 7-day period.The primary outcome for this study was posture measured by verticality of inertial measurement units (IMUs) at the neck, trunk and low back, which was done with and without the UpRight device. Secondary outcomes included clinical measures of posture, subjective feedback on the device, computerized attention measures, gait and balance.ResultsNeck postural alignment in PD was significantly improved (reduced neck flexion) with the UpRight during sitting and standing in both clinical measures (p = 0.005) and IMU outcomes (p = 0.046), but trunk and low back posture did not change. There was no change in postural alignment during walking with the UpRight. Postural alignment response was related to attentional capabilities. Many subjects (68 %) reported that they felt a benefit from the UpRight and most participants reported that the device was acceptable (Lab use; 72 %, Home use; 75 %).ConclusionThe UpRight Go feedback device may improve neck/upper-back posture in PD during sitting and standing, but not during walking. Postural alignment response to the device may depend on attentional mechanisms.  相似文献   

7.
8.
BackgroundStatic balance performance is a common metric for evaluating the development of postural control in children. Less is known about the potentially independent development of dynamic balance performance.Research questionHow does age relate to static (i.e. postural sway) and dynamic (i.e. stepping thresholds) standing balance performance, and what is the relationship between postural sway and stepping thresholds?MethodsTwenty-six typically developing children (12 males, 14 females; 5–12 years of age) were recruited for this cross-sectional study. Static balance performance was quantified as the total path length during a postural sway assessment using a force platform with conditions of eyes open and eyes closed. Dynamic balance performance was quantified using a single-stepping threshold assessment, whereby participants attempted to prevent a step in response to treadmill-induced perturbations in the anterior and posterior directions. Relationships between age and body-size scaled measures of static and dynamic balance performance were assessed using Spearman rank correlations.ResultsThere was a weak correlation between age and postural sway (|rs| < 0.10, p > 0.68), but a moderate-to-strong correlation between age and single-stepping thresholds (rs > 0.68, p < 0.001). A weak correlation was found between postural sway and single-stepping thresholds (|rs| < 0.20, p > 0.39).SignificanceDynamic, but not static standing balance performance, may improve with typical development between the ages of 5 and 12 years. Static and dynamic balance should be considered as unique constructs when assessed in children.  相似文献   

9.
BackgroundCongenitally blind subjects developed postural adaptations improving somatosensory and vestibular systems to maintain upright stability and auditory skills to orient them in environment. However, the influence of auditory cues on upright stability in congenitally blind subjects stays unknown.Research questionThe aim of this study is to define the influence of an auditory cue in congenitally blind subjects back space on their balance posture.MethodsEleven sighted subjects and eleven congenitally blind subjects performed upright bipedal and unipedal quiet stances on a force plate with two conditions of auditory cue played by a loudspeaker placed 2 m behind them. Mean CoP velocity were recorded. Student test was used to compare significant difference between blind and sighted subjects bipedal and unipedal postures stability in both conditions of auditory cue.Results and significanceResults showed that congenitally blind subjects had no significant difference in mean sway velocity compared to sighted subjects in bipedal upright posture in auditory signal condition. However, blind subjects had significant lower mean sway velocity than sighted subjects in bipedal upright posture without sound. Blind subjects had significant increased mean sway velocity during unipedal quiet standing in both auditory cue conditions (with and without sound). The results showed that congenitally blind subjects used auditory cues placed behind them in order to improve their balance control in bipedal upright posture. In this case, blind subjects could better use compensatory mechanisms to perform quiet standing as sighted subjects. Without sound or in unipedal upright posture, congenitally blind subjects probably have sensory perturbations or limitations that impose them adaptations in order to avoid falling risk. Auditory cues should be study in the aim to better understand the compensatory mechanisms used by congenitally blind subjects to perform postural balance in usual environment.  相似文献   

10.
BackgroundA range of cognitive tasks can interfere with postural control, particularly in older adults. In the case of spatial tasks, the spatial alignment between the task and postural control can incur dual-task costs separately from task load. It has been suggested that spatial tasks incur dual-task costs because accessing the visuospatial sketchpad component of working memory reduces the capacity to utilize external visual information for postural control.Research questionWe investigated whether the spatial alignment between a cognitive and a postural control task can affect postural stability even when visual perception is not involved in either task and task load does not differ between aligned and non-aligned conditions. We predicted that any such effect would be greater in older people and in a more challenging stance.MethodsFifty healthy adults (27 aged 20–35, 23 aged 59–88) with no history of balance or cognitive difficulties performed a mental navigation task while standing in open or closed stance with eyes closed. The mental navigation task was presented in a reference plane that was either aligned or non-aligned to the horizontal reference plane in which the posture control system controlled the position of the body’s center of gravity. Task performance was measured as accuracy and response time and postural sway as anteroposterior (AP) and mediolateral (ML) sway velocity.ResultsThe older group were less accurate in the mental navigation task, and both groups had higher AP and ML sway velocity in closed stance. When standing in the more challenging stance, the older group had higher AP sway velocity while performing the mental navigation task in the non-aligned than the aligned reference plane condition.SignificanceThe spatial configuration compatibility between a cognitive task and postural control can affect postural stability even when visual information is not being used for either task and task load is unchanged.  相似文献   

11.
People with multiple sclerosis (MS) often report problems with balance, which may be most apparent during challenging postural tasks such as leaning or reaching, and when relying on non-visual sensory systems. An additional obstacle facing people with MS is a high incidence of symptomatic fatigue (>70%). The purpose of this study was to investigate the changes in balance during upright stance in individuals with mild-to-moderate disability due to MS under normal and restricted vision and different levels of self-reported fatigue. Limb loading asymmetry, sway and magnitude of postural shift in center of pressure, and time-to-contact the stability boundary of the center of mass and center of pressure were assessed during quiet standing and maximal lean and reach tasks. Compared to controls, people with MS displayed greater postural sway, greater loading asymmetry, and shorter time-to-contact during quiet standing. In the postural perturbation tasks the MS group had smaller postural shifts and reduced stability compared to controls in the direction perpendicular to the lean and reach. Limiting vision increased loading asymmetry during quiet standing and postural instability during backward lean in the MS group. Inducing additional fatigue in the MS group did affect postural control in the more challenging balance conditions but had no impact during quiet upright standing. The results of this study indicate subtle changes in postural control during standing in people with mild-to-moderate impairments due to MS.  相似文献   

12.
BackgroundSensorimotor control of axial segments, which develops during childhood and is not mature until adolescence, is essential for the development of balance control during motor activities. Children with cerebral palsy (CP) have deficits in postural control when standing or walking, including less stabilization of the head and trunk which could affect postural control.Research questionIs dynamic stabilization of axial segments during an unstable sitting task deficient in children with CP compared to typically developing children? Is this deficit correlated with the deficit of postural control during standing?MethodSeventeen children with CP (GMFCS I-II) and 17 typically-developing children from 6 to 12 years old were rated on the Trunk Control Measurement Scale (TCMS). In addition, posturography was evaluated in participants while they maintained their balance in stable sitting, unstable sitting, and quiet standing, under “eyes open” and “eyes closed” conditions. In sitting tasks, the participants had to remain stable while being prevented from using the lower and upper limbs (i.e. to ensure the involvement of axial segments alone).ResultsChildren with CP compared to TD children had significantly larger surface area, mean velocity and RMS values of CoP displacements measured during the unstable sitting task and the standing task, under both “eyes open” and “eyes closed” conditions. No significant group effects were observed during the stable sitting task. The TCMS total score was significantly lower, indicating trunk postural deficit, in the CP group than in the TD group and was significantly correlated with postural variables in the sitting and standing tasks.SignificanceChildren with CP indeed have a specific impairment in the postural control of axial segments. Since the postural control of axial segments is important for standing and walking, its impairment should be taken into account in rehabilitation programs for children with CP.  相似文献   

13.
BackgroundPrevious research showed that standing on textured surfaces can improve postural control by adapting somatosensory inputs from the plantar foot. The additional stimulation of plantar cutaneous mechanoreceptors by a textured surface during single-leg stance on a balance board may increase afferent information to the central nervous system to accelerate muscular responses and to enhance their accuracy. The additional impact of textured surface during single-leg stance on a balance board on postural control and muscle activity is unknown.Research questionTo investigate the differences of a) postural control during single-leg stance on a textured balance board compared to a smooth balance board and b) activity of lower extremity muscles during single-leg stance on a textured balance board compared to a smooth balance board and the floor.MethodsTwenty-six healthy adults (12 females, 14 males; mean age = 25.4 years) were asked to balance on their randomly assigned left or right leg on a force plate (floor; stable condition), a textured balance board and a smooth balance board (unstable conditions). Center of pressure (CoP) displacements (force plate, Bertec, 1000 Hz) and electromyographic activity (EMG) of eight leg muscles were measured and compared between conditions, respectively.ResultsNeither CoP-displacements, nor EMG activities differed significantly between the textured and the smooth balance board (p > 0.05). Significantly higher muscle activities (p < 0.05) were observed using the balance boards compared to the floor.SignificanceSingle-leg stance using a textured balance board seems not to lead to reduced CoP-displacements compared to a smooth balance board. Muscle activation is significantly increased in both balance board conditions compared to the floor, however, it is not different when both balance board surfaces are compared. It could not be recommended to use a textured balance board for altering muscle activity and improving postural control during single-leg stance in favor of a smooth textured balance board.  相似文献   

14.
ObjectivesPoorer neurocognitive performance may increase lower extremity injury risk due to alterations in biomechanics. However, it is unclear if poorer neurocognitive function may be associated with altered dynamic postural stability. Therefore, the purpose of this study was to investigate the relationship between neurocognitive performance and dynamic postural stability in healthy collegiate athletes.DesignCross-sectional cohort.MethodsForty-five Division-I collegiate athletes (21 males, 24 females; age: 19.69 ± 1.50) completed neurocognitive assessments from the NIH Toolbox® (NIHTB). Three groups were established from the NIHTB composite score: high performers (HP), moderate performers (MP), and low performers (LP). Additionally, participants completed a dynamic hop-to-stabilization task. Accelerometer and gyroscopic data were recorded during landing through an inertial measurement unit (IMU) on the participant's low back. The root mean squared (RMS) of the accelerometer and gyroscope was calculated for the orthogonal planes and the resultant vector. Group differences for demographic variables, NIHTB composite scores, and IMU based measures were analyzed with one-way ANOVAs with Bonferroni post hoc analyses were performed. Cohen's d effect sizes were also calculated.ResultsPost hoc tests determined the LP group had higher vertical acceleration RMS values (p = 0.013, d = ?0.85) and lower anteroposterior acceleration RMS values (p = 0.005, d = 0.95) compared to the HP group.ConclusionsNeurocognitive performance may influence dynamic postural stability strategies in athletes. Higher neurocognitive performers may use different approaches to perform difficult postural tasks by adopting strategies associated with lower vertical and higher anteroposterior acceleration compared to lower neurocognitive performers.  相似文献   

15.
Standing postural stability relies on input from visual, vestibular, proprioceptive and mechanoreceptive sensors. When the information from any of these sensors is unavailable or disrupted, the central nervous system maintains postural stability by relying more on the contribution from the reliable sensors, termed sensory re-weighting. Alcohol intoxication is known to affect the integrity of the vestibular and visual systems. The aim was to assess how mechanoreceptive sensory information contributed to postural stability at 0.00% (i.e. sober), 0.06% and 0.10% blood alcohol concentration (BAC) in 25 healthy subjects (mean age 25.1 years). The subjects were assessed with eyes closed and eyes open under quiet standing and while standing was perturbed by repeated, random-length, vibratory stimulation of the calf muscles. Plantar cutaneous mechanoreceptive sensation was assessed for both receptor types: slowly adapting (tactile sensitivity) and rapidly adapting (vibration perception). The correlation between recorded torque variance and the sensation from both mechanoreceptor types was calculated. The recorded stability during alcohol intoxication was significantly influenced by both the tactile sensation and vibration perception of the subjects. Moreover, the study revealed a fluctuating association between the subjects' vibration perception and torque variance during balance perturbations, which was significantly influenced by the level of alcohol intoxication, vision and adaptation. Hence, one's ability to handle balance perturbations under the influence of alcohol is strongly dependent on accurate mechanoreceptive sensation and efficient sensory re-weighting.  相似文献   

16.
BackgroundStudies on postural control have primarily focused on the maintenance of balance in quiet upright standing on flat horizontal support surfaces that can reveal only a subset of the potential postural stability/instability configurations in everyday contexts.ObjectivesHere we investigated the nature of dynamical properties of postural coordination in an upright standing task as a function of the systematic scaling of seven support surface angles, +20°, +10° dorsiflexion (+), 0 °Flat, −10°, −20°, −30°, −35° plantarflexion (−), mounted on a force plate.MethodsThe center of pressure (CoP) and virtual time-to-contact (VTC) were analyzed to examine the spatial and spatio-temporal aspects of postural coordination dynamics, respectively. Recurrence quantification analysis (RQA) was used to characterize the dynamic postural control strategies as a function of slope surface angle.ResultsThe recurrence findings showed that on a flat surface the postural CoP dynamic are recurrent with a largely deterministic process and higher Shannon entropy compared to elevated slope angles in dorsiflexion and plantarflexion. There were asymmetrical patterns between similar slope angles for dorsiflexion and plantarflexion postures. The recurrence measures revealed that VTC operates on a higher embedding dimension than that of CoP.SignificanceVTC showed an enhanced sensitivity to detection of postural instability in relation to the stability boundary that was magnified on the flat surface but progressively reduced over larger surface angles for both the dorsiflexion and plantarflexion postures.  相似文献   

17.
The purpose of this study was to assess postural sway and balance in normal and anterior cruciate ligament (ACL) deficient (ACLD) knees. Performance was assessed in 15 ACLD and 15 matched control (CON) subjects whilst standing on a postural sway meter and on a balance board. On both pieces of apparatus subjects attempted to maintain balance for 30 s under six different conditions; (1) and (2) standing on both legs with eyes open and closed; (3) and (4) standing on the injured leg with eyes open and closed; and (5) and (6) standing on the non-injured leg with eyes open and closed. Performance on the postural sway meter and balance board deteriorated significantly when both ACLD and CON stood on one leg (P<0.01), and when eyes were closed (P<0.01). This was independent of whether the leg was injured or not. The interaction of vision loss and single leg stance resulted in a significant deterioration in balance board performance on the injured leg compared to the non-injured leg in the ACLD group. Results suggest that use of a postural sway meter for predicting function and stability during dynamic activities in ACLD subjects may be inappropriate. Copyright 1998 Elsevier Science B.V.  相似文献   

18.
The somatosensory system plays an important role in balance control and age-related declines in somatosensory function have been implicated in falls incidence. Different types of insole devices have been developed to enhance somatosensory information and improve postural stability. However, they are often too complex and expensive to integrate into daily life and textured insole surfaces may provide an inexpensive and accessible means to enhance somatosensory input. This study investigated the effects of textured insole surfaces on postural sway in ten younger and seven older participants performing standing balance tests on a force plate under three insole surface conditions: (1) barefoot; (2) with hard; and (3), soft textured insole surfaces. With each insole surface, participants were tested under two vision conditions (eyes open, closed) on two standing surfaces (firm, foam). Four 30s trials were collected for different combinations of insole surface, standing surface and vision. Centre of pressure measurements included the range and standard deviation of anterior-posterior and medial-lateral displacement, path length and the 90% confidence elliptical area. Results revealed a significant Group*Surface*Insole interaction for five of the dependent variables. Compared to younger individuals, postural sway was greater in older people on both standing surfaces in the barefoot condition. However, both textured insole surfaces reduced postural sway for the older group especially in the eyes closed condition on a foam surface. These findings suggest that textured insole surfaces can reduce postural sway in older people, particularly during more challenging balance tasks. Textured insole surfaces may afford a low-cost means of decreasing postural sway, providing an important intervention in falls prevention.  相似文献   

19.
BackgroundRocker sole (RS) shoes have been linked to impaired postural control. However, which features of RS design affect balance is unclear.Research questionWhich RS design features affect standing balance and gait stability?MethodsThis study utilized an intervention and cross-over design. Twenty healthy young adults (10 males and 10 females) participated in this study. Standing balance and gait stability were measured using a single force platform and three-dimensional motion analysis system, respectively. The experimental conditions included the control shoe and five RS shoes in the combination of apex position (%) and apex angle (degree) for RS50-95, RS60-95, RS70-95, RS60-70, and RS60-110. The main outcome measures were the area surrounding the maximal rectangular amplitude, mean path length, average displacement of the center of pressure along the lateral and anterior/posterior directions, and maximal center of pressure excursion as the standing balance and lateral margin of stability as the gait stability. Statistical analyses were conducted using a two-way split-plot analysis of variance with repeated measures (with RS design as the within-subject factor and sex as the between-subject factor) and the Bonferroni post hoc test (α = .05).ResultsRegarding the mean path length, RS60-70 was significantly longer than the control shoe, and it showed a significantly increased lateral margin of stability. Thus, RS60-70 was shown to affect standing balance, limit of stability, and gait stability of the frontal plane during gait.SignificanceThese results suggest that the apex angle of the RS design feature affects standing balance and gait stability, and RS60-70 is detrimental to stability. Therefore, when RS with a small apex angle is prescribed, it is necessary to consider the patient’s balance ability.  相似文献   

20.
AimThe main objective of this study was to determine differences in postural control between obese and non-obese children.MethodsThe study design was cross-sectional, prospective, between-subjects. Postural control variables were obtained from a group of obese children and a normal-weight control group under two different postural conditions: bipedal standing position with eyes open and bipedal standing with eyes closed. Variables were obtained for each balance condition using time domain and sway-density plot analysis of the center of pressure signals acquired by means of a force plate.ResultsPairwise comparisons revealed significant differences between obese and normal-weight children in mean velocity in antero-posterior and medio-lateral directions, ellipse area and mean distance with both eyes open and eyes closed. Normal-weight subjects obtained lower values in all these variables than obese subjects. Furthermore, there were differences between both groups in mean peaks with eyes open and in mean time with eyes closed.ConclusionAlterations were detected in the intermittent postural control in obese children. According to the results obtained, active anticipatory control produces higher center of pressure displacement responses in obese children and the periods during which balance is maintained by passive control and reflex mechanisms are of shorter duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号