首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were done using guinea-pig sympathetic neurones dissociated from the stellate ganglia to establish whether calcium-induced calcium release (CICR) modulated action potential (AP) generation in mammalian neurones. Using measurements of intracellular calcium ([Ca2+]i) with the Ca2+-sensitive dye fluo-3, we demonstrated that 10 m m caffeine activated ryanodine receptors and caused a rise in [Ca2+]i in both Ca2+-containing and Ca2+-deficient solutions. We also demonstrated that combined treatment with caffeine and 1 μ m thapsigargin or caffeine and 20 μ m ryanodine blocked subsequent caffeine-induced elevations of [Ca2+]i. Treatment with thapsigargin, ryanodine or 200 μ m Cd2+ to disrupt CICR decreased the latency to AP generation during 400 ms depolarizing current ramps using the perforated patch whole cell patch clamp in current clamp mode. Treatment with 500 μ m tetraethylammonium also decreased the latency to AP generation during depolarizing current ramps in control cells, but not in cells pretreated with thapsigargin to deplete internal Ca2+ stores. In summary, we propose that an outward current, carried at least in part through BK channels, is activated by CICR at membrane voltages approaching the threshold for AP initiation and that this current opposed depolarizing current ramps applied to guinea-pig sympathetic stellate neurones.  相似文献   

2.
We have investigated the in vitro effects of the saturated free fatty acid palmitate on mouse pancreatic β-cells by a combination of electrophysiological recordings, intracellular Ca2+ ([Ca2+]i) microfluorimetry and insulin release measurements. Addition of palmitate (1 m m , bound to fatty acid-free albumin) to intact islets exposed to 15 m m glucose increased the [Ca2+]i by ∼30% and insulin secretion 2-fold. Palmitate remained capable of increasing [Ca2+]i and insulin release in the presence of tolbutamide and in islets depolarized by high K+ in combination with diazoxide, indicating that the stimulation occurs independently of closure of ATP-regulated K+ channels (KATP channels). Palmitate (0.5 m m ) augmented exocytosis (measured as an increase in cell capacitance) in single β-cells and increased the size of the readily releasable pool (RRP) of granules 2-fold. Whole-cell peak Ca2+ currents rose by ∼25% following addition of 0.5 m m palmitate, an effect that was abolished in the presence of 10 μ m isradipine indicating that the free fatty acid specifically acts on L-type Ca2+ channels. The actions of palmitate on exocytosis and Ca2+ currents were not mimicked by intracellular application of palmitoyl-CoA. We conclude that palmitate increases insulin secretion by a KATP channel-independent mechanism exerted at the level of exocytosis and that involves both augmentation of L-type Ca2+ currents and an increased size of the RRP.  相似文献   

3.
We tested the hypothesis that both stretch-activated channels (SACs) and intracellular calcium ([Ca2+]i) are important in the electrical response of single guinea-pig ventricular myocytes to axial stretch. Myocytes were attached to carbon fibre transducers and stretched, sarcomere length increased by approximately 9 %, and there was a prolongation of the action potential duration. Streptomycin, a blocker of SACs, had no effect upon the shortening, [Ca2+]i transients or action potentials of electrically stimulated, unstretched myocytes, at a concentration of 50 μ m , but at 40 μ m , prevented any stretch-induced increase in action potential duration. Under action potential clamp, stretch elicited a current with a linear current-voltage relationship that was inward at membrane potentials negative to its reversal potential of −30 mV, in 10 of 24 cells tested, and was consistent with the activation of non-specific, cationic SACs. This current was not seen in any stretched cells that were exposed to 40 μ m streptomycin. However, exposure of cells to 5 μ m BAPTA-AM, in order to reduce [Ca2+]i transients, also abolished stretch-induced prolongation of the action potential. We conclude that both SACs and [Ca2+]i are important in the electrical response of cardiac myocytes to stretch, and propose that stretch-induced changes in electrical activity and [Ca2+]i may be linked by inter-dependent mechanisms.  相似文献   

4.
At the snake neuromuscular junction, low temperature (LT, 5–7°C) blocks clathrin-mediated endocytosis (CME) while exocytosis is largely unaffected. Thus compensatory endocytosis that normally follows transmitter release is inhibited, or 'delayed' until the preparation is warmed to room temperature (RT). This delay was exploited to observe how changes in bulk [Ca2+]i directly affect CME. Motor terminals were loaded with fura-2 to monitor [Ca2+]i. With brief stimulation at LT, [Ca2+]i transiently increased but returned to baseline (∼63 n m ) in < 8 min. After 15 min at LT, [Ca2+]i was altered by incubating preparations in the Ca2+ ionophore ionomyocin. Preparations were then warmed to RT to initiate delayed endocytosis, which was quantified as uptake of the fluorescent optical probe sulforhodamine 101. Endocytosis was more rapid when [Ca2+]i increased; the rate at 300 n m Ca2+ was ∼double that under basal conditions. Thus the rate of CME – isolated from stimulation, transmitter release, and other forms of endocytosis – is directly influenced by intraterminal Ca2+.  相似文献   

5.
Postsynaptic [Ca2+]i increases result from Ca2+ entry through ligand-gated channels, entry through voltage-gated channels, or release from intracellular stores. We found that these sources have distinct spatial distributions in hippocampal CA1 pyramidal neurons. Large amplitude regenerative release of Ca2+ from IP3-sensitive stores in the form of Ca2+ waves were found almost exclusively on the thick apical shaft. Smaller release events did not extend more than 15 μm into the oblique dendrites. These synaptically activated regenerative waves initiated at points where the stimulated oblique dendrites branch from the apical shaft. In contrast, NMDA receptor-mediated increases were observed predominantly in oblique dendrites where spines are found at high density. These [Ca2+]i increases were typically more than eight times larger than [Ca2+]i from this source on the main aspiny apical shaft. Ca2+ entry through voltage-gated channels, activated by backpropagating action potentials, was detected at all dendritic locations. These mechanisms were not independent. Ca2+ entry through NMDA receptor channels or voltage-gated channels (as previously demonstrated) synergistically enhanced Ca2+ release generated by mGluR mobilization of IP3.  相似文献   

6.
Regenerative potentials were initiated by depolarizing short segments of single bundles of circular muscle isolated from the gastric antrum of guinea-pigs. When changes in [Ca2+]i and membrane potential were recorded simultaneously, regenerative potentials were found to be associated with an increase in [Ca2+]i, with the increase starting after a minimum latency of about 1 s. Although the increase in [Ca2+]i was reduced by nifedipine, the amplitudes of the regenerative responses were little changed. Regenerative responses and associated changes in [Ca2+]i were abolished by loading the preparations with the Ca2+ chelator MAPTA-AM. Regenerative potentials were abolished by 2-aminoethoxydiphenyl borate (2APB), an inhibitor of IP3 induced Ca2+ release, by N -ethylamaleimide (NEM), an alkylating agent which blocks activation of G-proteins and were reduced in amplitude by two agents which block chloride (Cl)-selective channels in many tissues. The observations suggest that membrane depolarization triggers IP3 formation. This causes Ca2+ release from intracellular stores which activates Ca2+-dependent Cl channels.  相似文献   

7.
In arterial vascular smooth muscle cells (VSMCs), Ca2+ sparks stimulate nearby Ca2+-activated K+ (BK) channels that hyperpolarize the membrane and close L-type Ca2+ channels. We tested the contribution of L-type Cav1.2 channels to Ca2+ spark regulation in tibial and cerebral artery VSMCs using VSMC-specific Cav1.2 channel gene disruption in (SMAKO) mice and an approach based on Poisson statistical analysis of activation frequency and first latency of elementary events. Cav1.2 channel gene inactivation reduced Ca2+ spark frequency and amplitude by ∼50% and ∼80%, respectively. These effects were associated with lower global cytosolic Ca2+ levels and reduced sarcoplasmic reticulum (SR) Ca2+ load. Elevating cytosolic Ca2+ levels reversed the effects completely. The activation frequency and first latency of elementary events in both wild-type and SMAKO VSMCs weakly reflected the voltage dependency of L-type channels. This study provides evidence that local and tight coupling between the Cav1.2 channels and ryanodine receptors (RyRs) is not required to initiate Ca2+ sparks. Instead, Cav1.2 channels contribute to global cytosolic [Ca2+], which in turn influences luminal SR calcium and thus Ca2+ sparks.  相似文献   

8.
This study tested the hypothesis that store-operated channels (SOCs) exist as a discrete population of Ca2+ channels activated by depletion of intracellular Ca2+ stores in cerebral arteriolar smooth muscle cells and explored their direct contractile function. Using the Ca2+ indicator fura-PE3 it was observed that depletion of sarcoplasmic reticulum (SR) Ca2+ by inhibition of SR Ca2+-ATPase (SERCA) led to sustained elevation of [Ca2+]i that depended on extracellular Ca2+ and slightly enhanced Mn2+ entry. Enhanced background Ca2+ influx did not explain the raised [Ca2+]i in response to SERCA inhibitors because it had marked gadolinium (Gd3+) sensitivity, which background pathways did not. Effects were not secondary to changes in membrane potential. Thus SR Ca2+ depletion activated SOCs. Strikingly, SOC-mediated Ca2+ influx did not evoke constriction of the arterioles, which were in a resting state. This was despite the fura-PE3-indicated [Ca2+]i rise being greater than that evoked by 20 m m [K+]o (which did cause constriction). Release of endothelial vasodilators did not explain the absence of SOC-mediated constriction, nor did a change in Ca2+ sensitivity of the contractile proteins. We suggest SOCs are a discrete subset of Ca2+ channels allowing Ca2+ influx into a 'non-contractile' compartment in cerebral arteriolar smooth muscle cells.  相似文献   

9.
Cardiac arrhythmias, which occur in a wide variety of conditions where intracellular calcium is increased, have been attributed to the activation of a transient inward current ( I ti). I ti is the result of three different [Ca]i-sensitive currents: the Na+–Ca2+ exchange current, a Ca2+-activated chloride current and a Ca2+-activated non-selective cationic current. Using the cell-free configuration of the patch-clamp technique, we have characterized the properties of a Ca2+-activated non-selective cation channel (NSCCa) in freshly dissociated human atrial cardiomyocytes. In excised inside-out patches, the channel presented a linear I–V relationship with a conductance of 19 ± 0.4 pS. It discriminated poorly among monovalent cations (Na+ and K+) and was slightly permeable to Ca2+ ions. The channel's open probability was increased by depolarization and a rise in internal calcium, for which the K d for [Ca2+]i was 20.8 μ m . Channel activity was reduced in the presence of 0.5 m m ATP or 10 μ m glibenclamide on the cytoplasmic side to 22.1 ± 16.8 and 28.5 ± 8.6%, respectively, of control. It was also inhibited by 0.1 m m flufenamic acid. The channel shares several properties with TRPM4b and TRPM5, two members of the 'TRP melastatin' subfamily. In conclusion, the NSCCa channel is a serious candidate to support the delayed after-depolarizations observed in [Ca2+] overload and thus may be implicated in the genesis of arrhythmias.  相似文献   

10.
We studied the properties of a voltage-operated Na+ conductance in descending vasa recta (DVR) pericytes isolated from the renal outer medulla. Whole-cell patch-clamp recordings revealed a depolarization-induced, rapidly activating and rapidly inactivating inward current that was abolished by removal of Na+ but not Ca+ from the extracellular buffer. The Na+ current ( I Na) is highly sensitive to tetrodotoxin  (TTX, K d= 2.2 n m )  . At high concentrations, mibefradil (10 μ m ) and Ni+ (1 m m ) blocked I Na. I Na was insensitive to nifedipine (10 μ m ). The L-type Ca+ channel activator FPL-64176 induced a slowly activating/inactivating inward current that was abolished by nifedipine. Depolarization to membrane potentials between 0 and 30 mV induced inactivation with a time constant of ∼1 ms. Repolarization to membrane potentials between −90 and −120 mV induced recovery from inactivation with a time constant of ∼11 ms. Half-maximal activation and inactivation occurred at −23.9 and −66.1 mV, respectively, with slope factors of 4.8 and 9.5 mV, respectively. The Na+ channel activator, veratridine (100 μ m ), reduced peak inward I Na and prevented inactivation. We conclude that a TTX-sensitive voltage-operated Na+ conductance, with properties similar to that in other smooth muscle cells, is expressed by DVR pericytes.  相似文献   

11.
Rat basophilic leukaemia cells (RBL-2H3-M1) were used to study the characteristics of the store-operated Ca2+ release-activated Ca2+ current ( I CRAC) and the magnesium-nucleotide-regulated metal cation current (MagNuM) (which is conducted by the LTRPC7 channel). Pipette solutions containing 10 m m BAPTA and no added ATP induced both currents in the same cell, but the time to half-maximal activation for MagNuM was about two to three times slower than that of I CRAC. Differential suppression of I CRAC was achieved by buffering free [Ca2+]i to 90 n m and selective inhibition of MagNuM was accomplished by intracellular solutions containing 6 m m Mg.ATP, 1.2 m m free [Mg2+]i or 100 μ m GTP-γ-S, allowing investigations on these currents in relative isolation. Removal of extracellular Ca2+ and Mg2+ caused both currents to be carried significantly by monovalent ions. In the absence or presence of free [Mg2+]i, I CRAC carried by monovalent ions inactivated more rapidly and more completely than MagNuM carried by monovalent ions. Since several studies have used divalent-free solutions on either side of the membrane to study selectivity and single-channel behaviour of I CRAC, these experimental conditions would have favoured the contribution of MagNuM to monovalent conductance and call for caution in interpreting results where both I CRAC and MagNuM are activated.  相似文献   

12.
Electrical rhythmicity in smooth muscle cells is essential for the movement of the gastrointestinal tract. Interstitial cells of Cajal (ICC) lie adjacent to smooth muscle layers and are implicated as the pacemaker cells. However, the pace making mechanism remains unclear. To study the intercellular interaction during electrical rhythm generation, we visualized changes in intracellular Ca2+ concentration ([Ca2+]i) in smooth muscle cells and myenteric ICC within segments of mouse ileum loaded with a fluorescent Ca2+ indicator, fluo-3. We observed rhythmic [Ca2+]i changes in longitudinal smooth muscle cells travelling rapidly through the smooth muscle cell layer. Between the rhythmic Ca2+ transients, we found brief Ca2+ transients localized to small areas within smooth muscle cells. The amplitude but not the periodicity of rhythmic [Ca2+]i transients in both cell types was partially inhibited by nicardipine, an L-type Ca2+ channel antagonist, suggesting that the rhythmic [Ca2+]i transients reflect membrane potential depolarizations corresponding to both slow waves and triggered Ca2+ spikes. Longitudinal smooth muscle cells and myenteric ICC showed synchronous spontaneous [Ca2+]i transients in eight out of 21 ileac preparations analysed. In the remaining preparations, the synchrony between ICC and smooth muscle cells was absent, although the rhythmicity of the smooth muscle cells was not disturbed. These results suggest that myenteric ICC may play multiple roles including pace making for physiological bowel movement.  相似文献   

13.
Isolated whole skeletal muscles fatigue more rapidly than isolated single muscle fibres. We have now employed this difference to study mechanisms of skeletal muscle fatigue. Isolated whole soleus and extensor digitorum longus (EDL) muscles were fatigued by repeated tetanic stimulation while measuring force production. Neither application of 10 m m lactic acid nor increasing the [K+] of the bath solution from 5 to 10 m m had any significant effect on the rate of force decline during fatigue induced by repeated brief tetani. Soleus muscles fatigued slightly faster during continuous tetanic stimulation in 10 m m [K+]. Inhibition of mitochondrial respiration with cyanide resulted in a faster fatigue development in both soleus and EDL muscles. Single soleus muscle fibres were fatigued by repeated tetani while measuring force and myoplasmic free [Ca2+] ([Ca2+]i). Under control conditions, the single fibres were substantially more fatigue resistant than the whole soleus muscles; tetanic force at the end of a series of 100 tetani was reduced by about 10% and 50%, respectively. However, in the presence of cyanide, fatigue developed at a similar rate in whole muscles and single fibres, and tetanic force at the end of fatiguing stimulation was reduced by ∼80%. The force decrease in the presence of cyanide was associated with a ∼50% decrease in tetanic [Ca2+]i, compared with an increase of ∼20% without cyanide. In conclusion, lactic acid or [K+] has little impact on fatigue induced by repeated tetani, whereas hypoxia speeds up fatigue development and this is mainly due to an impaired Ca2+ release from the sarcoplasmic reticulum.  相似文献   

14.
Treatment of human epithelial kidney (HEK293) cells with low concentrations of the muscarinic agonist methacholine results in the activation of complex and repetitive cycling of intracellular calcium ([Ca2+]i), known as [Ca2+]i oscillations. These oscillations occur with a frequency that depends on the concentration of methacholine, whereas the magnitude of the [Ca2+]i spikes does not. The oscillations do not persist in the absence of extracellular Ca2+, leading to the conclusion that entry of Ca2+ across the plasma membrane plays a significant role in either their initiation or maintenance. However, treatment of cells with high concentrations of GdCl3, a condition which limits the flux of calcium ions across the plasma membrane in both directions, allows sustained [Ca2+]i oscillations to occur. This suggests that the mechanisms that both initiate and regenerate [Ca2+]i oscillations are intrinsic to the intracellular milieu and do not require entry of extracellular Ca2+. This would additionally suggest that, under normal conditions, the role of calcium entry is to sustain [Ca2+]i oscillations. By utilizing relatively specific pharmacological manoeuvres we provide evidence that the Ca2+ entry that supports Ca2+ oscillations occurs through the store-operated or capacitative calcium entry pathway. However, by artificial introduction of a non-store-operated pathway into the cells (TRPC3 channels), we find that other Ca2+ entry mechanisms can influence oscillation frequency in addition to the store-operated channels.  相似文献   

15.
In addition to activating more Ca2+ release sites via voltage sensors in the t-tubular membranes, it has been proposed that more depolarised voltages enhance activation of Ca2+ release channels via a voltage-dependent increase in Ca-induced Ca2+ release (CICR). To test this, release permeability signals in response to voltage-clamp pulses to two voltages, –60 and –45 mV, were compared when Δ[Ca2+] was decreased in two kinds of experiments. (1) Addition of 8 m m of the fast Ca2+ buffer BAPTA to the internal solution decreased release permeability at –45 mV by > 2-fold and did not significantly affect Ca2+ release at –60 mV. Although some of this decrease may have been due to a decrease in voltage activation at –45 mV – as assessed from measurements of intramembranous charge movement – the results do tend to support a Ca-dependent enhancement with greater depolarisations. (2) Decreasing SR (sarcoplasmic reticulum) Ca content ([CaSR]) should decrease the Ca2+ flux through an open channel and thereby Δ[Ca2+]. Decreasing [CaSR] from > 1000 μ m (the physiological range) to < 200 μ m decreased release permeability at –45 mV relative to that at –60 mV by > 6-fold, an effect shown to be reversible and not attributable to a decrease in voltage activation at –45 mV. These results indicate a Ca-dependent triggering of Ca2+ release at more depolarised voltages in addition to that expected by voltage control alone. The enhanced release probably involves CICR and appears to involve another positive feedback mechanism in which Ca2+ release speeds up the activation of voltage sensors.  相似文献   

16.
Calmodulin (CaM) binds to KCNQ2–4 channels within their carboxy termini, where it regulates channel function. The existing data have not resolved the Ca2+ dependence of the interaction between the channels and CaM. We performed glutathione S-transferase (GST)-pull-down assays between purified KCNQ2–4 carboxy termini and CaM proteins to determine the Ca2+ dependence of the interaction in vitro . The assays showed substantial Ca2+ dependence of the interaction of the channels with wild-type (WT) CaM, but not with dominant-negative (DN) CaM. To demonstrate CaM–channel interactions in individual living cells, we performed fluorescence resonance energy transfer (FRET) between ECFP-tagged KCNQ2–4 channels and EYFP-tagged CaM expressed in CHO cells, performed under total internal reflection fluorescence (TIRF) microscopy, in which excitation light only penetrates several hundred nanometres into the cell, thus isolating membrane events. FRET was assayed between the channels and either WT or DN CaM, performed under conditions of normal [Ca2+]i, low [Ca2+]i or high [Ca2+]i induced by empirically optimized bathing solutions. The FRET data suggest a strong Ca2+ dependence for the interaction between WT CaM and KCNQ2, but less so for KCNQ3 and KCNQ4. FRET between all KCNQ2–4 channels and DN CaM was robust, and not significantly Ca2+ dependent. These data show interactions between CaM and KCNQ channels in living cells, and suggest that the interactions between KCNQ2–4 channels and CaM are likely to have Ca2+-dependent and Ca2+-independent components.  相似文献   

17.
Interstitial cells of Cajal-like cells (ICC-LCs) in the urethra may act as electrical pacemakers of spontaneous contractions. However, their properties in situ and their interaction with neighbouring urethral smooth muscle cells (USMCs) remain to be elucidated. To further explore the physiological role of ICC-LCs, spontaneous changes in [Ca2+]i (Ca2+ transients) were visualized in fluo-4 loaded preparations of rabbit urethral smooth muscle. ICC-LCs were sparsely distributed, rather than forming an extensive network. Ca2+ transients in ICC-LCs had a lower frequency and a longer half-width than those of USMCs. ICC-LCs often exhibited Ca2+ transients synchronously with each other, but did not often show a close temporal relationship with Ca2+ transients in USMCs. Nicardipine (1 μ m ) suppressed Ca2+ transients in USMCs but not in ICC-LCs. Ca2+ transients in ICC-LCs were abolished by cyclopiazonic acid (10 μ m ), ryanodine (50 μ m ) and caffeine (10 m m ) or by removing extracellular Ca2+, and inhibited by 2-aminoethoxydiphenyl borate (50 μ m ) and 3-morpholino-sydnonimine (SIN-1; 10 μ m ), but facilitated by increasing extracellular Ca2+ or phenylephrine (1–10 μ m ). These results indicated that Ca2+ transients in urethral ICC-LCs in situ rely on both Ca2+ release from intracellular Ca2+ stores and Ca2+ influx through non-L-type Ca2+ channel pathways. ICC-LCs may not act as a coordinated pacemaker electrical network as do ICC in the gastrointestinal (GI) tract. Rather they may randomly increase excitability of USMCs to maintain the tone of urethral smooth muscles.  相似文献   

18.
Activation of both small-conductance (SKCa) and intermediate-conductance (IKCa) Ca2+-activated K+ channels in endothelial cells leads to vascular smooth muscle hyperpolarization and relaxation in rat mesenteric arteries. The contribution that each endothelial K+ channel type makes to the smooth muscle hyperpolarization is unknown. In the presence of a nitric oxide (NO) synthase inhibitor, ACh evoked endothelium and concentration-dependent smooth muscle hyperpolarization, increasing the resting potential (approx. −53 mV) by around 20 mV at 3 μ m . Similar hyperpolarization was evoked with cyclopiazonic acid (10 μ m , an inhibitor of sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA)) while 1-EBIO (300 μ m , an IKCa activator) only increased the potential by a few millivolts. Hyperpolarization in response to either ACh or CPA was abolished with apamin (50 n m , an SKCa blocker) but was unaltered by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (1 μ m TRAM-34, an IKCa blocker). During depolarization and contraction in response to phenylephrine (PE), ACh still increased the membrane potential to around −70 mV, but with apamin present the membrane potential only increased just beyond the original resting potential ( circa −58 mV). TRAM-34 alone did not affect hyperpolarization to ACh but, in combination with apamin, ACh-evoked hyperpolarization was completely abolished. These data suggest that true endothelium-dependent hyperpolarization of smooth muscle cells in response to ACh is attributable to SKCa channels, whereas IKCa channels play an important role during the ACh-mediated repolarization phase only observed following depolarization.  相似文献   

19.
Waves of calcium-induced calcium release occur in a variety of cell types and have been implicated in the origin of cardiac arrhythmias. We have investigated the effects of inhibiting the SR Ca2+-ATPase (SERCA) with the reversible inhibitor 2',5'-di(tert-butyl)-1,4-benzohydroquinone (TBQ) on the properties of these waves. Cardiac myocytes were voltage clamped at a constant potential between −65 and −40 mV and spontaneous waves evoked by increasing external Ca2+ concentration to 4 m m . Application of 100 μ m TBQ decreased the frequency of waves. This was associated with increases of resting [Ca2+]i, the time constant of decay of [Ca2+]i and the integral of the accompanying Na+–Ca2+ exchange current. There was also a decrease in propagation velocity of the waves. There was an increase of the calculated Ca2+ efflux per wave. The SR Ca2+ content when a wave was about to propagate decreased to 91.7 ± 3.2%. The period between waves increased in direct proportion to the Ca2+ efflux per wave meaning that TBQ had no effect on the Ca2+ efflux per unit time. We conclude that (i) decreased wave frequency is not a direct consequence of decreased Ca2+ pumping by SERCA between waves but, rather, to more Ca2+ loss on each wave; (ii) inhibiting SERCA increases the chance of spontaneous Ca2+ release propagating at a given SR content.  相似文献   

20.
The observation of spontaneous sporadic releases of packets of stored calcium made 20 years ago has opened up a number of new concepts in smooth muscle physiology: (1) the calcium release sites are ryanodine and inositol 1,4,5-trisphosphate (IP3) receptor channels which contribute to cell-wide increases in [Ca2+]i in response to cell depolarization, activation of IP3-generating receptors, or other stimuli; (2) changes in [Ca2+]i act back on the cell membrane to activate or modulate K+, Cl and cation channel activity so affecting contraction, in arterial smooth muscle for example affecting blood pressure; (3) IP3 production is voltage dependent and is believed to contribute to pacemaker potentials and to refractory periods which control the rhythmical motility of many hollow organs. Most smooth muscle tissues contain interstitial cells (ICs) in addition to contractile smooth muscle cells (SMCs). The interactions of these internal mechanisms, and in turn the interactions of SMCs and ICs in various smooth muscle tissues, are major factors in determining the unique physiological profiles of individual smooth muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号